贵州石漠化地区主要造林树种耐旱特性及适应性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以贵州黄果树石漠化地区主要造林树种为研究对象,从生理生态学的角度,采用盆栽试验与野外试验相结合的方法,深入系统地探讨了石漠化地区主要造林树种在不同环境条件下的蒸腾耗水特性、光合和水分生理生态特性,以及生长状况,并运用隶属函数法和逐步回归法,综合评价了供试树种的耐旱性和野外条件下影响树种光合作用的主要因子,旨在为该区域植被恢复提供科学理论与实践依据。主要结论体现在如下几个方面:
     1、主要造林树种的耐旱性
     苗木连日蒸腾耗水量、土壤水势和叶水势随干旱处理天数呈线性下降,苗木叶水势随土壤水势呈幂函数下降,但不同苗木下降的速率和幅度不一样。基于叶水势与土水势关系,将供试的19个树种的耐旱性分为四类:I、高水势延迟脱水的有马尾松和夹竹桃;II、低水势忍耐脱水的仅有喜树;III、亚高水势延迟脱水的有车桑子、杜英、苦楝、乌桕、香椿、银鹊、香樟、川含笑、金叶女贞、侧柏、栾树;IV、亚低水势忍耐脱水的有桂花、大叶女贞、花椒、滇湫、滇柏。
     随干旱处理天数的增加,净光合速率呈线性下降,气孔导度主要呈指数函数下降,蒸腾速率呈线性和幂函数两种下降趋势,而水分利用效率则呈现出先增加后降低的趋势。说明在干旱胁迫初期由于气孔关闭,蒸腾速率对干旱胁迫的反应更敏感,而在干旱胁迫的后期净光合速率由于受到严重的非气孔限制因素的影响,下降幅度高于蒸腾速率。
     在干旱胁迫下,苗木净光合速率随叶水势呈对数函数下降,蒸腾速率和气孔导度随叶水势呈指数函数下降。由于树种的不同,其下降幅度有显著的差异。夹竹桃属于典型的高水势延迟脱水植物,不能仅以叶水势的值来判断夹竹桃受胁迫的程度。
     苗木叶片光合速率与气孔导度成线性关系或者成幂函数关系,苗木的蒸腾速率与气孔导度呈幂函数关系;蒸腾速率与净光合速率的下降呈显著线性相关。而且净光合速率随蒸腾速率和气孔导度的下降幅度在树种间存在显著的差异。下降相同幅度的蒸腾速率,大叶女贞和桂花的净光合速率受影响最大,银鹊最小。
     干旱胁迫下各苗木叶片的电子传递、光合的潜在活性和原初光能转换效率受到了明显的抑制,部分苗木叶片的叶绿素含量也明显减少;供试苗木的根量、根茎的生物量和生长量出现了明显的不同。
     中度胁迫下,控水耐旱能力由强到弱为:杜英、香樟、乌桕、车桑子、滇湫、金叶女贞、马尾松、苦楝、香椿、喜树、桂花、侧柏、滇柏、大叶女贞、银鹊、川含笑、花椒、栾树。重度胁迫下,供试树种控水耐旱性的排序从大到小为:香椿、香樟、杜英、滇湫、银鹊、川含笑、苦楝、金叶女贞、马尾松、喜树、车桑子、乌桕、滇柏、栾树、侧柏、大叶女贞、花椒。
     2、主要造林树种光合、水分生理生态适应机制
     各坡向和坡位的含水量和土壤水势有明显的差异,阴坡和半阴坡要大于阳坡。在干旱胁迫下,气孔导度、净光合速率和水分利用效的峰值提前,并在中午时刻出现“午休”现象,是植物对干旱条件的一种适应。
     叶水势、水分利用效率、净光合速率的日均值在阴坡要高于阳坡,而蒸腾速率和PSII原初光能转换效率日均值阴坡却低于阳坡;叶水势和蒸腾速率日均值上坡位高于下坡位。不同坡向叶水势的差异主要由土壤水势的差异引起,高坡位具有较高的叶水势与其较强的根系供水能力和较轻的蒸腾失水相关。另外,水分利用效率和净光合速率日均值的坡向差异主要是由于叶水势日均值的差异引起的。
     应用系统聚类的方法,依据不同的指标,将供试树种分为高、亚高、低和亚低四类,具体分类如下:侧柏为高水分利用效率、亚高净光合速率、亚低PSII原初光能转换效率和低蒸腾速率;香樟为高净光合速率和蒸腾速率、亚低水分利用效率和PSII原初光能转换效率;小叶女贞为高PSII原初光能转换效率、亚高净光合速率和蒸腾速率、亚低水分利用效率;大叶女贞为高蒸腾速率、亚低净光合速率、低PSII原初光能转换效率和水分利用效率;滇柏为亚高水分利用效率和净光合速率、亚低PSII原初光能转换效率和蒸腾速率;夹竹桃为亚高水分利用效率和PSII原初光能转换效率、低净光合速率和蒸腾速率;乌桕为亚高水分利用效率、亚低PSII原初光能转换效率和净光合速率、低蒸腾速率;白花刺和火棘均属于亚低水分利用效率、净光合速率、PSII原初光能转换效率和蒸腾速率;车桑子为亚低水分利用效率和PSII原初光能转换效率、低净光合速率和蒸腾速率;金叶女贞为亚低水分利用效率和PSII原初光能转换效率、亚高净光合速率和蒸腾速率。
     旱季条件下,水分利用效率的变化主要受蒸腾速率的影响;随着气孔导度和蒸腾速率的增加,净光合速率的增加受限,可能与干旱胁迫相关。Pn与Gs、WUE和Tr的关系密切,成正相关,叶水势仅在五个方程中成为主要因子,表明所选样地的树种受到了严重的干旱胁迫。由于坡向坡位和树种的不同,供试树种的生长量、生物量和根量存在显著差异。
Taking tree species for vegetation in Stone Dissertation District of Huangguoshu in Guizhou as study object, in the view of physiological ecology, this paper deeply studied the characteristics of water consumption, photosynthesis and water physiological ecology and growth of the main tree species through potted plant trial and plantation survey, and the comprehensive evolution of drought tolerance and the main reason of restricting Pn were done using membership function and regression equation and provide theoretical ad practical base for ecological forestation in Stone Dissertation District. The main conclusions were below:
     1、Drought tolerance of the main tree species for forestation
