基于空间信息技术的土地生态风险评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于城市的扩张、工业的发展,城市周边土地承受着越来越大的压力。土地类型、结构不断转化,农用地大幅度减少;同时,工矿企业生产排放的化学品和农药化肥的施用造成土壤污染,土地质量下降;人口密度增大,动植物栖息地丧失,生物多样性减少等等都造成区域土地生态系统的风险,已引起了研究者、管理者和公众的广泛关注。然而如何在实践中辨识土地生态风险的压力因子?如何进行有效的生态风险评价并用之于土地管理?还没有成熟的方法,目前我国对于土壤风险评价大多数是针对土壤中重金属和农药污染,还没有形成完善的方法和指标体系来表征或评价包含物理压力、化学压力和生物压力在内的土地生态风险。
     本文在研究土地生态风险理论的基础上,将土地生态风险压力因子分为物理因子、化学因子、生物因子,选择能源重化工基地山西省太原市为研究区域,利用空间信息技术、建模技术,结合土壤采样分析,研究了太原市土地生态风险的物理压力和化学压力以及压力因子的时空变化和分布特征,并进行综合评价。本文对土地生态风险评价的理论和实践进行了有益的探索,为土地生态风险评价方法的研究提供了新的思路和可借鉴的经验。
     本文的主要研究内容及结果如下:
     1、以土地生态风险分析为出发点,对重工业城市周边土地生态风险的压力因子、暴露水平、影响因素及其作用机理进行了研究,构建了多压力因子的区域土地生态风险评价概念模型,并主要对物理压力和化学压力的影响进行评价。
     2、以太原市1990和2004年LandsatTM遥感影像为数据源,在RS和GIS技术支持下,分析太原市土地利用格局的时空动态变化和景观格局变化,选取土地利用指数和景观指数分析了土地生态系统的风险。结果表明:1)在城市化的作用下,原城镇周边的土地类型如耕地、草地、林地等被大量占用,城镇用地不断增加并集中。2)区域土地利用类型发生了复杂的相互转换,尤以城市周边的林草交错带和农草交错带变动剧烈。3)区域景观的多样性增加,优势度减小,土地利用趋于破碎化,土地生态系统的风险程度增大。
     3、对太原市周边土壤进行布点采样,分析测定土壤中的重金属元素含量和土壤理化性质,将GIS技术与地统计学方法相结合,探讨了该地区土壤重金属元素含量的影响因素及其空间分布特征。结果表明:重金属元素的空间相关性较弱,N、P、K的空间相关性中等;不同的重金属元素和养分元素的分布格局不同,这是由于结构性因素(如地形、母质等)和随机因素(如工农业生产、交通等)的作用引起的。城市工农业的区划与土壤元素的空间分布有一定的影响。
     4、应用土壤污染单因子指数法、综合指数法、Hankanson生态风险指数法等多种方法对研究区土壤重金属污染的生态风险进行综合评价,结果表明:八种重金属元素中,Hg、Cd的风险程度较大,其他重金属元素的风险较低;Hankanson综合风险指数评价表明土壤重金属的风险基本在“中”到“较高”,个别点的风险程度高;研究地区的北部和中部风险程度较高,这两个地方是太原市工业比较集中的地区,人口密集,交通发达,工业污染、农业污染和交通污染共同导致了土壤重金属的高风险。
     5、选择能表征土地质量的性状、功能和立地条件的综合指标,包括土壤区位条件、立地植被类型、土壤pH、理化性质(N、P、K)和重金属元素(Pb、Cu、Ni、As、Cd、Cr、Hg、Zn),运用支持向量机(Support Vector Machine,SVM)方法对各项指标进行集成,形成综合表征土地质量的模型,对研究区土地质量的生态风险进行评价。结果表明:SVM评价法是基于多个土地生态系统指标的综合评价,可以弥补其他评价方法的不足,用于土地质量综合评价有着广阔的前景。
     6、在土地生态风险分析的基础上,构造多元数组结构模型进行太原市土地生态风险综合评价。
     本文的创新之处在于:
     从城市周边土地由于土地利用变化、土壤污染以及土地承载力造成的生态风险分析出发,构建了土地生态风险评价的概念框架,从多尺度、多压力的角度评价土地生态风险。
     将空间信息技术、地统计分析技术、景观生态学理论综合运用于生态风险评价研究中,对太原市土地利用覆被变化的结构风险和土壤重金属污染的生态风险进行了研究,丰富了土地利用覆被变化和土壤污染评价的研究成果。
     基于支持向量机SVM理论,构建一种新的土地质量综合评价方法,克服了传统的单因子评价、综合指数评价和生态风险指数评价的不足,为土地质量综合评价提供了新的研究方法。
     如何对多尺度、多压力的生态风险进行综合是一个难题,本文首次构建了多元数组结构模型,为多压力因子的土地生态风险综合评价在方法上提供了新思路,并在实践中进行了有益的探索。
In the footsteps of the industrialization and urbanization, agricultural societies have been transformed into urbanized landscapes; land quality has decreased by the advancing soil degradation processes caused by industrial chemicals and agrochemicals; and land ecosystem has been threatened by loss of biodiversity and habitats. Land ecological risk assessment has been gain more and more concern by researchers, managers and publics. To achieve a sustainable development, impacts on land ecosystem of land use changes, chemicals and other stresses must be considered in land ecological risk assessment on regional scales. Many studies on soil risk assessment have been conducted about chemicals such as heavy metals and pesticides but there is as yet not a well-defined universal methodology to characterize land risk and to define a set of clear indicators includes physical, chemical and biological factors.
