基于复杂性理论的河湖环境系统模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先综述了复杂性理论及其在河湖环境系统模型应用中的研究进展,指出复杂环境系统模型现状研究中存在的问题,并具体针对复杂河湖环境系统的水环境质量模型、水环境容量计算模型、水环境风险模型、湖泊富营养化模型、水环境时序变化机制探讨和酸沉降子系统时空分布特征模拟等方面,从数学理论、方法和应用相结合的角度出发,系统的研究了基于复杂性理论的河湖环境系统建模的新理论、新方法,以期建立的复杂环境系统模型更符合客观规律和事实。
     本文的研究工作和研究成果包括以下内容:(1)针对缺乏河流流场和参数资料的环境系统,建立了基于区间有限单元法的二维水质模型,通过对规则河流采用数值实验(最优化的区间解析解)方法验证基于区间有限单元法的二维区间水质模型的可靠性和精度,并以区间数“度”的测度描述水环境风险。研究发现该模型为传统的随机理论和模糊理论研究水环境模拟、预测和风险评价提供了有益的补充。(2)针对湖泊富营养化Chlorophyll-a与环境参数、生物参数之间的非线性关系,建立了基于贝叶斯神经网络(BRBPNN)和贝叶斯最小二乘支持向量机(BEFLSSVM)的Chlorophyll-a预测模型。实例数据研究表明基于贝叶斯推断理论自动获取后验分布意义上的最大值,大大方便了神经网络训练和支持向量机估计算法的规整化参数、核参数的选择,且具有优良的稳健性和泛化能力,可以为有效及时的控制湖泊富营养化变化趋势提供科学依据。(3)基于未确知数学的盲数理论和皮尔逊III型曲线的Monte-Carlo模拟,以出湖水体水质超标风险率小于10%的污染物浓度均值作为水质控制目标,提出了不确定信息下湖泊富营养化水环境容量的计算方法,可以获得理论上较为可行且计算结果偏于安全的水环境容量。(4)根据频率幂律分布分析、功率谱分析和消除趋势波动分析三种统计方法和自组织临界系统的三个基本特征,研究发现湖泊溶解氧序列的频率分布在一定区间内遵从幂律分布(尺度不变性)且在时域上具有1 /fβ噪声特性,分析了可将水体的饱和溶解氧浓度作为水环境系统临界状态的原因,探讨了自组织临界性可能是水环境系统溶解氧时序形成与演化的内在机制之一。(5)在Streeter-Phelps和Shastry水质模型的基础上引入随机力,建立了基于线性和非线性随机微分方程的突发性水环境风险计算模型,并以数值方法求解多维随机偏微分方程得到概率密度分布函数,获得污染物超标风险率与超标时间长短的关系。研究表明一个微小的随机扰动都有可能改变系统的“命运”,环境风险管理者和规划者应充分重视环境系统中的非线性效应和不确定效应。(6)基于酸沉降系统中存在的非线性和不确定性特征,建立了酸沉降时空分布特征的BRBPNN和BEFLSSVM模型,模拟结果明显优于传统多元线性回归(MLR)模型,改善提高了酸沉降化学组分的月平均浓度的时空分析模型的模拟精度,有利于解释酸沉降时空分布特征的机理。
     本文基于环境系统的复杂性特征,较为系统、深入地提出了基于复杂性理论的河湖环境系统模型的预测、模拟、评价和规划的理论与方法。一方面,有助于发展一套较完整的针对复杂环境系统的建模理论与方法,在本质上加深了对复杂河湖环境系统客观规律性的认识,具有一定的理论意义。另一方面,本文以三峡水库、洞庭湖等实例研究证明,基于复杂性理论的环境系统模型能够更加准确、有效的预测、模拟复杂的环境系统行为,可以为环境管理、规划和管理提供定量理论依据和技术支持,更有效的指导和协调环境系统的可持续发展,具有一定的实践意义。
This dissertation first reviews the research progresses on complexity theory and its applications to the models of water environmental system, and accounts for the current problems on complex environmental models. Then from the respective of the mathematic theories, methodologies and applications and based on complexity theory, the focus is given on the development of new theory and new methodology for the water environmental modeling establishment. This dissertation systematically studies the modeling problems in such areas as follows: water quality model, calculation of water environmental capacity, risk analysis of water environment, mechanism discussion of water environmental time series, lake eutrophication model and temporal distribution simulation of acid precipitation. By means of complexity theory, we hope to found some environmental system models which are more accorded with the objective rules and facts.
     The main work and novel results of this dissertation includes the following elements. (1) Under the condition of unclear water environment, inexact cognition of parameters, without the detailed monitoring flow field and to avoid full dependence of practical monitoring data of river, an interval two-dimensional water quality model, its numerical algorithm and interval risk (denoted by“degree”of interval number) have been proposed, the availability and reliability of which were calibrated by numerical experiment of the ideal regular river reach. The results of a case study indicated that the interval water quality model offered a realistic approach for dealing with uncertainties in real-world problems compared with traditional stochastic or fuzzy methods. (2) Based on the non-linear relationship between Chlorophyll-a and environmental parameters as well as biological parameters in the lake eutrophication, the Bayesian regularized BP neural network (BRBPNN) and the least squares support vector machine within Baysiean evidence framework (BEFLSSVM) were proposed to predict Chlorophyll-a concentration. The results showed that BRBPNN and BEFLSSVM models were capable of automated selection of regularization and kernel parameters, and thus it may ensure the excellent generation ability and robustness. (3) Based on the pollutant concentration distribution in lake effluent (the risk of exceeding standard was lower than 10%, which was considered as the control goal of water quality), with the unascertained mathematics theory and Monte-Carlo method by the Pearson-III distribution curve, a new model for the calculation of water environmental capacity in eutrophic lake under unascertained information was proposed. This modeling could offer the feasible and reliable capacity of the water environment. (4) Three statistical methods were used to examine the self-organized criticality (SOC) of weekly dissolved oxygen (DO) series: empirical probability distribution function, power spectrum analysis and detrended fluctuation analysis (DFA). We found evidence that DO events were analogous to avalanches of granular piles exhibiting SOC properties. The weekly DO events complied with double power-law in two different regimes separated by a characteristic scale, X c, and could be described as 1 /fβnoise with long-range persistence. Then additionally, we argued that the critical state of DO events referred to the concentration of the saturated dissolved oxygen ( O s). Therefore, DO evolution was consistent with the three criteria of complex SOC systems. We thus suggested that SOC might be a possible mechanism underlying weekly DO evolution. (5) On the basis of Streeter-Phelps and Shastry's water quality model, the concept of stochastic force was introduced to develop the stochastic differential equation of water environment. The probability density distribution function was deduced by numerically solving the multi-dimensional stochastic partial differential equation. Accordingly, the relationship between the risk and duration of pollution exceeding standard could be obtained. The calculation of case study showed that a very small stochastic vibration maybe changed the“fate”of water environment and thus the managers and planners should fully attach importance to the non-linear and uncertain effect in the environment. (6) Based on the nonlinear and uncertain characteristics of acid precipitation, the BRBPNN and BEFLSSVM models of Chapter 3 were applied to the trend analysis, acidity and chemical composition of precipitation. And the simulation results were obviously better than those of multiple linear regression (MLR), which proved that the environmental system modeling based on complexity theory had the excellent applicability and practicality and was helpful to explain the mechanism of trend analysis of precipitation.