     With increase in days of the drought treatment , water consumption by transpiration, water potential of soil (WS) and water potential of plant (WP) decreased lineally, power function correlation between WP and WS, but speed and extent of decrease was different among tree species. According to the mathematical relationship between WP and WS, systematical classification method was applied to divide 19 kings of tree species into four sorts: a drought tolerance of dehydration postponement with high tissue water potential, including Pinus massoniana Lamb. and Nerrium indicum Mill.; a drought tolerance of sub-dehydration postponement with high tissue water potential, including Dodonaea viscosa (Linn.) Jacq., Elaeocarpus decipiens Hemsl., Melia azedarach L., Sapium sebiferum (Linn.) Roxb., Toona sinensis (A. Juss.) Roem., Tapiscia sinensis Olivx., Cinnamonum camphora L., Michelia szechuanica Dandy., Ligustrum vicaryi Mill., Platycladus orientalis (Linn.) Franco., and Koelreuteria paniculata Laxm.; a drought tolerance of dehydration tolerance with low tissue water potential, including Camptotheca acuminata Decne.; a drought tolerance of sub-dehydration tolerance with low tissue water potential, including Elaeocarpus decipiens Hemsl., Ligustrun lucidum Ait., Zanthoxylum bungeanum Maxim., Catalpa fargesii Bur. f. duclouxii (Dode) Gilmour, and Fokienia hodginsii (Dunn) Henry et Thomas.
     With increase in days of the drought treatment, photosynthesis (Pn) decreased linearly, stomatal conductance (Gs) decreased exponentially, transpiration rated (Tr) decreased linearly and power, while water use efficiency (WUE) increased in initial stages then decreased. This indicated that Tr reacted sensitively to drought stress in initial stages due to stomatal close, while the decrease extent of Pn was larger than that of Tr because of the increase in non stomatal restriction.
     Under drought stress, with the decrease in WP, Pn deceased logarithmically, Tr and Gs decreased exponentially. There was a significant difference among tree species. BecauseNerrium indicum Mill.belonged to a classic drought tolerance of dehydration postponement with high tissue water potential, stress extent of Nerrium indicum Mill. did not judge by WP.
     Linear and power function correlation between Pn and Gs, power function correlation between Tr and Gs, linear correlation between Pn and Tr. With the Tr and Gs decrease, there was different in extent of Pn among tree species. The same extent of decrease in Tr, Pn of Ligustrun lucidum Ait. and Osmanthus fragrans Lours. decreased largest, and Pn of Tapiscia sinensis Olivx. smallest.
     PSII electronic transmit rate (Fm/Fo), potential activity and photosynthesis efficiency were restrained by drought stress, chlorophyll content of partial tree species decreased notably. There was significant different in root amount, root and shoot biomass, growth amount among tested tree species.
