具有连续或不连续输出函数的神经网络模型的动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先研究了一类对信号强度进行改进后的时滞细胞神经网络模型的动力学行为,然后对几类具有不连续激活函数的一般神经网络模型的动力学性质进行了分析.全文共分六章:
     第一章回顾了神经网络的研究历史与发展概况,并对本文所研究的几类神经网络模型的应用背景及现状,以及本文的研究内容进行了介绍.
     第二章介绍了本文需要用到的一些基本定义和基本引理.主要涉及到有关矩阵理论、集值分析和微分包含等方面的内容.
     第三章对一类由不变模块所描述且改进了信号强度的时滞细胞神经网络的平衡点进行了分析.与标准的时滞细胞神经网络相比较,改进后的模型允许输出函数无界,具有耗能更低、细胞密度更大以及运行速度更快等特点.本章首先利用耗散理论分析了该系统的全局吸引集和正不变集的大小,从而确定出平衡点存在的可能区域.然后,根据模型中状态反馈模块和时滞反馈模块的不变性特点,通过构造合适的迭代映射,研究了饱和区域内平衡点的存在性、个数以及局部渐近稳定性.最后,给出了该时滞细胞神经网络模型全局指数稳定的充分条件,并同时确定了此时该系统唯一平衡点存在的确定区域.该章获得的结果推广了已有对标准时滞细胞神经网络平衡点的上述性质所做的一些工作.
     第四章探讨了一类具有不连续输出函数的神经网络模型的动力学行为,该类模型包含了许多文献中所研究的具有不连续输出函数的Hopfield神经网络模型.在不要求输出函数有界的条件下,利用M矩阵理论、集值映射中的Leray-Schauder不动点定理并结合广义Lyapunov泛函方法,研究了这类模型状态平衡点的存在唯一性、全局指数稳定性以及对应输出平衡点的全局收敛性.进一步,给出了系统在有限时间内收敛的充分条件,该性质也是由右端不连续微分方程描述的神经网络模型所具有的特殊性质.
     在第五章中,我们对一类具有不连续输出函数的时滞神经网络模型进行了分析.首先,讨论了这类模型平衡点存且唯一的充分条件.然后,通过研究与模型等价的右端不连续泛函微分方程零解的全局渐近稳定性,给出了这类神经网络模型状态平衡点全局渐近稳定以及对应的输出平衡点全局渐近收敛的一般判据.该章中的主要结果和已有文献相比较,一方面去除了对输出函数要求有界及单调的假设,另一方面也放松了对连接矩阵的严格限制条件.
     第六章研究了一类可以描述为右端不连续微分方程的周期环境下的神经网络模型.在并不要求输出函数连续、有界及单调非减的情况下,通过利用线性矩阵不等式,微分包含中的Cellina近似选择定理,以及右端不连续微分方程δ-解的一致收敛定理,得到了这类神经网络模型存在周期解的充分条件.最后,进一步结合Lyapunov泛函方法证明了周期解的全局指数稳定性.
In this thesis, the dynamic behaviors are addressed for both the so-called improved signal range model of cellular neural networks and several classes of neural networks with discontinuous neuron activations.
     In Chapter One, the history and development of neural networks are briefly intro-ducted. The background and motivations of this work are also given in this chapter.
     In Chapter Two, we list some basic definitions and lemmas concerning with matrix theory, set-valued analysis and differential inclusion.
     In Chapter Three, the equilibrium points of a class of improved signal range cellular neural networks described by invariant cloning templates are considered. Comparing to the standard delayed cellular neural networks, the output functions of improved models are allowed to be unbounded, which results that the improved models have the features such as lower power consumption, greater cell density and running faster. This chapter firstly address the global attractive set and positive invariant set to make sure of the general potential domains of equilibrium points. Secondly, according to the invariability of state feedback templete and delay feedback templete, the existence, number and local asymptotic stability of equilibrium points are studied in each saturation region by constructing the suitable iterative mapping. Finally, one sufficient condition is obtain to ensure the global exponential stability of this system, and the explicit existing region of the unique equilibrium point is further located. The obtained results extend previous works on above issues of standard delayed cellular neural networks.