     This paper defines land ecological risk stress as physical factors which are land use change and loss of habitats, chemical factors which are heavy metals and soil degradation, and biological factors which are loss of biodiversity etc. This paper, selected Taiyuan city, Shanxi Province as a case study area, focus on a joint analysis of the two definitions of soil quality and land use/cover change, analyzes the distribution characters and spatio-temporal of these factors, leading to comprehensive assessment of land ecological risk that have relevance for sustainable land management.
     The main contents and results are as follows:
     Ecological risk assessment is a process that evaluates the likelihood that adverse ecological effects are occurring as a result of exposure to one or more stressors. Based on identification of stressors and reorganization of adverse effects of potential ecological concern in heavy industry city, this chapter developed conceptual model for integrating multi-stressors exposure to land ecosystem in an urbanizing environment on regional level. .
     Land-used/Cover Change in Taiyuan City is analyzed based on remote sensing images in 1990, 2004. GIS technology, land used dynamic degree model and landscape theory are used to research the spatio-temporal trend and land ecological risk of LUCC. From the study, the following conclusions are drawn: 1)the area of Cultivated land, woodland and grassland were decreased with the time, while, the area of constructed land was increased. 2) The land-use types of this area had changed frequently in the past 14 years, especially those interlaced areas with fragile ecological environment between cultivated land, woodland and grass land. 3)the landscape diversity and fragmentation had increased while the landscape dominance had reduced. The land ecosystem structure risk had increased.
     Soil samples were collected from the research area and analyzed to determine heavy metals concentrations and nutrients concentration. The spatial distribution of Hg and Cr in soils in this area was explored using the technologies of Geographic Information System and Geostatistic. Results of spatial distribution analyses showed that 1) the spatial self-correlation of heavy metals in soils in this area were low dependent, while nutrients were moderately interdependent. 2) the spatial interpolation map revealed different elements had a different spatial distribution, which are affected by both structural (including topography factor, soil type, soil native matter and soil texture factors) and random (including fertilizer, crop, management and human actions) factors; 3) Various spatial distributions suggested that urban planning and soil pollution control should focus on soil spatial character and local condition.
     Single Factor index, comprehensive index and Hakanson potential ecological index were used to assess the ecological hazards of heavy metals in urban soils of research field. The results showed that Hg and Cd had a higher risk level and the other heavy metals had a lower risk. Hankanson potential risk assessment showed that most of soil samples in this area had moderately risk, while few samples had extremely risk level. Risk of heavy metals in the north part and central part of research area were higher than that of other parts. Industrial pollution, agricultural pollution and traffic pollution lead to the high risk of these soils.
     An comprehensive assessment model of land quality was established based on Support Vector Machine (SVM), The model is experimented with indicators which include soil heavy metals data, soil nutrients data, soil pH, sampling locations and land cover type data of research area, The results demonstrate that Support Vector Machine can resolve problems of classification with small sample more effectively and accurately. SVM method can reach an ideal comprehensive evaluation results accurately and objectively for land quality assessment.