     Under middle-drought stress, the capability of drought tolerance and water control from strong to feeble: Elaeocarpus decipiens Hemsl., Cinnamonum camphora L., Sapium sebiferum (Linn.) Roxb., Dodonaea viscosa (Linn.) Jacq., Catalpa fargesii Bur. f. duclouxii (Dode) Gilmour, Ligustrum vicaryi Mill., Pinus massoniana Lamb., Melia azedarach L., Toona sinensis (A. Juss.) Roem., Camptotheca acuminata Decne., Osmanthus fragrans Lours., Platycladus orientalis (Linn.) Franco., Fokienia hodginsii (Dunn) Henry et Thomas., Ligustrun lucidum Ait., Tapiscia sinensis Olivx., Michelia szechuanica Dandy., Zanthoxylum bungeanum Maxim. And Koelreuteria paniculata Laxm.; Under heavy-drought stress, the capability of drought tolerance and water control from strong to feeble: Toona sinensis (A. Juss.) Roem., Cinnamonum camphora L., Elaeocarpus decipiens Hemsl., Catalpa fargesii Bur. f. duclouxii (Dode) Gilmour, Tapiscia sinensis Olivx., Michelia szechuanica Dandy., Melia azedarach L., Ligustrum vicaryi Mill., Pinus massoniana Lamb., Camptotheca acuminata Decne., Dodonaea viscosa (Linn.) Jacq., Sapium sebiferum (Linn.) Roxb., Fokienia hodginsii (Dunn) Henry et Thomas., Koelreuteria paniculata Laxm., Platycladus orientalis (Linn.) Franco., Ligustrun lucidum Ait. and Zanthoxylum bungeanum Maxim.
     2、Photosynthetic and water ecophysiology adaptation mechanism of main tree species for vegetation restoration
     There were notable difference in SWC and Ws among AS/SP, those of northern slope was higher than southern slope. Under drought stress, the peak time of Gs, Pn and WUE moved up and presentation of“sleep at noon”was the adaptation mechanism of tree to drought.
     Daily average values of WP, WUE and Pn in northern slope were higher than those in southern slope, on the contrary, daily average values of Tr and Fv/Fm in southern slope were higher than those in northern slope; daily average values of WP and Tr on the higher SP were higher than on the lower SP. The difference of WP resulting from AS was related to SW, and the higher WP on the higher SP related to stronger water uptake capability and smaller water consumption by Tr. And, the AS effect on the daily average value of WUE and Pn arose mainly from the difference in daily average value of WP.
     The tested tree species were divided into four sort in terms of different parameters using hierarchical clustering method, high, sub-high, sub-low and low, respectively. As followed: Platycladus orientalis (Linn.) Franco., high WUE, sub-high Pn, sub-low WUE and Fv/Fm; Cinnamonum camphora L., high Pn and Tr, sub-low WUE and Fv/Fm; Ligustrum quihoui Carr., high Fv/Fm, sub-high Pn and Tr, sub-low WUE; Ligustrun lucidum Ait., high Tr, sub-low Pn, low Fv/Fm and WUE; Fokienia hodginsii (Dunn) Henry et Thomas., sub-high WUE and Pn, sub-low Fv/Fm and Tr; Nerrium indicum Mill., sub-high WUE and Fv/Fm, low Pn and Tr; Sapium sebiferum (Linn.) Roxb., sub-high WUE, sub-low Fv/Fm and Pn, low Tr; Sophora viciifolia Hance. and Pyracantha fortuneana (Maxim.) Li., sub-low WUE, Pn, Fv/Fm and Tr; Dodonaea viscosa (Linn.) Jacq., sub-low WUE and Fv/Fm, low Pn and Tr; Ligustrum vicaryi Mill., sub-low WUE and Fv/Fm, sub-high Pn and Tr.
     Under drought season, WUE affected mainly by Tr; with the increase in Gs and Tr, the restriction of Pn increase was related to drought stress. There was positive correlation between Pn and Gs, WUE, Tr. WP become a main reason only in 5 equation, which indicated these plant subjected from great drought stress.There were significant difference in growth amount, biomass and root amount of tested tree species among AS/SP.