     In Chapter Four, the dynamics of a class of recurrent neural networks are investigated, where the neural activations are modeled by discontinuous functions. The moldels studied in this chapter includes the known Hopfield neural network models. Without presuming the boundedness of activation functions, we establish some sufficient conditions to ensure the existence, uniqueness, global exponential stability of state equilibrium point and global convergence of output equilibrium point, respectively. Furthermore, under certain conditions, we prove that this system is convergent globally in finite time, which is a special character of neural networks described by differential equations with discontinuous right hand. The analysis is based on the properties of M-matrix, Leray-Schauderfixed point theorem of multivalued version and generalized Lyapunov-like approach.
     Chapter Five addresses a class of delayed neural networks with discontinuous neu- ron activations. Some sufficient conditions to ensure the existence and global asymptotic stability of the state equilibrium point are presented. Furthermore, the global convergence of the output solutions are also discussed. The assumptive conditions imposed on activation functions are allowed to be unbounded and nonmonotonic, and the restrained conditions on connection weigh matrix are less than previews works on the discontinuous or continuous neural networks.
     In Chapter Six, we consider a class of discontinuous recurrent neural network models described as a periodic differential system. Without presuming the activation functions to be continuous, bounded and monotone nondecreasing, by utilizing linear matrix inequality, Cellina approximate selection theory in differential inclusion and the uniform convergence Theorem ofδ-solutions in differential equations with discontinuous right hand, a sufficient condition is provided to ensure the existence of periodic solutions of this system. The global exponential stability of periodic solution is also proven by employing the generalized Lyapunov-like approach.
引文
[1]McCulloch W,Pitts W.A logicals calculus of the ideas imminet in nervous activity.Bull.Math.Biophys.,1943:115-133
    [2]Minsky L,Papert S.Perceptrons.Cambridge,MA:MIT Press,1969
    [3]Hopfield J J.Neural networks and physical systems with emergent collective computation abilities.Proc.Nat.Acad.Sci.USA,1982,79:2554-2558
    [4]Hopfield J J.Neurons with graded response have collective computational properties like those of two-state neurons.Proc.Nat.Acad.Sci.USA,1984,81:3088-3092
    [5]Chua L O,Yang L.Cellular neural networks:Theory.IEEE Trans.Circuits Syst.,1988,35:1257-1272
    [6]Chua L O,Yang L.Cellular neural networks:Applications.IEEE Trans.Circuits Syst.,1988,35:1273-1290
    [7]黄立宏,李雪梅.细胞神经网络动力学.北京:科学出版社,2006
    [8]Roska T,Chua L O.Cellular neural networks with nonlinear and delay type template elements and non-uniform grids.Int.J.Circuit Theorey Appl.,1992,20:469-481
    [9]Rodriguez-Vazquez A,Espejo S,Dominguez-Castro R,Huertas J L,Sanchez-Sinencio E.Current-mode techniques for the implementation of continuous-and discrete-time cellular neural networks.IEEE Trans.Circuits Syst.Ⅱ,1993,40:132-146
    [10]Espejo S,Carmona R,Dominguez-Castro R,Rodriguez-Vazquez A.A VLSI oriented continuous time CNN model.Int.J.Circuit Theory Appl.,1996,24:341-356.