     Due to the complexity characteristics of environmental system, this dissertation systematically and further developed the theory and methodology in prediction, simulation and assessment of the water environmental system models. To sum up, on one hand, this dissertation has been helpful to develop a set of environmental system modeling based on complexity theory and essentially deepen to recognize the objective rules. On the other hand, the results of the typical case study, such as Three-Gorge Reservoir and Dongting Lake, proved that the models based on complexity theory could more accurately and effectively account for the complex behaviors of water environment. And these offered theoretical and technical bases for environmental management and planning, and thus would more effectively boost the sustainable development of environmental system.
引文
[1] 程声通, 陈毓龄. 环境系统分析. 北京: 高等教育出版社, 1991: 9-20
    [2] 郑彤, 陈春云. 环境系统数学模型. 北京: 化学工业出版社, 2004, 1-29
    [3] Beck M B. Water quality management: a review of the development and application of mathematical models. New York: Springer-Verlag, 1985
    [4] Wolfgang Rauch, Hans Aalderink, Peter Krebs, Wolfgang Schilling, Peter Vabrikkeghem. Requirements for integrated wastewater models-driven by receiving water objectives. Wat. Sci. Tech. 1998, 38: 97-104
    [5] Donald Dean Adrian and Thomas G Sanders. Oxygen sag equation for second-order BOD decay. Wat. Res., 1998, 32: 840-848
    [6] Devendra Swaroop Bhargava. Models for polluted streams subject to fast purification. Wat. Res., 1986, 20: 1-8
    [7] Martin Omlin, Peter Reichert. A comparison of techniques for the estimation of model prediction uncertainty. Ecological Modelling, 1999, 115:45-59
    [8] Robert V Thomann, M Asce. Verification of water quality models. J. Environ. Eng. Div. Am. Soc. Civ. Eng. 1982, 108: 923-940
    [9] Premyslwa A Zielinski. Comment on “an analytic technique for stochastic analysis in environmental models” by Mark A Tumeo and Gerald T Orlob. Wat. Res. Res., 1991, 27: 649-650
    [10] Beck M B. Water quality modeling: a review of the analysis of uncertainty. Wat. Res. Res., 1987, 23: 1393-1442
    [11] K H Reckhow, S C Chapra. Modeling excessive nutrient loading in the environment. Environmental Pollution, 1999, 100: 197-207
    [12] R C Spear, G M Hornberger. Eutrophication in Peel Inlet-II, Identification of critical uncertainties via generalized sensitivity analysis. Wat. Res., 1980, 14: 43-49
    [13] Jining Chen. Modeling and control of the activated sludge process: towards a systematic framework: [phD thesis], the University of London, 1993
    [14] Carlos M Marin. Parameter estimation in water resources planning and management: optimal actions or optimal parameters? Wat. Res. Res., 1986, 22: 353-360
    [15] Mark E Borsuk, David Higdon, Craig A Stow, Kenneth H Reckhow. ABayesian hierarchical model to predict benthic oxygen demand from organic matter loading in estuaries and coastal zones. Ecological Modelling, 2001, 143: 165-181
    [16] Keith Beven and Andrew Binley. The future of distributed models: model calibration and uncertainty prediction. Hydrological Process, 1992,6: 279-298
    [17] Keith Beven. Prophecy, reality and uncertainty in distributed hydrological modeling. Advances in water resources. 1993, 16: 41-51
    [18] 刘国东, 丁晶. 水环境中不确定性方法的研究现状. 环境科学进展, 1996, 4: 47-53
    [19] 曾光明, 黄国和. 环境科学与工程中的不确定性理论与方法. 长沙: 湖南大学出版社, 2002
    [20] 曾光明, 杨春平, 卓利. 环境系统灰色理论与方法. 北京: 中国科学技术出版社, 1994.
    [21] Huang G H, Moore R D. Grey linear programming, its solving approach, and its application. International Journal of Systems Science, 1993, 24: 159-172
    [22] Lopez Anderes. Stochastic water quality models: solution, calibration and application [PhD thesis]. USA: Cornell University, 1999
    [23] 黄平. 水环境数学模型及其应用. 广州: 广州出版社, 1996
    [24] Shamshad Ahmad, Iqbal H K, Parida B P. Performance of stochastic approaches for forecasting river water quality. Wat. Res., 2001, 35(18): 4261-4266
    [25] Bafaut C, Chamean J L. Estimation of pollutant loads with fuzzy sets. Civil Engineeering Systems, 1990, 7(1): 51-61
    [26] Robert Portielje, Thorkild Hvitved-Jacobsenm, Kjeld Schaarup-Jensen. Risk analysis using stochastic reliability methods applied to two cases of deterministic water quality models. Wat. Res., 2000, 34(1): 153±170
    [27] Malcolm Hollick. Self-organizing systems and environmental management. Environmental Management, 1993, 17(5): 621-628
    [28] Olivier Klepper, Jacques J M Bedaux. A robust method for nonlinear parameter estimation illustrated on a toxicological model. Nonlinear Analysis: Theory, Methods & Application. 1997, 30: 1677-1696
    [29] Olivier Klepper, Jacques J M Bedaux. Nonlinear parameter estimation for toxicological threshold models. Ecological Modeling, 1997, 102: 315-324
    [30] (美)米歇尔.沃尔德罗普, (译)陈玲. 复杂——诞生于秩序与混沌边缘的科学. 北京: 科学出版社, 1997, 15-20
    
    [31] 许国志. 系统科学. 上海: 上海科技教育出版社, 2000
    [32] Fradkov A L. Nonlinear and adaptive control of complex system. Netlands: Kluwer Academic Publishers, 1999: 113-120
    [33] 张彦. 系统自组织概论. 南京: 南京大学出版社, 1990, 73-76
    [34] Masliev I. Probabilistic methods for uncertainty analysis and parameter estimation for dissolved oxygen models. Wat. Sci. Tech., 1994, 30(2): 99-108
    [35] 汪培庄. 模糊集合论及应用. 上海: 上海科学技术出版社, 1983: 1-3
    [36] Chen S H, Yang X W. Interval finite element method for beam structures. Finite Elements in Analysis and Design, 2000, 34: 75-88
    [37] Alefeld C, Herzberger J. Introductions to interval computations Academic Press, New York. 1983
    [38] 王光远. 未确知信息及其数学处理. 哈尔滨建筑工程学院学报, 1990, (4): 1-9
    [39] 刘开第, 吴和琴. 未确知数学. 武汉: 华中理工大学出版社, 1997, 27-35
    [40] Vapnik V. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999
    [41] Bak P, Tang C, Wiesenfeld K. Self-organized criticality: An explanation of 1/f noise. Phys. Rev. Lett. 1988, 59(4): 381-384
    [42] Bak P, Tang C. Earthquakes as a self-organized critical phenomenon. J. Geophys. Res., 1989, 94(11): 15635-15637