引文
[1]朱守谦.1997.喀斯特森林生态研究(Ⅱ)[M].贵阳:贵州科技出版社.9-53
    [2]刘伟玲,谢双喜,喻理飞.2003.几种常见喀斯特森林树种种子发芽对水分胁迫的响应[J].贵州林业科技,31(1):17-21
    [3]苏维词,朱文孝,熊康宁.贵州喀斯特山区石漠化及生态经济治理模式,中国岩溶,2002,21(1):19-25
    [4]蓝安军,熊康宁,安裕伦.喀斯特石漠化的驱动因子分析——以贵州省为例,水土保持通报,2001,21(6):19-23
    [5]张殿发,王世杰,周德全.贵州省喀斯特地区土地石漠化的内动力作用机制,水土保持通报,2001,2l(4):1-5
    [6]王德炉,朱守谦,黄宝龙.贵州喀斯特石漠化类型及程度评价,生态学报2005a,25(5):1057-1063
    [7]李阳兵,王世杰,容丽.关于中国西南石漠化的若干问题,长江流域资源与环境,2003,12(6):593-598
    [8]龙健,江新荣,邓启琼.贵州喀斯特地区土壤石漠化的本质特征研究,土壤学报,2005,42(3):419-427
    [9]王德炉,朱守谦,黄宝龙.贵州喀斯特区石漠化过程中植被特征的变化,南京林业大学学报(自然科学版),2003,27(3):26-30
    [10]周常萍,童立强,雷蓉.贵州省土地石漠化形成与发展机理研究,云南农业大学学报,2005,20(2):269-273
    [11]李博.1992.当代生态学导论[M] .北京:科学出版社10-23
    [12]李吉跃.1989.植物耐旱性及其机理[J] .北京林业大学学报,13(3):92-100
    [13] P.J.克雷默尔.1989.植物的水分关系[M].北京:科学出版社,470-471,419-424
    [14]山仑,陈培元.1998.旱地农业生理生态基础[M].北京:科学出版社,44-46
    [15]武维华.2003.植物生理学[M].科学出版社,445-447
    [16]李军,卫发兴,陈风顺.1997.从六个核桃无性系(种)叶的形态解剖比较其抗旱性[J].河南林业科技,17(3):9-11
    [17]朱守谦.1993.喀斯特森林生态研究(Ⅰ)[M].贵阳:贵州科技出版社,52-62
    [18]赵一宇,刘惠兰,马德滋.1982.花棒某些抗旱特性观察[J].林业科学,(2):120-125
    [19]李吉跃.1990.太行山区主要造林树种耐旱特性的研究[博士论文].北京:北京林业大学,1-11
    [20]景蕊莲.1999.作物抗旱研究的现状与思考[J].干旱地区农业研究,17(2):1-6
    [21] Vijayalakshmi C.,Nagarajian M.1994.Effect of rooting pattern on rice productivity under different water regimes.J.oAgronomy and Crop Science[J],173(2):113-117
    [22] Rhodenbaugh E J.,Pallardy S.G.1993.Water stress,photosynthesis and early growth patterns of cutting three Populus clones[J].Tree Physiology,13(3):213-226
    [23]王均明,孟丽,孙金花.1999.林木抗旱性与其根次生构造关系的研究[J].中国水土保持,6:20-22
    [24] Sherwin H.W, 1998. Hydraulic architecture of Mrothamnus flabellifolius. Water relation and wood anatomy. Ann.Bot., 81(4):567-575
    [25]李广毅,高中雄,尹忠东.1995.灰毛滨藜叶解剖结构与抗逆性研究.西北林学院学报,1995,10(1):48-51
    [26] Ludlow, M.M., .Adaptive significance of stomatal responses to water stress.In.N.C. Turner & P.J.Kramer(eds) Adaptation of Plants to Water and High Temperature Stress. Johnb Wiley&Sons, Inc.pp.123-138
    [27]张岁歧,李金虎,山仑.2001.干旱下植物气孔运动的调控[J].西北植物学报,21(6):1263-1270
    [28] Svhulze E D.1993.Soil water deficits and atmospheric humidity as environmental signals{A}.In:Smith J A C,Griffiths H.Water Deficits{C},Bios.Scientific Publisher,129-145
    [29] Gollan T,Schurr J B.1992.Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus.ⅠThe concentration of cations,anion amino acids in,and PH of,the xylem sap[J].Plant Cell and Enviroment,15:551-559
    [30] Davies W J,Jianhua Z.1991.Roots signals and the regulation of growth and development of plants in drying soil[J].Ann.Rev.Plant Physiol.Plant Mol.Biol.,52:55-76
    [31] Malone M.Hydraulic signals[M].Phil.Trans.Roy.Soc.,London Ser.B 341:33-39
    [32] Gollan T,Passioura J B,Munns R.1986.Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves[J].Aust.J.Plant Physiol.,13:459-464131
    [33] Turner N C,Schulze E D,Gollan T.1985.The response and stomata and leaf gas exchange to vapor pressure deficits and soil water content.ⅡIn the mesophytic herbaceous species Heliantbus annuus[J].Oecologia,65:348-355