    [11]Ban J C,Lin S S,Hsu C H.Spatial disorder of cellular neural networks-with biased term.Int.J.Bifur.Chaos Appl.,2002,12:525-534
    [12]Hsu C H,Lin S S.Spatial disorder of cellular neural networks.Japan J.Indust.Appl.Math.,2002,19:143-161
    [13]Matsumoto T,Chua L O,Yokohama T.Image thinning with a cellular neural network.IEEE Trans.Circuits Syst.,1990,37:638-640
    [14]Werblin F,Roska T,Chua L O.The analogical cellular neural networks as a bionic eye.Int.J.Circuit Theory Appl.,1994,23:541-569
    [15]Suzuki H,Matsumoto T,Chua L O.A CNN handwritten character recognizer.Int.J.Circuit Theory Appl.,1992,20:601-612
    [16]Kozek T,Roska T.A double time-scale CNN for solving two-dimensional Navier-Stokese quations.Int.J.Circuit Theory Appl.,1996,24:49-55
    [17]Chou E Y,Sheu B J,Chang R C.VLSI design of optimization and image processing cellular neural networks.IEEE Trans.Circuits Syst.,1997,44(1):12-20
    [18]Gilli M,Civalleri P P,Roska T,et al.Analysis of time-varying cellular neural networks for quadratic global optimization.Int.J.Circuit Theory Appl.,1998,26:109-126
    [19]Park J,Kim H Y,Park Y,et al.A synthesis procedure for associative memories based on space-varying cellular neural networks.Neural Networks,2001,14:107-113
    [20]Brucoli M,Carnimeo L,Grassi G.Heteroassociative memories via cellular neural networks.Int.J.Circuit Theory Appl.,1998,26:231-241
    [21]Bilya D,Roska B,Roska,T,Werblin F S.A CNN famework for modelling parallel processing in a mammalian retina.Int.J.Circuit Theory Appl.,2002,30:363-393
    [22]Cruz J M,Chua L O.Application of cellular neural networks to model population dynamics .IEEE Trans.Circuits Syst.,1995,42(10):715-720
    [23]李雪梅.细胞神经网络的稳定性.湖南大学博士学位论文,2002
    [24]Huang C X,Huang L H.Dynamics of a class of Cohen-Grossberg neural networks with time-varying delays.Nonlinear Analysis:RWA,2007,8:40-52
    [25]Guo S J,Huang L H.Stability analysis of Cohen-Grossberg neural networks.IEEE Trans.Neural Networks,2006,17(1):106-117
    [26]Liu B W,Huang L H.Existence and exponential stability of periodic solutions for a class of Cohen-Grossberg neural networks with time-varying delays.Chaos,solitons & Fractals,2007,32(2):617-627
    [27]Tank D W,Hopfield J J.Simple neural optimization networks:an A/D converter,signal decision circuit,and a lineal programming circuit.IEEE Trans.Circuits Syst.,1986,33:533-541
    [28]Harrer H,Nossek J A,Stelzl R.An analog implementation of discrete-time cellular neural networks.IEEE Trans.Neural Networks,1992,3:466-476
    [29]Kennedy M P,Chua L O.Neural networks for nonlinear programming.IEEE Trans.Circuits Syst.,1988,35:554-562
    [30]Forti M,Nistri P.Global convergence of neural networks with discontinuous neuron activations ,IEEE Trans.Circuits Syst.,2003,50:1421-1435
    [31]Forti M,Grazzini M,Nistri P,Pancioni L.Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations.Physica D,2006,214:88-99
    [32]Forti M.M-matrices and global convergence of discontinuous neural networks.Int.J.Circ.Theor.Appl.,2007,35:105-130
    [33] Lu W, Chen T. Dynamical behaviors of Cohen-Grossberg neural networks with discontinuous activation functions. Neural Networks, 2005, 18: 231-242
    [34] Forti M, Nistri P, Papini D. Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Trans. Neural Networks, 2005,16: 1449-1463
    [35] Lu W, Chen T. Dynamical behaviors of delayed neural network systems with discontinuous activations functions. Neural Computation, 2006, 18: 683-708
    [36] Wang J F, Huang L H, Guo Z Y. Dynamical behavior of delayed Hopfield neural networks with discontinuous activations. Appl. Math. Modelling, 2009, 33: 1793-1802
    [37] Wu H Q. Stability analysis for periodic solution of neural networks with discontinuous neuron activations. Nonlinear Analysis: RWA, 2009, 10: 1717-1729
    [38] Bhaya A, Kaszkurewicz E, Santos R. Characterizations of classes of stable matrices. Linear Algebra and Its Applications, 2003, 374: 159-174
    [39] Berman A, Plemmons R. Nonnegative Matrices in the Mathematical Science. New York:Academic Press, 1979