    [43] 黄润生. 混沌及其应用. 武汉: 武汉大学出版社, 1999: 75-76
    [44] 陈颙, 陈凌. 分形几何学. 地震出版社, 2005
    [45] Pekalski Andrzej. Model of population dynamics. Physica A: Statistical and Theoretical Physics, 1998, 252(3-4): 325-335
    [46] Wazwaz A M, Khuri S A. New ideas for solving size-structured population models. Applied Mathematics and Computation (New York), 1998, 93(1): 91-96
    [47] 吴彤. 自组织方法论研究. 北京: 清华大学出版社, 2001
    [48] 勒内·托姆. 突变论思想和应用. 上海: 上海泽文出版社, 1989
    [49] 郭治安, 沈小峰. 协同论. 太原: 山西经济出版社, 1999
    [50] 谢永明. 环境水质模型概论. 合肥: 中国科技大学出版社, 1996
    [51] 黄平. 水质随机微分模型系数的识别方法及应用.水利学报, 1988(3): 41-45
    [52] Padgett W J G Schultz, Tsokos C P. A random differential equation approach to the probability distribution of BOD and DO in stream. J. Appl. Math., 1977, 32(2): 52-60
    [53] Finney B A D S Bowles, Windham M P. Random differential equations in river water quality modeling. Water Resource Reseach, 1982,18(1): 124-127
    [54] Deway R J. Application of stochastic dissolved oxygen model. J. Environ. Eng., 1984, 110: 123-126
    [55] Loucks D P, Lynn W R. Probabilistic models for predicting stream quality. Water Resources Research, 1996(3): 593-605
    [56] Tabios G Q. Nonlinear stochastic modeling of river dissolved-oxygen, Dissertation for the degree of river dissolved of philosophy, Colorado State University, 1984
    [57] Huang P, Chen X C, The mathematical modeling of water quality under uncertainty in a tideway. In: Proceedings of International Symposium on Environmental Hydraulics, Hong Kong. 1991
    [58] Christos E Papadoulos, Hoi Yeung. Uncertainty estimation and monte-carlo simulation method. Flow measurement and instrumentation, 2001,12: 291-298
    [59] Annan J D. Modeling under uncertainty: montle-carlo methods for temporally varying parameters. Ecological Modelling, 2001, 136(23): 297-302
    [60] 金明. 一维稳态河流水质的随机微分方程模型. 水利学报, 1991, (2): 19-25
    [61] 王超. 河流水质随机分析模型及其应用. 水利学报, 1996, (11): 62-68
    [62] 黄克中, 张子亚. 明渠污染带的随机模拟. 水利学报, 1992, (3): 62-67
    [63] Ye shouze. Mathematical modelling of river water quality under uncertain. Intemation Journal HydroelectricE nergy, 1989,7(3): 200-210
    [64] 夏军, 张祥伟. 河流水质灰色非线性规划的理论与应用. 水利学报, 1993 (12): 1-9
    [65] Hercules Mpimpas, Petros Anagnostopoulos, Jacques Ganoulis. Modelling of water pollution in the Thermaikos Gulf with fuzzy parameters. Ecological Modelling, 2001,142: 91-104
    [66] Qin X S, Huang G H, Zeng G M, Chakma A, Huang Y F. An interval-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty. European Journal of operational research, xxx (2006) xxx–xxx
    [67] 陈治谏. 河流水质模型参数模糊估计的研究 . 武汉水利电力学院学报 , 1987(6): 20-27
    [68] 李如忠, 王超, 汪家权. 基于未确知信息的河流水质模拟预测研究. 水科学进展, 2004, 15(1):36-40
    [69] 金相灿, 刘鸿亮. 中国湖泊富营养化. 北京: 中国环境科学出版社, 1990:68-72
    [70] 卢小燕, 徐福留, 詹巍, 赵臻彦, 陶澍. 湖泊富营养化模型的研究现状与发展趋势. 水科学进展, 2003,14(6): 792-798
    [71] 梁婕, 曾光明, 郭生练, 苏小康, 黄国和. 湖泊富营养化模型的研究进展. 环境污染治理技术与设备, 2006, 7(6): 24-30
    [72] Annan J D. Modeling under uncertainty: Monte Carlo methods for temporally varying parameters. Ecological Modelling, 2001, 136(3): 297-302
    [73] Malmaeus J M, Hakanson L. A dynamic model to predict suspended particulate matter in lakes. Ecological Modelling, 2003, 167(3): 247-262
    [74] Pei Hong ping, Ma Jianyi. Study on the algal dynamic model for West Lake, Hangzhou. Ecological Modelling, 2002,148(1): 67-77
    [75] Hakanson Lars. On the principles and factors determining the predictive success of ecosystem models with focus on lake eutrophication models. Ecological Modelling, 1999, 121(2): 139-160
    [76] Hakanson Lars. The role of characteristic coefficients variation in uncertainty and sensitivity analyses, with example related to the structuring of lake eutrophication models. Ecological Modelling, 2000, 131(1): 1-20
    [77] Omlin Martin, Brun Roland, Reichert Peter. Biogeochemical model of Lake Zurich: Sensitivity, identifiability and uncertainty analysis. Ecological Modelling, 2001, 141(2): 105-123
    [78] Joseph H W Lee, Huang Yan, Dickman Mike.. Neural network modelling of coastal algal blooms. Ecological Modelling, 2003, 159: 179-201
    [79] Lek S, Guegan, J F. Artificial neural networks as a tool in ecological modeling, an introduction. Ecological Modelling, 1999, 120: 65-73
    [80] Whitehead P G, Howard A, Arulmani C. Modeling algal growth and transport in rivers: a comparison of time series analysis, dynamic mass balance and neural network techniques. Hydrobiologia, 1997, 349: 39-46
    [81] Recknagel F, French M, Harkonen P, Yabunaka K. Artificial neural network approach for modelling and prediction of algal blooms. Ecol. Model., 1997, 96: 11-28
    [82] French M, Recknagel F, Jarrett G L. Scaling issues in artificial neural network modelling and forecasting of algal bloom dynamics. In: Abt, S.R., Young-Pezeshk J, Watson C C (Eds.), Proceedings of the International Water Resources Engineering Conference, ASCE, August 3-7, 1998, Memphis, Tennessee, vol. 1: 891-896
    [83] Mark Walter, Friedrich Rechnagel, Craig Carperter, Myriam Bormans. Predicting eutrophication effects in the Burrinjuck Reservoir (Austria) by means of the deterministic model SALMO and the recurrent neural network model ANN. Ecological modeling, 2001, 146: 97-113
    [84] Aguilera P A, Garrido Frechich J A, Torres H Castro. Application of the Kohonen neural network in coastal water management: methodological development for the assessement and prediction of water quality. Wat. Res., 2001, 35(17): 4053-4062
    [85] Jan-Tai Kuo, Ming-Han Hsieh, Wu-Seng Lung, Nian She. Using artificial neural network for reservoir eutrophication prediction. Ecological modeling, 2007, 200: 171-177
    [86] Clair T A, Ehrman J M. Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: a neural network approach. Ecological modeling, 1996, 41: 921-927
    [87] Recknagel F, French M, Harkonen P, Yabunaka K. Artificial neural network approach for modelling and prediction of algal blooms. Ecol. Model., 1997, 96: 11-28