    [34] Tardiue E,Zhang J,Davies W J.1992.What information is conveyed by ABA signsl from maize root in drying field soil[J].Plant,Cell and Enviroment,15:551-559
    [25] Jackon M B,Kowalewska A K b.1983.Positive and negative messages from roots induce foliar desiccation and stomatal closure in flooded pea plants[J]J.Exp.Bot.34:493-506
    [36] Gowing D J,Davies W,Jonse H G.1990.A positive root-scoured signal as an indicator of soil drying in apple[J].J.Exp.Bot.41:535-540
    [37] Zhang J,Davies W J.1989.Abscisic acids produced in dehydration root may enable the plant to measure the water status of soil.[J].Plant,Cell and Enviroment,12:73-81
    [38] Trejo C L, Davies W J. 1991. Drought-induced closure of Phaseolus vulgaris L.stomata precedes leaf water deficit and any increase in xylem ABA concentation[J]. J.Exp. Bot.42:507-515
    [39]杨洪强,接玉玲,李军.2002.植物根源逆境信使及其产生和传输[J].植物学通报,19(1):56-62
    [40]田秀红,李广敏.2001.pH作为逆境胁迫信号的研究进展[J].植物学通报,18(4):466-472
    [41]黎祜琛,丘治军.2003.树木抗旱性及抗旱造林技术研究进展[J].世界林业研究,16(4):17-22
    [42]何贵平,陈益泰.不同抗旱杉木家系在水分胁迫下脯氨酸积累的差异[J],林业科技通讯,1990(11):15-17
    [43]陈京.1999.抗旱性不同的甘薯品种对渗透胁迫的生理响应[J].作物学报,25(2):232-236
    [44] Turner, N.C.&Jones, M.M. 1980. Turgor maintenance by omostic adjustment:review and evaluation. In:N.C.Turner & P.J.Kramer (eds) Adaptation of Plants to Water and High Temperature Stress.John Wiley & Sons Inc.87-103
    [45]汤章城.1983.植物干旱生态生理的研究[J].生态学报,3(3):196-204
    [46]张建国.1993.中国北方主要造林树种耐旱特性及机理研究.北京林业大学博士论文
    [47] Farquhar G D and T D Sharkey.1982.Stomatal conductance and photosynthesis[J]. Ann, Rew.Plant Physiol,33:317-345
    [48]娄成后,王学成.2001年.作物产量形成的生理学基础[M].北京:中国农业出版社,39-41
    [49]卢从明,张其德,匡廷云.1994.水分胁迫对光和作用的研究进展[J].植物学通报,11(增刊):9-14
    [50]薛崧,汪沛洪,许大全等.1992.3水分胁迫对冬小麦CO2同化作用的影响[J].植物生理学报,18:1-7
    [51] Kramer P J,Kozlowski T T.1979.Physiology of woody plants[M].London:Academic Press,443-444
    [52]张正斌,山仑.1997.作物水分利用效率和蒸发蒸腾估算模型的研究进展[J].干旱地区农业研究,15(1):73-78
    [53]李荣生,许煌灿,尹光天等.2003.植物水分利用效率的研究进展.林业科学研究,16(3):366-371
    [54]刘文兆.1998.作物生产、水分消耗与水分利用效率之间的动态联系[J].自然资源学报,13(1):23-27
    [55]张正斌.2003年.作物抗旱节水的生理遗传基础[M].北京:科学出版社,48-50
    [56] Farquhar G D,O’Leary M H,Berry J A.1982.On the relationship between carbon isotope discrimination and intercellular carbnon dioxide concentration in leaves[J].Austr J Plant Physiol,9:121-137
    [57]严昌荣.1997.北京山区落叶阔叶林优势树种水分生理生态研究[D].北京:北京中国科学院植物研究所,3-11
    [58]李吉跃,Terence J.Blake.1999.多重复干旱循环对苗木气体交换和水分利用效率的影响[J].北京林业大学学报,21(3):1-8
    [59]林植芳,林桂珠,孔国辉等.1995.光强对亚热带自然林两种木本植稳定碳同位素比、细胞间CO2浓度和水分利用效率的影响[J].热带亚热带植物学报,3(2):77-82
    [60]黄占斌,山仑.1997.春小麦水分利用效率日变化及其生理生态基础的研究[J].应用生态学报,8(3):263-269
    [61]接玉玲,杨洪强,崔明刚等.2001.土壤含水量与苹果叶片水分利用效率的关系[J].应用生态学报,12(3):387-390
    [62]张正斌.1998.小麦水分利用效率改良的遗传基础[D].扬凌:西北农业科技大学,12-19
    [63] Handly L L,Nevo E,Raven J A,et al.1994.Chromosome 4 controls potential of water use efficiency(δ13C)in barely[J].J Exp Bot,45(280):1661-1663