    [40] Aubin J P, Frankowska H. Set-Valued Analysis. Boston: Birkhauser, 1990
    [41] Filippov A F. Differential Equations with Discontinuous Righthand Side. Mathematics and Its Applications (Soviet series). Boston, MA: Kluwer Academic, 1988
    [42] Aubin J P, Cellina A. Differential Inclusions. Berlin: Springer-Verlag, 1984
    [43] Clarke F H. Optimization and Non-smooth Analysis. New York: Wiley, 1983
    [44] Baiotti A, Conti R, Marcellini P. Discontinuous Ordinary Differential Equations and Stabilization. Universita di Firenze, 2000
    [45] Arik S, Tavsanoglu V. Equilibrium analysis of delayed CNNs. IEEE Trans. Circuits Syst.,1998, 45: 168-171
    [46] Li X M, Huang L H. On the existence of stable equilibrium points for CNNs. Diff. Equ.Dyna. Syst., 2002, 10: 53-70
    [47] Gilli M, Biey M, Checco P. Equilibrium analysis of cellular neural networks. IEEE Trans.Circuits Syst., 2004, 51: 903-912
    [48] Joy M P, Tavsanoglu V. An equilibrinm analysis of CNNs. IEEE Trans. Circuits Syst.,1998, 45(1): 94-98
    [49] Kaluzny P. Number of stable equilibrium states of cellular neural networks. IEEE Trans.Circuits Syst., 1994, 41(9):608-610
    [50] Vandenberghe L, Vendewalle J. A path-following method for finding multiple equilibrium points in cellular neural networks. In: Cellular Neural Networks, New York: Wiley, 1993,80-93
    [51] Zeng Z G, Wang J, Liao X X. Stability analysis of delayed cellular nerual networks described using cloning templetes. IEEE Trans. Circuits Syst., 2004, 51(11): 2313-2324
    [52] Cao J D, Wang J. Global asymptotic stability of a general class of recurrent neural networks with time-varying delays. IEEE Trans. Circuits Syst., 2003, 50: 34-44
    [53] Zeng Z G, Wang J, Liao X. Global exponential stability of a general class of recurrent neural networks with time-varying delays. IEEE Trans. Circuits Syst., 2003, 50: 1353-1358
    [54] Liao X X, Wang J. Global dissipativity of continuous-time recurrent neural networks with time delay. Phys. Review E, 2003, 68: 1-7
    [55] Chen F Y, Liu Z R. Chaotic stationary solutions of cellular neural networks. Int. J. Bifur.Chaos Appl., 2003. 13: 3499-3504
    [56] Liao Z, Huang Y. Horseshoe and topological entropy estimate of a class of three-dimensional cellular neural networks. Appl. Math. Computation, 2008, 197: 382-388
    [57] Ban J C, Chien K P, Lin S S, Hsu C H. Spatial disorder of CNN-with asymmetric out function. Int. J. Bifur. Chaos Appl., 2001, 11: 2085-2095
    [58] Hsu C H. Smale horseshoe of cellular neural networks, Int. J. Bifur. Chaos Appl., 2000,10: 2119-2127
    [59] Liao X X, Luo Q, Zeng Z G. Positive invariant and global exponential attractive sets of neural networks with time-varying delays. Neurocomputing, 2008, 71: 513-518
    [60] Seydel R. Practical Bifurcation and Stability Analysis. New York: Springer-Verlag, 1994
    [61] Grossberg S. Nonlinear neural networks: Principles, mechanisms and architectures. Neural Networks, 1988, 1: 17-61
    [62] Hirsch M W. Convergent activation dynamics in continuous time networks. Neural Networks, 1989, 2: 331-349
    [63] Avitabile G, Forti M, Manetti S, Marini M. On a class of nonsymmetrical neural networks with application to ADC. IEEE Trans. Circuits Syst., 1991, 38: 202-209
    [64] Forti M, Manetti S, Marini M. A condition for global convergence of a class of symmetric neural networks. IEEE Trans. Circuits Syst. I, 1992, 39: 480-483
    [65] Liang X, Wang J. A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints. IEEE Trans. Neural Networks, 2000, 11: 1251-1262
    [66] Hu S, Wang J. Global stability of a class of continuous-time recurrent neural networks.IEEE Trans Circuits Syst. I, 2002, 49: 1334-1347
    [67] Xia Y, Wang J. Global asymptotic and exponential stability of a dynamic neural system with asymmetric connection weight weights. IEEE Trans. Automat. Contr., 2001, 46:635-638
    [68] Qiao H, Peng J, Xu Z, Zhang B. A reference model approach to stability analysis of neural networks. IEEE Trans. Circuits Syst. I, 2003, 50: 925-936