    [88] Yabunaka K I, Hosomi M, Murakami A. Novel application of a backpropagation artificial neural network model formulated to predict algal bloom. Water Sci. Technol., 1997, 36 (5), 89-97
    [89] 蔡煜东, 汪列, 姚林声. 水质富营养化程度的人工神经网络决策模型. 中国环境科学, 1995, 15(2): 123-127
    [90] 吴京洪, 杨秀环, 唐宝英. 人工神经网络预报浮游植物生长趋势的研究. 中山大学学报(自然科学版) , 2000, 39(6): 574-581
    [91] 裴洪平, 罗妮娜, 蒋勇. 利用 BP 神经网络方法预测西湖叶绿素 a 的浓度. 生态学报, 2004, 24(2): 246-252
    [92] Handan Camdevyren, Nilsun Demyr, Arzu Kanik, Syddyk Kesky. Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs. Ecological Modelling, 2005, 181: 581-589
    [93] Conrad Lamon E, Craig A Stow. Bayesian methods for regional-scale eutrophication models. Wat. Res., 2004, 38: 2764-2774
    [94] 蒋刚, 肖建, 郑永康, 宋昌林. 基于支持向量机的一类水域叶绿素 a 浓度反演研究. 计算机应用, 2005, 25(10): 2398-2401
    [95] Whigham P A, Friedrich Recknagel. Prediction chlorophyll-a in freshwater lakes by hybridising process-based models and genetic algorithms. EcologicalModeling, 2001, 146: 243-251
    [96] Chen Qiuwen, Arthur E Mynett. Modelling algal blooms in the Dutch coastal waters by integrated numerical and fuzzy cellular automata approaches. Ecological modeling, 2006, 199: 73-81
    [97] Chen Qiuwen, Arthur E Mynett. Integration of data mining techniques and heuristic knowledge in fuzzy logic modeling of eutrophication in Taihu Lake. Ecological Modelling, 2003, 162: 55-67
    [98] 刘兰芬, 张祥伟, 夏军. 河流水环境容量预测方法研究. 水利学报, 1998, (7):16-20
    [99] 金相灿. 湖泊富营养化控制和管理技术. 北京: 化学工业出版社, 2001, 179
    [100] 罗旭生. 大王滩水库水环境容量分析计算. 广西水利水电, 2001,(4): 37-39
    [101] 杨文龙, 扬常亮. 滇池水环境容量模型研究及容量计算. 云南环境科学, 2002, 21(4):20-23
    [102] 李隽, 许友. 岳阳南湖水环境容量计算及污染治理措施效果分析. 岳阳师范学院学报(自然科学版), 2001, 14(2): 21-23
    [103] 曾维华, 王华东. 随机条件下的水环境总量控制研究. 水科学进展, 1992, 3(2): 120-127
    [104] 曹磊.黄河兰州段水污染物规划环境容量和排污总量控制研究. 环境科学, 1993, 14(1): 54-58
    [105] Li Shi-yu. A programming model for river quality management under transverse mixing. Water Science Technology, 1992, 126(7-8): 1823-1830.
    [106] Fujiwara O, Gnanendran S K, Ohgaki S. River quality management under stochastic stream flow. Journalof Environmental Engineering, 1986,112(2): 185-198
    [107] Lohani B N, Thanh N C. Probabilistic water quality control policies. Journal of Environmental Engineering Division, 1979, 105(EE4): 713-725
    [108] Donald H B, Barbara J L. Comparison of optimization formulations for waste-load allocations. Journal of Environmental Engineering, 1992,118(4): 597-612
    [109] Li S Y, Tohru Morioka. Optimalal allocation of waste loads in a river with probabilistic tributary flow under transverse mixing. Water Environment Research, 1999,71(2): 156-162
    [110] Ellis J H. Stochastic water quality optimization using imbedded chance constraints. Water Resources Research, 1987, 23(12): 2227-2238
    [111] Donald H B, Edward A M. Optimization modeling of water quality in anuncertain environment. Water Resources Research, 1985,21(7): 934-940
    [112] Cardwell H, Ells H. Stochastic dynamic programming models for water quality management. Water Resources Research, 1993,29(4): 803-813
    [113] 曾光明. 灰色系统理论在水环境污染控制系统规划中的应用. 武汉: 武汉水利电力学院, 1988
    [114] 刘殿家, 温晓丹. 水质“箱式模型”的建立及应用一在淮河蚌埠段的尝试. 中国环境科学, 1987, 7(6): 37-41
    [115] Lee Chin-sheng, Wen Ching-gung. River assimilative capacity analysis via fuzzy linear programming. Fuzzy Sets and Systems, 1996,79(2):191-201
    [116] 李如忠, 汪家权, 王超等. 不确定信息下的河流纳污能力计算初探[J]. 水科学进展, 2003,14(4): 459-463
    [117] Zhang Bin, Govindaraju R S.·Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resour Res, 2000, 36:753-762
    [118] 金菊良, 丁晶, 魏一鸣. 基于遗传算法的门限自回归模型在海温预测中的应用. 海洋环境科学, 1999, 18(3):1-6
    [119] 侯瑞科. 平稳时间序列分析在海洋预报中的应用. 海洋预报, 1996, 13(1): 41-45
    [120] Axel Lehmann, Michael Rode. Long-term behaviour and cross-correlation water quality analysis of the river Elbe, Germany. Wat. Res., 2001, 35(9): 2153-2160
    [121] 王文圣, 袁鹏, 丁晶. 最近邻抽样回归模型在水环境预测中的应用. 中国环境科学, 2001,21(4); 367-370
    [122] Nandish M. Mattikalli. Time Series Analysis of Historical Surface Water Quality Data of the River Glen Catchment, U.K.. Journal of Environmental Management, 1996, 46: 149-172
    [123] Gun C, Vilagines R. Time series analysis on chlorides, nitrates, ammonium and dissolved oxygen concentrations in the Seine river near Paris. The Science of the Total Environment, 1997, 208: 59-69
    [124] 杨晓华, 杨志峰, 沈珍瑶, 陆桂华, 郦建强. 水环境非线性时序预测的高精度 RBF 网络模型. 水科学进展, 2005, 16(6): 788-792
    [125] Wenrui Huang, Simon Foo. Neural network modeling of salinity variation in Apalachicola River. Water Research, 2002,36: 356-362
    [126] 徐敏, 曾光明, 黄国和, 苏小康. 混沌理论在河流溶解氧预测中的应用初探. 环境科学学报, 2003, 23(6): 776-780
    [127] 易顺民, 赵文谦, 傅师鹏. 河流水质时间序列分析的自组织预测方法及应用. 上海环境科学, 1999, 18(4): 193-197
    [128] 钟政林. 环境系统风险评价理论与应用的初步探讨研究. (硕士学位论文). 长沙: 湖南大学, 1997
    [129] Aaron A Jenning, Suresh P. Risk penalty function hazardous waste management[J]. Journal of Environmental Engineering,1986,112(1): 105-122
    [130] Sage A P, White E B. Methodologies for risk and hazard assessment: a survey and status report. IEEE Transaction on systems, man and cybernetics, 1980, 10(8): 425-466
    [131] Warren T Piver, Lee A. Duvak, Jill A Schreifer. Evaluating health risks from ground-water contaminants. Journal of Environmental Engineering, 1998, 124(5): 475-478
    [132] 钟政林, 曾光明, 杨春平. 马尔科夫过程在河流综合水质预报中的应用. 环境工程, 1997,15(2):41-44
    [133] Robert Portielje, Thorkild Hvitved-Jacobsenm, Kjeld Schaarup-Jensen. Risk analysis using stochastic reliability methods applied to two cases of deterministic water quality models. Wat. Res., 2000, 34(1): 153±170
    [134] Padgett W J, Rao A N V. Estimation of BOD and DO probability distribution. Journal of Environmental Engineering, 1979, 105(2): 525-533
    [135] Soong T T. Random differential equations in science and engineering. Academic Press. New York and London: 1973
    [136] Dewey R J. Application of Stochastic dissolved oxygen model. Journal of Environmental Engineering, 1984,110(2): 412-429
    [137] 黄平. 河流随机河流水质微分动态溶解氧模型的应用. 水利学报, 1993, (7): 38-43.