    [64] Boyer J S.1970.Leaf enlargement and metabolic rates in corn,soybean,and sunflower at various leaf water potentials[J].Plant Physiol,46:233-235
    [65] Myers B J et al.1989.Water stress and seedlings growth of two ecucalypt species from contrastying habitats[J].Tree Physiol.5:207-218
    [66] Mahoney J M et al. 1992. Response of a hybrid poplar to water table decline in different substrates [J]. Forest Ecology and Management,54(1-4):141-156
    [67] Khalil, A.A.M. & Grace.,J. 1992. Acclimation to drought in Acer pseudoplatnus L. (Sycamore) seedlings[J]. Journal of Experimental Botany, 43:1591-1602
    [68]肖冬梅,王淼,姬兰柱.2004.水分胁迫对长白山阔叶红松林主要树种生长及生物量分配的影响.生态学杂志.23(5):93-97
    [69]山仑.1983.植物水分亏缺和半干旱地区农业生产中的植物水分问题,植物生理生化进展,(2):109-119
    [70] Metcalfe J Cet al. 1990. Leaf growth of Eucalyptus seedling under water deficit. Tree Physiol, 6(2);221-227
    [71]王忠.2000.植物生理学[M].北京:中国农业出版社,288-289
    [72] Hartung,W.and Heilmann,B.1981.Do chloroplast play a role in abscisic acid synthesis?[J]Plant Sci.Lett,22:242-253
    [73] Gowing,G.,Davies,W.J.et al.1990.A postive root-sourced signals and indicator of soil drying in apple Malus×domestica Borkh[J],J.Exp.Bot,41:1535
    [74] Zang,J.and Davies,W.J.1989.Sequential response of whole plant water relations towards prolonged soil drying and the mediation by xylem sap ABA concentrations in the regulation of stomatal behavior of sunflower plants[J].New phytol,113:167-174
    [75] Neals,T.F.,Masia,A.et al.1989.The effects of partially drying part the root system of Helianthus annuus on the abscisic and content of the roots xylem sap and leaves[J],J.Exp.Bot,40:1113-1120
    [76]汤章城.1984.植物对水分胁迫的反应和适应[J].植物生理学通讯,(4):1-7
    [77] Bacon M A,Wilkinson S,Davies W J,1998.PH-Regulated leaf cell expansion I droughted plants is abscisic acid dependent[J].Plant Physiol,118:1507-1511
    [78] Liu L,McDonald A JS.1998.Abscisic acid and stomatal conductance in willow[J].J Exp Bot,49:36
    [79]杨洪强,接玉玲,李军.2002.植物根源逆境信使及其产生和运输[J].植物学通报,19(1):56-52
    [80]梁建生,张建华.1998.根源逆境信号ABA的产生和运输及其生理作用[J].植物生理学通讯,34(5):329-338
    [81] Ling J,Zhang J,WONG M H.1997.How do roots control xylem sap ABA concentration in responses to soil drying[J].Plant Cell Physiol,38:10-6
    [82]陈少裕.1989.脂质过氧化与植物逆境胁迫[J].植物学通报,6:211-217
    [83]许长城,邹琦.1993.大豆叶片旱促衰老与膜脂过氧化的关系[J].山东农业大学学报,19(4):359-364
    [74]袁清昌.1995.钙及钙信使系统与小麦幼苗膜质过氧化关系的研究.山东农业大学研究生论文
    [85]许长城,程炳嵩,邹琦.1993.植物水分胁迫与活性氧代谢[J].山东农业大学学报,24(1):113-117
    [86]朱抗申,黄丕生.1994.土壤水分胁迫与水稻活性氧代谢[J].南京农业大学学报,17(2):7-11
    [87]李广敏,唐连顺,商振清等.1994.渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系[J].河北农业大学学报,17(2):1-5
    [88]张敬贤,李俊明,崔四平等.1990.玉米保护酶活性对苗期干旱的反应[J].华北农学报,(5)专刊:19-23
    [89]蒋明义,荆家海,王韶唐.1991.渗透胁迫对水稻光合色素和膜脂过氧化的影响[J].西北农业大学学报,19(1):79-93
    [90]陈永军,季淑梅,姜凤英.1998.水分胁迫下玉米细胞膜伤害及其保护酶活性的变化[J].生态农业研究,6(4):16-18