     To integrate the land physical risk and chemical risk, multi-variable array model was developed to put landuse/cover structure risk and soil hankanson risk into together.
引文
[1]. Acton D. F., Gregorich L. J.. Executive Summary of the Health of Our Soil toward Sustainable Agriculture in Canada[M]. Ottawa, Canada: Research Branch: Centre for land and Biological Resources Research, Agriculture and Agri-Food Canada, 1996
    [2]. Ahlerss J, Martin S. Risk assessment of chemicals in soil: recent developments in the EU [J]. J Soils Sediments 2003,3:240-251
    [3]. Antonio Di Gregorio, Louisa J, M Jansen. Land Cover Classification System (LCCS): Classification Concepts and User Manua1[C]. Rome: FAO, 2000
    [4]. Atikeyan B. K., Majumder K. L., Dasgupta A. R.. An expert system for land covers classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(1): 59-66
    [5]. Atkinsona P., Lewis M. P.. Geostatistical classification for remote sensing: an introduction[J]. Computers and Geosciences, 2000: 26:361-371
    [6]. Barnthousc L.W., Suter II G.W., Rosen A.E.. Inferring population-level significance from individual-level effects: an extrapolation from fisheries science to eco-toxicology[M]. In: Suter GW II and Lewis MA (eds). Aquatic Toxicology and Environmental Fates, 1998, 11: 289-300. ASTM STP 1007. American Society for Testing and Materials, Philadelphia, PA, USA
    [7]. Barnthouse L W,Suter II G W, Bartell S M.Quantifying Risks of Toxic Chemical on Aquatic Populations and Ecosystems [J]. Chemosphere,1988,17:1487
    [8]. Benites J. R., Tschirley J. B.. Report of the Workshop on Land Quality Indicators for Sustainable Resource Management[R]. FAO, Rome, Italy, 1996
    [9]. Bennett K., Campbell C.. Support vector machine: hype or hallelujah [J]. SIGKDD Exploration, 2000, 2(2):1-13
    [10]. Brain A. N.. Environmental management of soil phosphorus [J]. Soil Sci. Soc. Am. 2001, 65: 1516-1522
    [11]. Bruce K. H.. An Examination of ecological risk assessment and management [J]. Environment International, 2006, (32): 983-995
    [12]. Buekens A., De Caevel B. and Neyt A.. Environmental Management in Practice, Volume 1: Instruments for Environmental Management Vol. 1 (Contributed by B.Nath, D.Devuyst, L.Hens, P.Compton), NewYork: questia, 1998
    [13]. CEC (Commission of European Communities). Technical guidance document on risk assessment (Part II, environmental risk assessment)[M]. Ispra, Italy: Joint Research Center, Institute for Health and Consumer Protection, European Chemicals Bureau; 2003
    [14]. Chen H. M., Zheng C. R., Tu C., et a1. Heavy metal pollution in soils in China: Status and countermeasures [J]. Ambio. 1999, 28: 130-134
    [15]. Christensen FM, de Brujin JHM, Hansen BG, Munn SJ, et al. Assessment tools under the new European Union chemicals policy[M]. Green Manag Int, 2003, 41: 5-19
    [16]. Clarkson J, Glaser S, Kierski M, Thomas T, Gaccetta J, Campbell C, et al. Application of risk assessment in different countries[M]. In: Linkov I, Palma-Oliveira J, editors. Assessment and management of environmental risks: cost-efficient methods and applications. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2001. p. 17-27
    [17]. Costanza R, d’Arge R, de Groot R. et a1. The value of the world S ecosystem services and natural capital[J]. Nature, 1997, 387: 253-260
    [18]. Cracknell,A. P. Remote Sensing Techniques in Estuaries and Coastal Zone- an Update[J]. International Journal of Remote sensing, 1999, 19(3): 485-496
    [19]. CWMWG. A Risk Management framework for contaminated sites-A Discussion Paper. [C], 1997. http://www.ec.gc.ca/etad/csmwg/en/pub_e.htm
    [20]. Dumanski J., Gameda S., Pieri C.. Indicators of land quality and sustainable land management: An annotated bibliography. Environmentally and Socially Sustainable development series: Rural development [M]. D.C.,USA: The International Bank for Reconstruction and Development/The World Bank, Washington, 1998