    [138] Anand alingam G, Westfall M. Selection of hazardous waste disposal alternative using multi-attribute utility theory and fuzzy set analysis. Journal of Environmental System, 1988,18(1): 65-85
    [139] James D Englehardt, Jay R Lund. Information theory in risk analysis. Journal of Environmental Engineering, 1992, 118(6): 890-904
    [140] 何理, 曾光明. 考虑随机挠动因素的水环境风险模型研究. 水科学进展, 2002,13(2): 197-201
    [141] Neil R McIntyre, Howard S Wheater. A tool for risk-based management of surface water quality. Environmental Modelling & Software, 2004, 19: 1131-1140
    [142] Neil R McIntyre, Thorsten Wagener, Howard S Wheater, Steven C Chapra.Risk-based modelling of surface water quality: a case study of the Charles River, Massachusetts. Journal of Hydrology, 2003, 274: 225-247
    [143] 王飞, 王华东. 环境风险事故概率估计方法探讨. 上海环境科学, 1995, 14(5): 39-42
    [144] 马建华 , 季凡 . 水文评价的模糊概率综合主人评价法 . 水文 , 1994,(3): 21-24
    [145] Hamed M M, Brfimy P B. On the performance of computational methods for the assessment of risk from ground-water contamination. Ground Water, 1997, 35(4): 638-646
    [146] Hallett J Harris. A method for assessing environmental risk: a case study of green bay, Lake Michigan, USA. Environmental Management, 1994, 18(2): 295-396
    [147] 何理, 曾光明. 用模糊模拟技术研究水环境中的可能性风险. 环境科学学报, 2001,21(5): 634-636
    [148] 蒋大和. 关于我国酸雨的污染物输送问题. 中国环境科学, 1996, 16(4): 246-253
    [149] 黎云, 孙瑞庆. 氨的湿去除及氨在酸雨中的作用. 环境科学研究, 1996, 9(6): 41-44
    [150] 邱栋梁 , 刘星辉 . 模 拟 酸 雨 对 龙 眼 叶 绿 体 活 性 的 影 响 . 应 用 生 态 学 报 , 2002,13(12): 1559-1562
    [151] Sema Topcu, Selahattin Incecik, Aysel T. Atimtay. Chemical composition of rainwater at EMEP station in Ankara, Turkey. Atmospheric Research, 2002, 65: 77-92
    [152] Bravo H A, Saavedra M I R, Sahnchez P A, Torres R J, Granada L M M. Chemical composition of precipitation in a Mexican Maya region. Atmospheric Environment, 2000, 34: 1197-1204
    [153] Baez A P, Belmont R D, Padilla H G. Chemical composition of precipitation at two sampling sites in Mexico: a 7-year study. Atmospheric Environment, 1997,31(6): 915-925
    [154] Shaocai Yu, Chentie Gao, Zhemian Cheng, Xiaojian Cheng, Shuentian Cheng, Jian Xiao Wenxian Ye. An analysis of chemical composition of different rain types in ‘Minnan Golden Triangle’ region in the southeastern coast of China. Atmospheric Research, 1998, 47: 245-269
    [155] Gulsoy G, Tayanc M, Erturk F. Chemical analysis of the major ions in the precipitation of Istanbul, Turkey. Environmental Pollution, 1999, 105:273-280
    [156] Nektarios Moschonas, Sotirios Glavas. Weak organic acidity in a wet-only precipitation study at a Mediterranean coastal site, Patras, Greece. Atmospheric Research, 2002, 63: 147-157
    [157] 周慧. GM(1,1)残差模型群与酸雨预测. 辽宁大学学报, 1997, 24(2): 64-68
    [158] 李柞泳. 水中的离子浓度对降水酸度 pH 值的影响. 环境工程,1998,16(5): 49-53
    [159] 李柞泳, 彭荔红. 降水中与 pH 值有关的离子优选和 pH 值的 PPR 预测. 中国环境监测, 1999, 15(1):51-54
    [160] 李柞泳. 我国部分城市降水中离子浓度与 pH 值的关系研究. 环境科学学报, 1999,19(3):303-306
    [161] 王文圣, 熊华康, 曾宏伟. 酸雨 pH 预测偏最小二乘回归模型. 四川环境, 2003, 22(6): 77-81
    [162] 李柱国. 浙江省降水酸度和化学特征分析. 中国环境科学, 1999, 19(5): 436-440
    [163] Dana M T, East R C. Statistical summary and analyses of event precipitation chemistry from the MAP3S network, 1976-1983, Atmos. Environ., 1987, 21: 113-128
    [164] Lynch J A, Grimm J W, Bowersox V C. Trends in precipitation chemistry in the United States: a national perspective, 1980-1992. Atmospheric Environment, 1995,29(11): 1231-1246
    [165] John T W, Viney P A, David A D. Atmospheric transport and wet deposition of ammonium in North Carolina, Atmos. Environ., 2000,34: 3407-3418
    [166] Grimma J W, Lynch J A. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed. Environ. Pollut. 2005, 135: 445-455
    [167] George M H. Snowpack and precipitation chemistry at high altitudes. Atmos. Environ., 2003, 37: 1231-1242
    [168] Christopher M B L, Van C B, Susan M. Larson spatial and temporal trends of precipitation chemistry in the United States, 1985-2002. Environ. Pollut., 2005, 135: 347-361
    [169] Kosim Kocak, Levent Saylan, Orhan Sen. Nonlinear time series prediction of O3 concentration in Istanbul. Atmosphere Environment, 2000,34: 1267-1271
    [170] Zhu Jian Lin, Liu Zhi Guo. Long-range persistence of acid deposition. Atmospheric Environment, 2003, 37: 2605-2613
    [171] 金致凡. 分形学理论在大气环境时序数据分析中的应用研究. 福建地理, 2001, 16(1):1-4
    [172] Windso H L, Toumi R. Scaling and persistence of UK pollution. Atmospheric Environment, 2001, 35, 4545-4556
    [173] Bruno M, Alberto B, Andrea B. Runoff generation in karst catchments: multifractal analysis. Journal of Hydrology, 2004, 294: 176-195
    [174] Marion W Jenkins, Jay R Lund. Integrating yield and shortage management under multiple uncertainties. Journal of Water Resources Planning & Management, 2000, 126(5): 288-297
    [175] Keith W Hipel, Yakov Ben-Haim. Decision making in an uncertain world: Information-gap modeling in water resources management. IEEE Transactions on Systems, Man & Cybernetics: Part B, 1999, 29(4): 506-517
    [176] Zekai Sen. Simple probabilistic and statistical risk calculations in an aquifer. Ground Water, 1999, 37(5): 748-754
    [177] Dominique Guyonnet, Bernard C?me, Pierre, Perrochet. Comparing two methods for addressing uncertainty in risk assessments. Journal of Environmental Engineering, 1999, 125(7): 660-666
    [178] Yong W Lee. Nitrate-Risk assessment using fuzzy set approach. Journal of Environmental Engineering, 1995,121(3): 245-255