    [91]张岁歧,山仑.1995.氮素营养对春小麦抗旱适应性及水分利用效率的影响[J].水土保持研究,2(1):31-36
    [92]刘鸿洲,刘勇,段树生.2002.不同水分条件下施肥对侧柏苗木生长及抗旱性的影响[J].北京林业大学学报,34(5,6):56-60
    [93] Bekowize G A.1982.Effect of osmotic stress on photosynthesis studied with the isolated spinch chloroplast[J],70:1143-1148
    [94] Radin J W,Eidenbock M P.1982.Water relations of cotton plant under N deficiencyⅢ[J].Plant Physiol,67:115-119
    [95] Ackerson R C.1985.Phosphorus fertility and plant water relations[J].Plant Physiol, 77:309-311
    [96]曲东.1996.干旱条件下磷对玉米SOD和POD活性的影响[J].西北农业大学学报,2(43):47-51
    [97]张岁歧,山仑.磷素营养对春小麦抗旱性的影响[M].见汪德水主编:旱地农田肥水关系与调控技术,北京:中国农业科技出版社,155-160
    [98] Rodriguze D,Goudriaan J.1996,Phosphorus nutrition and water stress tolerance in wheat plants[J].J Plant Nutrition,1996,19(1):29-39
    [99]陈培元,蒋永罗,李英等.1987.钾对小麦生长发育、抗旱性和某些生理特性的影响[J].作物学报,13(4):322-327
    [100]李德权,邹琦,程炳嵩.1992.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报,18(1):37-44
    [101]谢建昌主编.2000.钾与中国农业[M].南京:河海大学出版社.35-36
    [102] Graham R D,Ulrich A.1972.Potassium deficiency-induced changes in stomatal behavior,leaf water potentials,and root system permeability in Beta vulgaris L[J].Plant Physiol,49:105-109
    [103] Harevey H P,Driessche Rvan Den.1999.Nittrogen and potassium effects on xylem cavitation nand water-use efficiency in poplars[J].Tree Physiol,19:943-950
    [104]蒋德安,翁晓燕,陆庆等.1996.钾营养对水稻光合速率(Pn)、HILL反应及SOD活力日变化的影响[J].植物生理学报,66(1):87-93
    [105] Jones,R,C.Wyn and O.R.Lund.1970.The function of calcium in Plants Bot.Rev.[M].36:407-423
    [106]商振清.1988.钙对生物膜透性的影响机理.河北农业大学学报[J].11(1):113-117
    [107]杨根平,高爱丽,荆家海.1993.钙与渗透胁迫下大豆细胞透性的关系[J].植物生理学通讯,29(3):179-181
    [108]高向阳,许志强,徐凤彩.1999.水分胁迫下钙对大豆叶片膜脂过氧化程度的影响[J].华南农业大学学报,20(3):67-71
    [109]郭丽红,陈善娜,龚明.2002.钙对玉米幼苗谷胱甘肽还原酶活性的影响[J].植物生理学通讯,38(2):115-117
    [110]唐连顺,李广敏,尚振清等.1992.水分胁迫对玉米幼苗膜脂过氧化及保护酶活性的影响[J].河北农业大学学报,15(2):34-40
    [111]史吉平,李广敏,池书敏.1994.钙对干旱胁迫下玉米幼苗内源激素含量的影响[J].河北农业大学学报,17(3):48-51
    [112]檀建新,董永华,张伟等.1998.钙对渗透胁迫下玉米幼苗内源激素和多胺含量的影响[J].植物生理学通讯,34(2):94-96
    [113]杨根平,荆家海,王绍唐.1992.钙在干旱胁迫植株内作用的初步研究[J].西北植物学报,12(5):13-169
    [114]黄建国,袁玲.1990.CaCl2对玉米抗旱作用的研究[J].西南农业大学学报,12(4):192-195
    [115]龚明,杜朝昆,许文忠.1996.钙和钙调素对玉米幼苗抗旱性的调控[J].西北植物学报,16(3):214-220
    [116] Kinght H,Trewavas A J.Knight M R,1997.Calcium signaling in Arabidopsis thaliana responding to drought and salinity[J].The Plant J,12:1067-1078
    [117] MacAinsh M R,Brownlee C,Hetherington A M,1990.Abscisic acid-induced elevation of guard cell cytosolic Ca2+precedes stomatal closure[J].nature,343:186-188
    [118] MacAinsh M R,Brownlee C,Hetherington A M.1992.Visualizing changes in cytosolic freeCa2+during the response of stomata guard cells to abscisic acid[J].The Plant Cell,(4):1113-1122
    [119] Li J X,Lee Y R J,Assmann S M.1998.Guard cells possess a calcium-dependent protein kinase that phosphorylates the potassium channe l[J].Plant Physiol,116:785-795
    [120] Shinozaki K,Yamaguchi-Shinoki K.1997.Gene expression and signal transduction in water-stress response[J].Plant Physiol,115:327-334