    [69] Forti M, Manetti S, Marini M. Necessary and sufficient condition for absolute stability of neural networks. IEEE Trans. Circuits Syst. I, 1994, 41: 491-494
    [70] Kaszkurewicz E, Bhaya A. On a class of globally stable neural circuits. IEEE Trans.Circuits Syst. I, 1994, 41: 171-174
    [71] Kelly D. Stability in contractive nonlinear neural networks. IEEE Trans. Biomedical Engineering, 1990, 3: 231-242
    [72] Matsuoka K. Stability condition for nonlinear neural networks with asymmetric connection weight. Neural Networks, 1992, 5: 495-500
    [73] Morita M. Associative memory with nonmonotone dynamics. Neural Networks, 1993, 6:115-126
    [74] Forti M. On global asymptotic stability of a class of nonlinear arising in neural networks theory. Journal of Differential Equation, 1994, 113: 246-264
    [75] Forti M, Tesi A. New condition for global stability of neural networks with application to linear and quadratic programming problems. IEEE Trans. Circuits Syst. I, 1995, 42:354-366
    [76] Liang X. A comment on equilibria , stability, and instability of Hopfield neural networks.IEEE Trans. Neural Networks, 2000, 11: 1506-1507
    [77] Kaszkurewicz E, Bhaya A. Comments on necessary and sufficient condition for absolute stability of neural networks. IEEE Trans. Circuits Syst. I, 1995, 42: 497-499
    [78] Song Q. Exponential stability of recurrent neural networks with both time-varying delays and general activation functions via LMI approach. Neurocomputing, 2008, 71: 2823-2830
    [79] Fiedler M, Pdak V. some generalization of positive definiteness and monotonicity. Numer.Math., 1966, 9: 162-173
    [80] Hale J K. Ordinary Differential Equations. New York: Wiley, 1969
    [81] Cao J D, Wang J. Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays. Neural Networks, 2004, 17:379-390
    [82] Chen A P, Cao J D, Huang L H. Exponential stability of BAM neural networks with transmission delays. Neurocomputing, 2004, 57: 435-454
    [83] Huang C X, Huang L H, Yuan Z H. Global stability analysis of a class of delayed cellular neural networks. Math. Comput. Simu., 2005, 70: 133-148
    [84] Campbell S A, Ncube I, Wu J. Multistability and stable asynchronous periodic oscillations in a multiple-delayed neural system. Phys. D, 2006, 214: 101-119
    [85] Song Q K, Cao J D. Global exponential stability of bidirectional associative memory neural networks with distributed delays. J. Comput. Appl. Math., 2007, 202: 266-279
    [86] J. H. Park, O. M. Kwon, S. M. Lee, LMI optimization approach on stability for delayed neural networks of neutral-type, Appl. Math. Comput., 196 (2008) 236-244
    [87] Hale J K, Lunel S M, Introduction to Function Differential Equations. Berlin, Germany:Springer-Verlag, 1993
    [88] Gopalsamy K, Sariyasa S. Time delays and stimulus-dependent pattern formation in periodic environments in isolated neurons. IEEE Trans. Neural Network, 2002, 13: 551-563
    [89] Gopalsamy K, Sariyasa S. Time delays and stimulus-dependent pattern formation in periodic environments in isolated neurons-Ⅱ. Dyn. Contin. Discrete Impuls. Syst.(Ser. B),2002 9: 39-58
    [90] Cao J, Wang J. Global exponential stability and periodicity of recurrent neural networks with time delays. IEEE Trans. Circuits Syst., 2005, 52: 920-931
    [91] Cao J. Global exponential stability and periodic solutions of delayed cellular neural networks. J. Comput. System Sci., 2000, 60: 38-46
    [92] Huang H, Cao J, Wang J. Global exponential stability and periodic solutions of recurrent cellular neural networks with delays. Phys. Lett. A, 2002, 298: 393-404
    [93] Song Q, Cao J. Global exponential stability and existence of periodic solutions in BAM networks with delays and reaction-diffusion terms. Chaos Solitons and Fractals, 2005, 23:421-430
    [94] Liu B, Huang L. Existence and exponential stability of periodic solutions for a class of Cohen-Grossberg neural networks with time-varying delays. Chaos, Solitons and Fractals,2007, 32: 617-627

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700