    [21]. Dumanski J., Pieri C.. Land quality indicators: research plan [J]. Agriculture Ecosystems& Environment, 2000, 81: 93-102
    [22]. EA (Environment Agency of England and Wales). Ecological Risk Assessment (ERA): A public consultation by the Environment Agency on a framework and methods for assessingharm to ecosystems from contaminants in soil[M]. Bristol, United Kingdom: Environment Agency, 2003
    [23]. EcoSummit. http://www.ecosummit2007.elsevier.com 2007第三届世界生态高峰会大会报告
    [24]. Edward J Calabrese, Linda A Baldwin. Performing Ecological Risk Assessment[sM].Lewis: Publishers, 1993
    [25]. Flygare A. M.. A comparison of contextual classification method using Landsat TM [J]. Znt.J. Remote Sensing, 1997, 18(18):3835-3842
    [26]. Friedl M. A, Brodley C. B.. Decision tree classification land cover for remotely sensed data [J]. Remote Sensing of Environment. 1997, 61(1):339-409
    [27]. Gerba C.P., Rose J.B., Hass C.N., Crabtree K.D.. Waterborne rotavirus: a risk assessment[J]. Water Res. 1997, 12: 2929-2940
    [28]. Goodchild, M. F., Parks, B. O. and Steyaert, L.T., Environmental Modeling with GIS[M]. New York: Oxford University Press, 1993.
    [29]. Goovaerts P.. Geostatistics in soil science:state-of-the-art and perspectives [J]. Geoderma, 1999, 89: l-45
    [30]. Greton M.G.. Variogram fitting by generalized least squares using an explicit formula for the covariance structure[ J]. Mathematical Geology, 1998: 30(4):323-345
    [31]. Hakanson L.. An ecology risk index for aquatic pollution control: a sediment logical approach [J]. Water Res., 1980.14(8): 975-1001
    [32]. Hass C.N., Rose JB, Gerba C.P.. 1999. Quantitative microbial risk assessment[M]. John Wiley &Sons,New York
    [33]. Hope B.K. An examination of ecological risk assessment and management practices. Environment International, 2006, 32: 983-995
    [34]. Hope BK. Ecological risk assessment in a project management context[J]. Environ Prof 1995,17: 9-19
    [35]. Howarth R. B., Farber S.. Accounting for the value of ecosystem services[J]. Ecol Econ, 2002, 41: 421-429
    [36]. Hunsaker C.T., Graham R.L., Suter G.W. II, et a1. Assessing ecological risk on regional scale[J]. Environmental Management,1990, 14: 325-332
    [37]. Jose Miguel de Paz, Juan Sanchez, Fernando Visconti. Combined use of GIS and environmental indicators for assessment of chemical, physical and biological soil degradation in a Spanish Mediterranean region [J], Journal of Environmental Management, 2006,79: 150-162
    [38]. Journel, Huijbregts, Mining geostatistic[M]. London: Academic Press. 1978
    [39]. Judith P.,Tom C., Mike S.. Risk-based contaminated land investigation and assessment [M], London, 1997
    [40]. Keinth B, Hoddinott Superfund risk assessment in soil contamination studies: third volume [M], USA,1998
    [41]. Kraak M. J. et, al. GIS-Cartography: Visual Decision Support for Spatio-temporal Data Handling[J]. International Journal of Geographical Information Systems, 1995, 9(6): 637. 645
    [42]. Lambin E.F., Baulies X., Bockstael N. et a1. Land-use and Land-cover change (LUCC): implementation strategy[J]. IGBP Report No.48 and HDP Report No.1. Stochkholm: IGBP. 1999
    [43]. Landis W, Wiegers JA. Design considerations and suggested approach for regional and comparative ecological risk assessment[J]. Hum Ecol Risk Assess 1997, 4: 829-838
    [44]. Lestan D., Greman H., Zupan M., el a1. Relationship of soil properties to fractionation of Pb and Zn in soil and their uptake into Plantage Ianceolata [J]. Soil and Sediment Contamination,2002, 12(4): 507-522
    [45]. Louks OL. 1985. Looking for surprise in managing stressed ecosystems [J]. Chemosphere, 35: 428-432
    [46]. Lu W. Z., Wang W. J.. Potential assessment of the“support vector machine”method in forecasting ambient air pollutant trends [J]. Chemosphere, 2005, 59(5): 693-701
    [47]. Maier R.M., Pepper I.L., Gerba C.P.. 2000. Environmental microbiology [M]. Academic Press.