    [179] Chang N B. Stability analysis of grey compromise programming and its application to watershed land-use planning. International Journal of Systems Science, 1999, 30(6): 571-589
    [180] 郭怀成, Huang G H, 邹锐. 流域环境系统不确定性多目标规划方法及应用研究—洱海流域环境系统规划. 中国环境科学, 1999,19(1): 33-37
    [181] 邹锐, 郭怀成, 刘磊. 洱海流域环境经济相协调的农林土地利用不确定性系统规划. 环境科学学报, 1999,19(2): 186-193
    [182] Didier Henrion, Olivier Bachelier. Low-order robust controller design for interval plants. International Journal of Control, 2001, 74(1): 1-10
    [183] Wu S M, Huang G H, Guo H C. An interactive inexact-fuzzy approach for multiobjective planning of water resource systems. Water Science and Technology, 1997, 36(5): 235-242
    [184] Chang Ni Bin, Chen H W. Water pollution control in river basin by interactive fuzzy interval multiobjective programming. Journal of Environmental Engineering, 1997, 123(12): 1208-1216
    [185] Chang Ni Bin, Lu N Y. A new approach for long term planning of solid wastemanagement systems using fuzzy global criterion. Journal of Environmental Science Health, 1997, 32(4): 1025-1047
    [186] Chang Ni Bin, Wang S F. Managerial fuzzy optimal planning for solid-waste management systems. Journal of Environmental Engineering, 1996, 122(7): 649-658
    [187] Huang G H. Environmental risk assessment for underground storage tanks through an interval parameter fuzzy relation analysis approach. Energy Sources, 1999, (21): 75-76
    [188] Brad Bass, G.H. Huang. Incorporating climate change into risk assessment using grey mathematical programming. Journal of Environmental Management, 1997, 49(1): 107-123
    [189] Stefan Chanas, Pawel Zielinsk. Ranking fuzzy interval numbers in the setting of random sets--further results. Information Sciences, 1999, 117(3-4): 191-200
    [190] Ishbuchi H, Tanaka H. Formulation and analysis of linear programming problem with interval coefficients. Journal of Japan Industrial Management Association, 1989, 40(5): 320-329
    [191] 禹智涛, 吕恩琳, 王彩华. 结构模糊有限元平衡方程的一种解法. 重庆大学学报, 1996, 19(1): 53-58
    [192] He L, Zeng G M, Huang G H, Liu H L. Interval finite volume method for uncertainty simulation of two-dimensional river water quality. Journal of hydrodynamics, Ser. B, 2004, 16(4): 455-463
    [193] 吕恩琳. 一种模糊随机有限元法. 重庆大学学报, 1996, 19(5): 172-180
    [194] 曹卫华, 郭正. 最优化技术方法及 MATLAB 的实现. 北京: 化学工业出版社, 2005
    [195] 长江水资源保护科学研究所. 三峡水库水污染控制对策研究(三峡水库水污染控制研究专题报告). 武汉: 长江水资源保护科学研究所, 1999
    [196] 中国科学院环境评价部、长江流域水资源保护科研所, 长江三峡水利枢纽环境影响报告书, 1992
    [197] Burden F R, Winkler D Q. Robust QSAR Models Using Bayesian Regularized Neural Networks. J Med Chem, 1999,42(16): 3183-3187
    [198] Burden F R, Winkler D A. A Quantitative Structure-Activity Relationships Model for the Acute Toxicity of Substituted Benzenes to Tetrahymena pyriformis Using Bayesian-Regularized Neural Networks. Chem Res Toxicol, 2000, 13(6): 436-440
    [199] Conrad Lamon III E, Craig A Stow. Bayesian methods for regional-scaleeutrophication models. Water Research, 2004, 38: 2764-2774
    [200] Mark E Borsuk, Craig A Stow, Kenneth H Reckhow. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecological Modelling, 2004, 173: 219-239
    [201] Karul C, Soyupak S, Cilesiz A F. Case studies on the use of neural networks in eutrophication modelling. Ecological Modelling, 2000, 134: 145-152
    [202] 阎威武, 常俊林, 邵惠鹤. 一种贝叶斯证据框架下支持向量机建模方法的研究. 控制与决策, 2004, 19(5): 525-529
    [203] MacKay D J C. Practical Bayesian Framework for Backprop Networks[J]. Neural Computation, 1992, 4(3): 448-472
    [204] Mackay D J C. Probable networks and plausible predictions: a review of practical Bayesian methods for supervised neural networks. Comput. Neural Syst., 1995, 6: 469-505
    [205] Foresee F D, Hagan M T. Gauss-Newton approximation to Bayesian regularization. In: Proceedings of the 1997 International Joint Conference on Neural Networks, Houston: 1930-1935
    [206] The MathWorks, Inc. http://www.mathworks.com/access/helpdesk/help /pdf_doc/nnet/nnet.pdf. Natick, MA, USA
    [207] 茆诗松编著. 贝叶斯统计. 北京: 中国统计出版社, 1999
    [208] Jouko Lampinen, Aki Vehtari. Bayesian approach for neural networks–review and case studies. Neural Networks, 2001, 14: 257-274
    [209] 孙伟, 曾光明, 魏万之, 黄国和. 氯代芳香族化合物结构-电化学还原电位定量关系的贝叶斯规整化 BP 神经网络模型. 环境科学, 2005,(2): 17-22
    [210] Kowk J T. The evidence framework applied to support vector machines. IEEE Transactions Neural Network, 2000, 11(5): 1162-1173
    [211] 郑小霞, 钱锋. 基于证据框架的最小二乘支持向量机在精对苯二甲酸生产中的应用. 化工学报, 2006, 57(7): 1612-1615
    [212] 阎威武, 常俊林, 邵惠鹤. 一种贝叶斯证据框架下支持向量机建模方法的研究. 控制与决策, 2004, 19(5): 525-529
    [213] 蒋刚, 肖建, 郑永康, 宋昌林. 基于支持向量机的一类水域叶绿素 a 浓度反演研究. 计算机应用, 2005, 25(10): 2399-2409
    [214] Tony Van Gestel, Bart Baesens, Johan A K. Bayesian kernel based classification for financial distress detection. European Journal of Operational Research, 2006, 172: 979-1003
    [215] Van Gestel T, Suykens J A K, Lanckriet G, Lambrechts A, De Moor B,Vandewalle J. A Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher discriminant analysis. Neural Computation, 2002, 14: 1115-1147
    [216] Gestel Van T, Suykens J A K, Baestaens D E, Lambrechts A, Lanckriet G, Vandaele B, De Moor B, Vandewalle J. Predicting financial time series using least squares support vector machines within the evidence framework. IEEE Transactions on Neural Networks (Special Issue on Financial Engineering), 2001, 12: 809-821
    [217] 梅虎, 梁桂兆, 周原, 李志良. 支持向量机用于定量构效关系建模的研究. 2005, 50(16): 1703-1708
