考虑土—结构相互作用的车桥系统耦合振动分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
列车的提速和轻轨铁路的建设加剧了车桥系统的耦合振动,而软弱地基上
    的基础变形更加大了此耦合振动的剧烈程度,这无疑将大幅度地降低列车的行
    车安全度。为了保证高速和轻轨列车的行车安全度,迫切需要对车桥系统进行
    耦合振动分析,并考虑基础变形对其耦合振动的影响。
    本文系统地进行了考虑土-结构相互作用(SSI)的车桥系统的耦合振动分析。
    文中首先在综合有关车桥系统耦合振动以及 SSI 分析的已有成果的基础上,系统
    地分析了引起车桥系统耦合振动的各种因素及其重要性,通过适当调整主要因
    素的影响因子而计入次要因素的影响,从而忽略次要因素而简化分析过程,最
    后,提出了一种考虑 SSI 效应的车桥系统耦合振动的分析方法,并采用逐步积分
    法求解具有时变系数的微分方程组。然后以天津轻轨工程中的一座四跨预应力
    混凝土连续刚构桥为例,建立了考虑 SSI 效应的车桥系统耦合振动分析的三维空
    间模型(其中车辆采用 27 自由度模型,梁体和桥墩采用空间梁单元,群桩基础
    采用等效单桩模型,桩侧土体采用弹簧和阻尼器模型),编制了相应的计算程序,
    数值分析了考虑 SSI 效应对车桥系统耦合振动的影响,并进一步分析了地震作用
    对考虑 SSI 效应的车桥系统耦合振动的影响。最后得出结论:(1)考虑 SSI 效应
    对于地处软弱地基的桥梁结构的动力特性将产生较大的影响,各阶自振频率较
    墩底固结体系均有较大的降低,因此在车桥耦合振动分析中必须考虑 SSI 效应的
    影响;(2)考虑 SSI 效应对车桥系统中桥梁的横桥向位移反应影响最大,对桥梁
    的扭转位移反应的影响也较大,而对桥梁的顺桥向位移反应和竖向位移反应的
    影响则很小;(3)车辆的横向摇摆力是引起车桥系统中桥梁横向振动的最主要
    的原因,而车辆的移动重力加载仅产生一定的影响;(4)地震作用与列车过桥
    两者对车桥系统中桥梁所引起的振动存在较大的耦合,不能简单地将地震反应
    与车桥振动反应进行叠加。
The coupled vibration of train-bridge system is aggravated due to the speeding
    of trains and the construction of light railways, and is further intensified due to the
    foundation deformation on soft soil, which will undoubtedly reduce the degree of
    safety of the train running. In order to ensure the safety of the train running on the
    high-speed railway or the light railway, it is urgent to analyze the coupled vibration of
    the train-bridge system and consider the influence of the foundation deformation on
    the coupled vibration.
     In this thesis, the coupled vibration analysis of the train-bridge system is
    systemically performed considering the soil-structure interaction (SSI). Based on
    reviewing the current progress on the coupled vibration of the train-bridge system and
    the analysis of SSI, a method for the coupled vibration analysis of the train-bridge
    system considering the SSI effect is proposed, in which all factors to induce the
    coupled vibration and its importance are systemically investigated and then the
    primary factors are properly augmented by ignoring the secondary factors, and the
    Step-by-Step Integral method is adopted to solve the quadratic differential equations
    with the time-varying coefficients. Taking a four-span continuous rigid-framed
    prestressed concrete bridge in Tianjin light railway engineering as an example, the
    three-dimensional spatial model for the coupled vibration analysis of the train-bridge
    system considering the effect of SSI is established, in which a model of train with 27
    degrees of freedom, the spatial beam element model for the girder and piers, a
    equivalent single-pile model for the grouped-piles foundation and a spring-damper
    model for the soil surrounding the piles are included. The related computer program
    is generated, the influence of the effect of SSI on the coupled vibration of the
    train-bridge system is numerically analyzed, and the influence of the seismic
    excitation on the coupled vibration of the train-bridge system considering SSI is
    further investigated. Finally, some conclusions are given as follows. (1) The dynamic
    characteristics of the bridge on the soft soil is significantly affected by considering
    the SSI effect, in which its natural frequencies are much lower than those of the
    bridge with end-fixed piers, so that the SSI effect must be taken into account in the
    coupled vibration analysis of the train-bridge system. (2) By considering the SSI
    effect in the coupled vibration of the train-bridge system, the lateral displacement
    
    
    responses of the bridge are most intensively affected, and the rotational displacement
    responses of the bridge are much intensively affected, but the longitudinal and
    vertical displacement responses are much slightly affected. (3) The lateral wobbling
    force of the train is the foremost cause to induce the lateral vibration of the
    train-bridge system, whereas, the moving gravity force of the train is of limit effect.