    [48]. Manta D. S., Angelone M., Bellanca A.. Heavy metals in urban soils:a case study from the city of Palermo (Sicily), Italy[J]. The Science of the Total Environment, 2002(300): 229-243
    [49]. Mcdaniel T L, Axelrod L J, Slovic P. Perception of ecological risk to water environments[J]. Risk Analysis, 1997,17(3): 291-298
    [50]. Mervyn L.R.. Risk Reduction into the 21st Century[M]. Risk Reduction(Chemicals and Energy into the 21st Century), BASIC, Rickmansworth, Hertford shire, UK
    [51]. Militino A. F., Ugarte M. D,. Assessing the covariance function in geostatistics [J]. Statistic and Probability Letters , 2001: 52:199-206
    [52]. Mortberg U.M., Balfors B., Knol W.C.. Landscape ecological assessment: A tool for integrating biodiversity issues in strategic environmental assessment and planning [J]; Journal of Environmental Management, 2007, 82: 457-470
    [53]. NAS: Risk Assessment in the Federal Government: Managing the Process. National [M] Academy Press, Washington, DC,1983
    [54]. Pollard SJ, Yearsley R, Reynard N, Meadowcroft IC, Duarte-Davidson R, Duerden SL. Current directions in the practice of environmental risk assessment in the United Kingdom[J]. Environ Sci Technol, 2002, 36:530-538
    [55]. Richardson, M. L., Risk Management of Chemicals [M]. The Royal Society of Chemistry, Cambridge, 1992
    [56]. Santomero M. A . Financial risk management: the why and how[J]. Financial Markets In situation& Instruments, 1995, 4(5):1-13
    [57]. Schamann M. Risk based approach for management of contaminated sites[M], CLARINET, 2002
    [58]. Sharp W. F. portfolio theory and Capital Market[M]. Mc-Gram-HilEnc,1979
    [59]. Skidmore A. K. An operational GIS Expert Systems for Mapping Forest Soils [J]. Photogrammetry Engineering & Remote Sensing, 1996,122:515-528
    [60]. Steen r J C D. 1999. Ecological risk assessment of agrochemicals in European Estuaries[J]. Environmental Toxicology and Chemistry,1999, 18(7):1574-1581
    [61]. Stein, A., Staritsky, I., Bouma, J. et al Interactive GIS for Environmental Risk Assessment[J]. International Journal of Geographical Information Systems, 1995, 9(5): 509-525
    [62]. Strachan, A. J. UK Developments in Environmental GIS [J]. International Journal of Geographical Information Systems, 1996, 10(1): 17-20
    [63]. Suter II G.W., Barnthousc L.W., Baes C. F., et a1. Environmental risk an analysis for direct coal liquefaction[M]. ORNL/TM-9074. Oak Ridge National Laboratory, Oak Ridge, TN,USA. 1984
    [64]. Suter II GW. Ecological risk assessment[M]. Boca Raton, FL, USA: Lewis Publishers. 1993
    [65]. Suthedand R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology, 2000(39): 61l-627
    [66]. Suykens J., Vandewalle I.. Least square support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3):293-300