    [218] Bu Y X, Su S M. Balance analysis of nitrogen and phosphorus detained in Dongting Lake. Yangtze River, 2002, 33(3): 23-25
    [219] Environmental protection monitoring station of Dongting Lake in Hunan Province. Research of aquatic ecological system in Nanzui water area of Dongting Lake, 2001, 1-55
    [220] He P, Wang B Z. Landscape ecological assessment and eco-tourism development in the South Dongting Lake Wetland. Journal of Environmental Science, 2003, 15(2): 271-278
    [221] 杨具瑞, 方铎. 滇池二维分层水质模拟研究. 环境科学学报, 2000,20(5): 533-536
    [222] 殷福才, 张之源. 巢湖富营养化研究进展. 湖泊科学, 2003,15(4): 377-384
    [223] 陈永灿 , 张宝旭 , 李玉梁 . 密云水库富营养化分析与预测 . 水利学报 , 1998(7): 12-15
    [224] Zhou Q, Gibson C E, Foy R H. Long term changes of nitrogen and phosphorus loadings to a large lake in North-West Ireland. Water Research, 2000,34(3): 922-926
    [225] Lanne R W P M, Brockmann U, Liere Lvan, Bovelander R. Immission targets for nutrients (N and P) in catchments and coastal zones: a North Sea assessment . Estuarine, Coastal and Shelf Science, 2005, 495-505
    [226] 刘凌, 崔广柏. 湖泊水库水体氮、磷允许纳污量定量研究. 环境科学学报,2004,24(6): 1053-1058
    [227] 王 清 印 , 刘 志 勇 . 不 确 定 信 息 的 概 念 , 类 别 及 其 数 学 表 达 . 运 筹 与 管理,2001,10(4):9-15
    [228] 刘开第, 吴和琴, 王念鹏等. 未确知数学. 武汉:华中理工大学出版社, 1997
    [229] 胡二邦. 环境风险评价. 北京: 中国环境科学出版社, 2000
    [230] 向文英. 工程水文学. 重庆: 重庆大学出版社, 2003
    [231] Jerald L S. Environmental Modelling Fate and Transport of Pollutants in Water, Air, and Soil. New York: John Wiley & Sons, 1996, 259-269
    [232] 全为民, 严力蛟, 虞左明等. 湖泊富营养化模型研究进展. 生物多样性, 2001, 9(2): 168-175
    [233] Annan J D. On repeated parameter sampling in Monte-Carlo simulations. Ecological modelling, 1997, 97: 111-115
    [234] Annan J D. Modelling under uncertainly: Monte Carlo methods for temporally varying parameters. Ecological modelling, 2001, 136: 297-302
    [235] Ahmet K, Kadri Y R, Osman C E. Performance of two stochastic approaches for forecasting water quality and streamflow data from Yesxilirmak River, Turkey. Environmental Modelling & Software, 2005,20: 1195-1200
    [236] Florentina M, Francoise F, Alain P. pH modelling by neural networks. Application of control and validation data series in the Middle Loire river. Ecological Modelling, 1999, 120: 141-156
    [237] Zeng G M, Yuan X Z, Yi YY. A two-dimensional water-quality model for a winding and topographically complicated river. Journal of Environmental Management, 2001, 61: 113-121
    [238] Zhu J L, Liu Z G. Power-law distribution of acid deposition. Int. J. Environment & Pollution, 2003, 19(1): 11-21
    [239] Turcotte D L, Malamud B D, Reichenbach F G. Self-organization, the cascade model, and natural hazards. Proceedings of the National Academy of Science, 2002, 99: 2530-2537
    [240] Nunes A, Buldyrev S V, Havlin S, Salinger M A, Stanley H E. Power-law scaling for a system of interacting units with complex Internal structure. Phys. Rev. Lett., 1998, 80: 1385-1388
    [241] Aegerter C M. A sandpile model for the distribution of rainfall. Physica A, 2003, 319: 1-10
    [242] Malamud B D, Morein G, Turcotte D L. Forest fires: An example of self-organized critical behavior. Science, 1998, 281: 1840-1842
    [243] Harte J, Kinzig A, Green J. Self-similarity in the distribution and abundance of species. Science, 1999, 284: 334-336
    [244] Hergarten S, Neugebauer H J. Self-organized criticality in a landslide model. Geophysical Research Letters, 1998, 25: 801-804
    [245] Axtell R L. Zipf distribution of US firm sizes. Science, 2001, 293: 1818-1820
    [246] Canning D, Amaral L A N, Lee Y, Meyer M, Stanley H E. Scaling the volatility of GDP growth rates. Economics Letters, 1998, 60: 335-341
    [247] Dimri V P, Prakash M R. Scaling of power spectrum of extinction events in the fossil record. Earth and Planetary Science Letters, 2001,186: 363-370
    [248] Bartolozz M I, Leinweber D B, Thomas AW. Self-organized criticality and stock market dynamics: an empirical study. Physica A, 2005, 350: 451-465
    [249] Song WG, Fan W C, Wang B H, Zhou J J. Self-organized criticality of forest fire in China. Ecological Modelling, 2001, 145: 61-68
    [250] Li S X, Yao L K, Jiang LW. Self-organized criticality and its criterion in investigation of disaster. Journal of Natural Disasters, 2003,12(4): 82-87
    [251] Mantegna R N, Buldyrev S V, Goldberger A L, Havlin S, Peng C K, Imons M, Stanley H E. On long-range power-law correlations in DNA. Phys. Rev. Lett., 1994, 73: 3169-3178
    [252] Rybczynski M, Wodarczyk Z, Wilk G. Self-organized criticality in atmospheric cascades. Nuclear Physics, 2001, 97: 81-84
    [253] Lima de M I P, Grasman J. Multifractal analysis of 15-min and daily rainfall from a semi-arid region in Portugal. J Hydrol., 1999, 217: 1-11
    [254] Peters O, Hertlein C, Christensen K. A complex view of rainfall. Phys. Rev. Lett., 2002, 88(1): 1-4
    [255] Jon D P, Donald L T. Long-range persistence in climatological and hydrological time series: analysis, modeling and application to drought hazard assessment. Journal of Hydrology, 1997, 203: 198-208
    [256] Bruno M, Alberto B, Andrea B. Runoff generation in karst catchments: multifractal analysis. Journal of Hydrology, 2004, 294: 176-195
    [257] Zhu J L, Liu Z G. Power-law distribution of acid deposition. Int. J. Environment & Pollution, 2003,19(1): 11-21
    [258] Zhu J L, Zeng G M, Zhao X, Huang G H, Jiang Y M. Self-organized critical behavior acid deposition. Water, Air and Soil Pollution, 2005, 162: 295-313.