    (4) There is a rather large degree of coupling between the vibrations of the bridge
    induced by the seismic action and the train passing the bridge, which cannot be
    simply superposed by the seismic responses and the responses of the coupled
    vibration.
引文
参 考 文 献
    [1] 陈英俊,甘幼琛,于希哲,结构随机振动,北京:人民交通出版社,1993
    [2] 夏禾,车辆与结构动力相互作用,北京:科学出版社,2002
    [3] 李国豪,桥梁结构稳定与振动,北京:中国铁道出版社,2002
    [4] 曹雪琴,郑荣泉,宽跨比小于 1/20 的桁梁桥横向振动试验与分析,桥梁建
    设,1989,3:50~60
    [5] 阎贵平,夏禾,铁路斜拉桥的地震响应特性研究,北方交通大学学报,1995,
    19(2):137-142
    [6] 凌知民,曹雪琴等,铁路高墩连续梁桥车桥耦合振动响应分析,铁道学报,
    2002,24(5):98~102
    [7] 臧其吉,车辆动力学的研究和发展,北京:中国铁道出版社,1994
    [8] (瑞士)瓦尔夫 J P,土-结构动力相互作用(吴世明等译),北京:地震出版
    社,1989
    [9] 埃米尔 希谬,罗伯特 H 斯坎伦,风对结构的作用(刘尚培,项海帆,谢霁明
    译),上海:同济大学出版社,1992
    [10] 项海帆,高等桥梁结构理论,北京:人民交通出版社,2001
    [11] 范立础,桥梁抗震,上海:同济大学出版社,1996
    [12] 范立础,李建中,王君杰,高架桥梁抗震设计,北京:人民交通出版社,
    2001
    [13] 范立础,胡世德,叶爱君,大跨度桥梁抗震设计,北京:人民交通出版社,
    2001
    [14] (美)M.J.N.普瑞斯特雷等,桥梁抗震设计与加固(袁万诚等译),北京:人
    民交通出版社,1997
    [15] (日)佐藤裕著,轨道力学(卢肇英译),北京:中国铁道出版社,1981
    [16] 曾庆元,郭向荣,列车桥梁时变系统振动分析理论与应用,北京:中国铁
    道出版社,1999
    [17] 严隽耄,车辆工程,北京:中国铁道出版社,1999
    [18] 罗定安,工程结构数值分析方法与程序设计,天津:天津大学出版社,1994
    [19] 洪锦如,桥梁结构计算力学,上海:同济大学出版,1996
    [20] 单德山,李乔,车桥耦合振动分析的数值方法,重庆交通学院学报,1999,
    18(3):14~20
    [21] 单德山,李乔,车桥耦合振动数值模拟及软件实现,西南交通大学学报
    1999,34(6):664~668
     66
    
    
    参 考 文 献
    [22] (美)克拉夫 R W,彭津 J,结构动力学(王光远译),北京:科学出版社,
    1981
    [23] 石洞,石志源,黄东洲,桥梁结构电算,上海:同济大学出版社,1985
    [24] 戴公连,李德建,桥梁结构空间分析设计方法与应用,北京:人民交通出
    版社,2001
    [25] 王元丰,许士杰,桥梁在车辆作用下空间动力响应的研究,中国公路学报,
    2000,13(4):37~42
    [26] 谢伟平,于艳丽等,高速移动荷载下轨道系统振动模拟的数值算法, 武汉
    理工大学学报,2001,23(12):57~61
    [27] G. H. Tan,G. H. Brameld,et al,建立桥梁-车辆相互作用的分析模型,世
    界地震工程,1998,14(4):107~116
    [28] 张媛,轻轨铁路高架桥与站桥结构体系地震反应分析与隔震研究,硕士学
    位论文,天津大学,2003
    [29] 王悦春,李元军,铁路桥梁抗横移板式橡胶支座的设计,铁道建筑,2003,
    3:7~9
    [30] Wu Y.S., Yang Y.B., Steady-state response and riding comfort of trains moving