    [67]. Tassan, S. A Procedure to Determine the Particulate Content of Shallow Water from Thematic Mapper Data [J]. International Journal of Remote sensing, 1997, 18(10): 557-562
    [68]. Tedd p, Charles J A, Driscoll R Sustainable brownfield re-development-risk management[J]. Engineering Geology, 2001,60:333-339
    [69]. Tucker M. Napier T L, perceptions of risk associated with use of farm chemicals: Implications for conservation initiatives [J].Environ-mental Management,1998,22(4):575-587
    [70]. TumerⅡB.L., Skole D.L., Sandemon S. et a1. Land-use and land-cover change. Science/ Research Plan. IGBP Report No.35 and HDP report No.7, Stockholm and Geneva, 1995
    [71]. USEPA. A discussion with the FIFRA scientific advisory panel regarding the terrestrial and aquatic level II refined risk assessment models; 2004b. www.epa.gov/oppefed1/ecorisk/
    [72]. USEPA. An examination of EPA risk assessment principles and practices. EPA/100/B-04/001. Washington, DC: Office of the Science Advisor, U.S. Environmental Protection Agency; 2004a
    [73]. USEPA. Calculating upper confidence limits for exposure point concentrations at hazardouswaste sites. OSWER 9285.6-10.Washington, DC, USA: Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency; 2002
    [74]. USEPA. Ecological risk assessment guidance for superfund: process for designing and conducting ecological risk assessments-Interim Final. EPA 540-R-97-006, OSWER 9285.7-25. Washington, DC, USA: Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency; 1997
    [75]. USEPA. Generic endpoints for ecological risk assessment. EPA/630/P-02/004A. Risk Assessment Forum. Washington, DC, USA: U.S. Environmental Protection Agency; 2003
    [76]. USEPA. Guidance for the data quality objectives process, EPA QA/G-4. EPA/600/R-96/055. Washington, DC, USA: Quality Assurance Management Staff, U.S. Environmental Protection Agency; 1994
    [77]. USEPA. Guidelines for ecological risk assessment. EPA/630/R-95/002F. Risk assessment forum. Washington, DC, USA: U.S. Environmental Protection Agency; 1998
    [78]. USEPA. Issuance of final guidance: ecological risk assessment and risk management principles for superfund sites. OSWER Directive 9285.7-28P. Washington, DC, USA: Office of SolidWaste and Emergency Response, U.S. Environmental Protection Agency; 1999
    [79]. USEPA. The role of screening-level risk assessments and refining contaminants of concern in baseline ecological risk assessments. EPA 540/F-01/014, Publication 9345.0-14. Washington, DC, USA: Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency; 2001
    [80]. USEPA: Framework for Eeological Risk Assessment. 1992, EPA/630/R-92/001
    [81]. USEPA: Guidelines for carcinogen risk assessment. Fed. Regist ,1986, 51:33992-34003