    [121]胡新生,王世绩.1998.树木水分胁迫生理与耐旱性研究进展及展望[J].林业科学.3(44):76-89
    [122]胡荣海.1986.农作物抗旱性鉴定方法和指标[J].作物品种资源[J].(4):36-38
    [123]李德全.1991.土壤水分胁迫下叶片的渗透调节与膨压维持[J].华北农学报,6(4):100-105
    [124]蒋进等.1992.集中旱生植物盆栽苗木的水分关系和抗旱性排序[J].干旱区研究.9(4):31-37
    [125]陶玲,任珺.1999.牧草抗旱性综合评价的研究[J].甘肃农业大学学报,34(1):23-28
    [126]刘宗萍,柴丽娜,狄一安.1996.小麦品种三个生育阶段抗旱性与产量性状关系的研究——用聚类分析法对小麦品种抗旱性综合评价[J].北京农学院学报,11(2):7-12
    [127]张正斌.2000.植物对环境胁迫整体抗逆性研究若干问题[J].西北农业学报.9(3):112-116
    [128]孙艳丽,况明生,张远嘱,中国南方岩溶地区脆弱的生态环境及石漠化过程,贵州师范大学学报(自然科学版),2003,21(20):80-83
    [129]王德炉,朱守谦,黄宝龙.喀斯特石漠化的形成过程及阶段划分,南京林业大学学报(自然科学版),2005b,29(3):103-106
    [130]祝小科,朱守谦.喀斯特石质山地封山育林效果分析,林业科技,2001,6(6):1-4
    [131]朱守谦,祝小科,喻理飞.贵州喀斯特区植被恢复的理论和实践,贵州环保科技,2000,6(l):31-35
    [132]祝小科,朱守谦,刘济明.乌江流域喀斯特石质山地植被自然恢复配套技术,贵州林业科技, 1998,26(4):7-14
    [133]李昌来.对贵州石漠化治理的思考,贵州社会科学2004,187(1):29-32
    [134]赖兴会.云南岩溶地区石漠化生态恢复的思路,中南林业调查规划,2005,24(1):12-15
    [135]李援越,祝小科,朱守谦.退化喀斯特群落自然恢复程度评价,南京林业大学学报(自然科学版),2003,27(4):31-34
    [136]沈允钢,施教耐,徐大全.动态光合作用.科学出版社,1998
    [137] Teskey RO and Hinckley TM. Moisture:Effects of water stress on tree.In:Hennesey TM et al. eds. Stress physiology and forest productivity. Martinus Nijhofl puberlighers, 198:9-33
    [138]李吉跃.太行山区主要造林树种耐旱特性的研究(v)—耐旱生产力.北京林业大学学报.1991,13(增刊2):251-265
    [139]郭连生等.几种阔叶树种的耐旱性生理指标的研究.林业科学.1989,25(5):389-394
    [140] Turner NC, Jones MM. Turgor main tenance by osmotic adjustment: A Review and Evaluation. In:Turner,NC,Kramer PJ(eds) Adaptation of plants to water and high temperature stress John wiles & Sons, 1980,87-103
    [141] Boyer, JS. Plant Physiol. 1970(46):233-235
    [142] Mooney HA. et al. Photosynthetic acclimation to temperature and water stress in the desert shrub Larrea divaricat. Carnegie Inst. Yrbk., 1977(76):328-335
    [143] Genty B, Briantais JM. Baker NR. 1989. Biochim . Biophys. Acta 900: 87-92
    [144] Schreiber U. Bilger W, Neubarer G. 1994. In: Ecophysiology of photosynthesis. (eds Schulze. E-D and Caldwell MM). Springer Verlag, Berlin
    [145]张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444-448
    [146] Van Kooten O, Snel JFH. 1990. Photosynthesis Reseach, 25:147-150
    [147] Schreiber U, Bilger W. Klughammer C. 1988. In: Lichtenthaler, HK(eds). Application of Cholorphyll Fluorescence in Photosynthesis Reseach, Stress Physiology, Hydrobiology and Remote Sensing. Dordrecht: Kluwer Academic Publishs, 51-55
    [148] Govinjee et al, 1981. Plant Sci. Lett. 20(3):191-194
    [149]王可玢,许春晖,赵福洪等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响.1997.生物物理学报,13(2):273-278
    [150]张其德,卢从明,冯丽洁等.CO2加富对紫花苜蓿光合作用原初光能转换的影响.1996.植物学报,38(1):77-82
    [151]徐黎,林世青,黄士昆等.植物体内叶绿素a荧光动力学在北京地区常绿阔叶树的引种驯化中的应用.1994.植物学通报,9(1):1-46
    [152]芦站根,赵昌琼,韩英等.不同光照条件下生长的曼地亚红豆衫光合特性的比较研究.西南师范大学学报,2003,28(1):117-121
    [153]张建国.中国北方主要造林树种耐旱特性及其机理的研究,1993,北京林业大学博士论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700