    over a series of simply supported bridges [J], Engineering Structures, 2003, 25:
    255~265,
    [31] Torbjorn Ekevid, Martin X. D. Li, et al, Adaptive FEA of wave propagation
    induced by high-speed trains, Computers& Structures, 2001, 79: 2693~2704
    [32] 凌知民,曹雪琴等,铁路高墩连续梁桥车桥耦合振动响应分析,铁道学报,
    2002,24(5):98~102
    [33] 凌治平,基础工程,北京:人民交通出版社,1993
    [34] 中华人民共和国交通部, JTJ004—89,公路工程抗震设计规范,北京:
    人民交通出版社,1989-10-04
    [35] 肖晓春,迟世春等,地震荷载下桩土相互作用简化计算方法及参数分析,
    大连理工大学学报, 2002,42(6):719~723
    [36] 陈波,吕西林等,均匀土—桩基—结构相互作用体系的计算分析,地震工
    程与工程振动,2002,22(3):91~98
    [37] 孙剑平,朱希,桩基础桥梁的土—结构动力相互作用,铁道学报,2001,
    23(2):65~69
    [38] 李永梅,孙国富等,桩—土—杆系结构的动力相互作用,建筑结构学报,
    2002,23(1):75~82
    [39] Yazdchi M, Khalili N, et al, Dynamic soil-structure interaction analysis via
    coupled finite-element-boundary-element method [J], Soil Dynamics and Earthquake
    Engineering, 1999, 18:499~517
     67
    
    
    参 考 文 献
    [40] Rizos D.C., Wang Z., Coupled BEM-FEM solutions for direct time domain
    soil-structure interaction analysis [J], Engineering Analysis with Boundary Elements,
    2002, 26: 877~888
    [41] Xia H, Zhang N et al. Dynamic analysis of high speed railway bridges under
    articulated trains [J], Computers and Structures, 2003, 81: 2467~2478
    [42] 夏禾,徐幼麟等,大跨度悬索桥在风与列车荷载同时作用下的动力响应分
    析,铁道学报,2002,24(4):83~91
    [43] 张弥,夏禾等 ,轻轨列车和高架桥梁系统的动力响应分桥,北方交通大
    学学报,1994,18(1):1~8
    [44] 杨岳民,潘家英等,大跨度铁路桥梁车桥动力响应理论分析及试验研究,中
    国铁道科学,1995,16(4):1~16
    [45] 王贵春,潘家英等,铁路桥梁在列车荷载作用下的动力分析,中国 铁道
    科学,1996,17(4):80~89 [35] 张弥,夏禾,冯爱军 ,轻轨列车和高架桥
    梁系统的动力响应分桥,北方交通大学学报,1994,18(1):1~8
    [46] 李小珍,蔡婧等,芜湖长江大桥斜拉桥的车桥耦合振动分析,铁道学报,
    2001,23(2):70~75
    [47] 屈爱平,高淑英,梁—墩—桩基的动力特性研究,西南交通大学学报,2001,
    36(6):641~644
    [48] 范立础,桥梁工程,北京:人民交通出版社,1996
    [49] 范立础,预应力混凝土连续梁桥,北京:人民交通出版社,1999
    [50] 姚玲森,桥梁工程,北京:人民交通出版社,1995
    [51] 谭浩强,田淑清,FORTRAN 语言,北京:清华大学出版社,1990
    [52] 张志涌,精通 MATLAB5.3 版,北京:北京航空航天大学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700