    [82]. USEPA: Guidelines for developmental toxicity risk assessment. Fed.Regist, 1986, 51: 34028- 34040
    [83]. USEPA: Guidelines for exposure assessment. Fed. Regits, 1986, 51: 34042-34054
    [84]. USEPA: Guidelines for the Health risk assessment of chemical mixtures. Fed. Regist, 1986, 51: 34014- 34025
    [85]. USEPA: Superfund Health Assessment Manual. EPA 540/1/6/060,1986
    [86]. Vapnik V.. An overview of statistical learning theory[J]. IEEE Trans. on Neural Networks, 1999, 10(5): 988-999
    [87]. Vapnik V.. The Nature of Statitiscal Learning Theory[M]. New York: Spring-Verlag Press, 1995
    [88]. Veldkamp A., Lambin E. F. Predicting land use change [J]. Agriculture, Ecosystems and Environment. 2001, 85: 1-6
    [89]. Walker J., Reuter D. J.. Indicators of catchment health: a technical perspective [R]. CSIRO, Melboume, 1996
    [90]. Webster R. Quantitative spatical analysis of soil in the field [J]. Adv Soil Sci 1985, 3:1-70
    [91]. White J. G., Welch R. M., Novell W. A.. Soil Zn map of USA using geostatistics and geographic information systems [J]. Soil So1.Soc.Am., 1997, 61: 185-194
    [92].曹新向,郭志永,雒海潮.区域土地资源持续利用的生态安全研究[J].水土保持学报, 2004, 18(2): 192-195
    [93].查勇,倪绍祥,杨山.一种利用TM图像自动提取城镇用地信息的有效方法[J].遥感学报, 2003, 7(1): 37-41
    [94].陈百明,刘新卫等. LUCC研究的最新进展评述[J].地理科学进展, 2003,22(1): 22-29
    [95].陈百明.区域土地可持续利用指标体系框架的构建与评价[J].地理科学进展, 2002, 21(3): 204-215
    [96].陈丙咸.城市遥感分析-南京地区城市研究的遥感分析[M].南京:南京大学出版社,1991
    [97].陈辉,刘劲松,曹宇,等.生态风险评价研究进展[J].生态学报, 2006, 26(5): 1559-1566
    [98].陈美球,刘桃菊,黄靓.土地生态系统健康研究的主要内容及面临的问题[J].生态环境, 2004,4: 238-241
    [99].陈美球,吴次芳.土地生态系统的复杂性研究[J].应用生态学报,2002,13(6): 753-756
    [100].陈锐,穆桂金.塔里木盆地水资源永续利用的环境学模型分析[J].第四纪研究. 2001, 21(2): 162-170
    [101].陈述彭,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社, 1998
    [102].陈述彭.地理学研究的发展方向[J].地理学报, 2005, 60(4): 531-545
    [103].陈述彭.地球信息科学与区域持续发展[M].北京:测绘出版社,1995
    [104].陈素兰,胡冠九,周春宏,等. X射线荧光光谱法测定土壤及底泥中多种元素[J].环境监测管理与技术, 2006, 18(4): 15-18
    [105].陈同斌,宋波,郑袁明,等.北京市蔬菜和菜地土壤砷含量及其健康风险分析[J].地理学报, 2006, 61(3): 297-307
    [106].陈同斌,郑袁明,陈煌,等.北京市土壤重金属含量背景值的系统研究[J].环境科学, 2004, 25(1): 117-122
    [107].陈武凡.小波分析及其在图像处理中的应用[M].北京:科学出版社, 2002.4:16-193
    [108].陈永康,王学松.徐州城市土壤重金属污染空间分布研究[J].江苏环境科技, 2006,19(4): 56-58
    [109].程凌鹏,杨冰等.区域地质灾害风险评价研究述评[J].水文地质工程地质, 2001, 28(3):75-78
    [110].仇付国,王晓昌.城市回用污水中病毒对人体健康风险的评价.环境与健康杂志. 2003, 20(4):.197-199
    [111].崔新媛,周直.风险影响图与项目风险评价研究[J].重庆交通学院学报, 1996, 15(5): 110-115
    [112].戴昌达,姜小光等.遥感图像应用处理与分析[M].北京:清华大学出版社, 2004
    [113].戴树桂,游道新,鲍明亮.有毒有机污染物环境风险性评价研究.环境化学,1991,10(3): 20-25
    [114].党安荣,阎守邕,吴宏歧等.基于GIS的中国土地生产潜力研究[J].生态学报, 2000, 20(6): 910-915
    [115].杜鹏,李世奎.农业气象灾害风险评价模型及应用[J].气象学报, 1997, 55(1): 95-102
    [116].方红亮,黄绚.地学应用中的遥感图像处理若干问题的分析[J].地理研究, 1997, 2: 96-103
    [117].方萌,刘高焕.黄河三角洲土地生产潜力的GIS评价[J].地球信息科学, 2004,6(3): 80-83