    [259] Plotnick R E, Sepkoski J J. A multiplicative multifractal model for originations and extinctions. Paleobiology, 2001,27(1): 126-139
    [260] 龄崇文. 固体地球系统的复杂性与自组织临界性. 地学前缘, 1998,5(3): 159-182
    [261] Bak P, Chen K. Self-organized Criticality. Scientific American, 1991, 264: 46-53.
    [262] Peng C K, Buldyrev S V, Havlin S, Simons M, Stanley H E, Goldberger A L.Mosaic organization of DNA nucleotides. Phys.Rev.E, 1994, 49: 1685-1689
    [263] Peng C K, Havlin S, Stanley H E. Quntification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 1995, 5(1): 82-87
    [264] Ivanova K, Ausloos M. Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking. Physica A, 1999,27: 4349-354
    [265] Luciano Telesca, Maria Macchiato. Time-scaling properties of the Umbria-Marche 1997-1998 seismic crisis investigated by the detrended fluctuation analysis of interevent time series. Chaos; Solitons and Fracta1s, 2004,19: 377-385
    [266] 庄新田, 黄小原. 证券市场的标度理论及实证研究. 系统工程理论与实践, 2003,23(3): 1-8
    [267] Matsoukas C, Islam S, Rodriguez-Iturbe I. Detrended fluctuation analysis of rainfall and streamflow time series. Journal of Geophysical Research, 2000, 105: 29165-29172
    [268] 于清来. 非平稳随机挠动对水质预测的影响. 水利学报, 1995,(6): 51-56
    [269] 刘国东, 丁晶. 水环境中不确定性方法的研究现状与展望. 环境科学进展, 1996, 4(4): 46-53
    [270] 姜树海. 随机微分方程在泄洪风险分析中的运用. 水利学报, 1994,(3):1-9
    [271] 胡岗. 随机力与非线性系统. 上海: 上海科技教育出版社, 1994, 3-5
    [272] 金明. 一维稳态河流水质的随机微分方程模型. 水利学报, 1991(2): 19-25
    [273] 黄平, 陈铣成. 河流污染带的随机模拟方法. 水文, 1995(3): 8-12
    [274] 刘毅, 陈吉宁, 杜鹏飞. 环境模型参数优化方法的比较. 环境科学, 2002, 23(3): 1-6
    [275] 王华东, 王健民. 水环境污染概论. 北京: 北京师范大学出版社, 1990, 121-123
    [276] 何理, 曾光明. 考虑随机扰动因素的水环境风险模型研究. 水科学进展, 2002,13(2):197-200
    [277] 武宝亭, 李庆士, 杨跃武. 随机过程与随机微分方程. 成都: 电子科技大学出版社, 1994: 105-108
    [278] 苏煜城, 吴启光. 偏微分方程数值解法. 高等教育出版社, 1989: 145-147
    [279] 陆君安, 尚涛, 谢进等. 偏微分方程的 Matlab 解法. 武汉大学出版社, 2001: 94-98
    [280] Zeng Y, Flopke P K. A study of the sources of acid precipitation in Ontario, Canada, Atmos. Environ., 1989, 23: 1499-1509
    [281] Khawaja H A, Husain L. Chemical characterization of acid precipitation in Albany, New York. Atmos. Environ., 1990, 24A: 1869-1882
    [282] Lim B, Jickells T D, Davies T D. Sequential sampling of particles major ions and total trace metals in wet deposition. Atmos. Environ., 1991, 25A:745-762
    [283] Sinya S, Akira N, Izumi N. Annual and seasonal trends in chemical composition of precipitation in Japan during 1989-1998, Atmos. Environ., 2002, 36: 3505-3517
    [284] Migliavacca D, Teixeira E C, Pires M. Study of chemical elements in atmospheric precipitation in South Brazil. Atmos. Environ., 2004, 38: 1641-1656
    [285] Yasushi N, Kei S, Keiichi H, Tamami I, Shigeru T, Yukiko D, Morikazu H, Kazuhiko H. Long term trend of chemical constituents in Tokyo metropolitan area in Japan, Water Air Soil Pollut., 2001,130: 1649-1554
    [286] Aherne J, Farrell E P. Deposition of sulphur, nitrogen and acidity in precipitation over Ireland: chemistry, spatial distribution and long-term trends. Atmos. Environ., 2002, 36: 1379-1389
    [287] Page T, Whyatt J D, Beven K J, Metcalfe S E. Uncertainty in modeled estimates of acid deposition across Wales: a GLUE approach. Atmos. Environ., 2004,38: 2079-2090.
    [288] Sovan L, Marc D, Philippe B, Ioannis D, Jacques L, Stephane A. Application of neural networks to modelling nonlinear relationships in ecology. Ecol. Model. 1996, 90: 39-52
    [289] Archontoula C, Michaela S, Nikolas S. Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. The Science of the Total Environment, 2003,313: 1-13
    [290] Buishand T A, Kempen G T, Frantzen A J, Reijnders H F R, Eshof A J. Trend and seasonal variation of precipitation chemistry data in the Netherlands. Atmos. Environ., 1988, 22: 339-348
    [291] MAP3S/RAINE Research Community. The MAP3S/RAINE precipitation chemistry network: Statistical overview for the period 1977-1980. Atmos. Environ., 1982, 16: 1603-1631
    [292] Prodo-Fiedler R. On the relationship between precipitation amount and wet depostition of nitrate and ammonium. Atmospheric Environment, 1990, (12): 3061-3065
    [293] Husmeier D, Penny W D, Roberts S J. An empirical evaluation of Bayesiansampling with Monte Carlo for training neural net classifiers. Neural Networks, 1999,12: 677-705
    [294] Li Z G. Analysis of the acidity and chemical characteristics of precipitation in Zhejiang Province China, Environ. Science, 1999, 19: 436-440
    [295] Li Z Y. Relation between ion concentration and pH in precipitation in number of Chinese cities. Acta Scientiae Circumstantize 1999,19: 303-306
    [296] Yu S C, Gao C T, Cheng Z M. An analysis of chemical composition of different rain types in ‘Minnan Golden Triangle’ region in the southeastern coast of China. Atmos. Res., 1998,47: 245-269

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700