    [118].符娟林,章明奎,厉仁安.基于GIS的杭州市居民区土壤重金属污染现状及空间分异研究[J].土壤通报, 2005, 36(4): 575-578
    [119].付在毅,王宪礼等.辽河三角洲湿地区域生态风险评价[J].生态学报, 2001, 21(3): 365-373
    [120].付在毅,许学工.区域生态风险评价[J].地球科学进展, 2001, 16(2): 267-271
    [121].傅伯杰,陈利顶,丘杨等.黄土丘陵沟壑区土地利用结构与生态过程[M].北京:商务印书馆,2002
    [122].傅伯杰,邱扬,王军等.黄土丘陵小流域土壤物理性质的空间变异[J].地理学报, 2002, 57(5): 587-594
    [123].傅湘,王丽萍等.洪灾风险评价通用模型系统的研究[J].长江流域资源与环境, 2000, 9(4): 518-524
    [124].甘居利,贾晓平.近岸海域底质量金属生态风险评价初步研究[J].水产学报, 2000, 24(6): 533-538
    [125].高继军,张力平,黄圣彪,马梅,王子健北京市饮用水源水重金属污染物健康风险的初步评价环境科学2004,25(2): 49-52
    [126].高小平.生态安全与突发生态公共事件应急管理[J].甘肃行政学院学报, 2007,1: 1-4
    [127].龚钟明,曹军,朱雪梅等.天津市郊污灌区农田土壤中的有机氯农药残留[J].农业环境保护, 2002, 21(5): 459-461
    [128].郭朝晖,肖细元,陈同斌等.湘江中下游农田土壤和蔬菜的重金属污染[J].地理学报, 2008, 63(1): 3-11
    [129].郭翠花,黄淑萍,原洪波等.太原市地表土中五种重金属元素的污染监测及评价[J].山西大学学报(自然科学版). 1995, 18(2): 222-226
    [130].郭翠花,王应刚,任艳萍等.太原市地表土汞含量的分布特征[J].山西大学学报, 1996, 19(3): 339-334
    [131].郭旭东,陈利顶,傅伯杰.土地利用/土地覆被变化对区域生态环境的影响[J].环境科学进展, 1999,7(6): 66-75
    [132].郭旭东,傅伯杰,陈利顶等.河北省遵化平原土壤养分时空变异特征-变异函数和Kriging插值分析[J].地理学报, 2000, 55(5): 555-564
    [133].郭旭东,邱扬,连纲等.基于PSR框架的土地质量指标体系研究进展与展望[J].地理科学进展, 2003, 22(5): 479-489
    [134].郭仲伟.风险分析与决策[M].北京:北京机械工业出版社, 1986
    [135].韩丽,普天文.生态风险评价的方法与管理简介[J].重庆环境科学, 2001, 23(3): 21-23
    [136].何孟常,王子健等.利用综合评价方法和等级模型评价乐安江水体重金属污染[J].生态学报, 2002, 22(1): 80-86
    [137].候景儒,黄竞先.地质统计学及其在矿产储量计算中的应用[M].北京:地质出版社, 1982
    [138].候景儒,尹镇南,李维明.实用地质统计学[M].北京:地质出版社, 1998
    [139].胡二邦主编.环境风险评价实用技术与方法[M].北京:中国环境科学出版社, 2000
    [140].胡克林,李保国,林启美.农田土壤养分的空间变异性特征[J].农业工程学报, 1999, 15(3): 33-38
    [141].吉昂,陶光仪,卓尚军. X射线荧光光谱分析[M ].北京:科学出版社, 2003
    [142].贾科利.基于遥感、GIS的陕北农牧交错带土地利用与生态环境效应研究[D].西北农林科技大学博士论文, 2007
    [143].康玲芬,李锋瑞,等.不同土地利用方式对城市土壤质量的影响[J].生态科学, 2006, 25(1): 59-63
    [144].李国旗,安树青,陈兴龙.生态风险研究述评[J].生态学杂志, 1999, 18(4):57-64
    [145].李晶. 3S支持下土地利用生态效益时空差异与生态安全评价.陕西师范大学博士论文[D]. 2006
    [146].李亮亮,依艳丽,凌国鑫等.地统计学在土壤空间变异研究中的应用[J].土壤通报, 2005, 36(2): 265-268
    [147].李小平,黄春长. XRF光谱法研究城市工业区的土壤环境污染[J].土壤, 2007, 39(4): 567-572
    [148].李晓燕,李壁成,张树文.基于MAPGIS的小流域土地质量评价[J].农业系统科学与综合研究, 2004, 20(2): 99-106
    [149].李自珍,何俊红.生态风险评价与风险决策模型及应用[J].兰州大学学报:自科版, 1999, 35(3): 149-156
    [150].刘成,王兆印,等.环渤海湾诸河口潜在生态风险评价[J].环境科学研究. 2002, 15(5):33-37
    [151].刘红樱,谢志仁,陈德友等.成都地区土壤环境质量初步评价[J].环境科学学报, 2004, 24(2): 297-303
    [152].刘纪远,刘明亮.中国近期土地利用变化的空间格局分析[J].中国科学, 2002, 32(12): 1031-1040
    [153].刘纪远.中国资源环境遥感宏观调查与动态研究[M].北京:中国科学技术出版社,1996
    [154].刘文新,栾兆坤.乐安江沉积物中金属污染的潜在生态风险评价[J].生态学报, 1999, 19(2): 206-211
    [155].刘新立,史培军.区域水灾风险评估模型研究的理论与实践[J].自然灾害学报, 2001, 10(2): 66-72.
    [156].卢玲,程国栋,李新.黑河流域中游地区景观变化研究[J].应用生态学报, 2001,12(1): 68-74
    [157].路云阁,蔡运龙,许月卿.走向土地变化科学土地利用/覆被变化研究的新进展[J].中国土地科学, 2006, 20(1): 55-61
    [158].吕永龙译,环境管理(第三卷)[M].北京:中国环境科学出版社, 1996
    [159].马宝艳,张学林.吉林省区域环境中硒的生态风险评价[J].中国环境科学.2000, 20(1): 91-96
    [160].麦碧娴,林峥等.珠江三角洲沉积物中毒害有机物的污染现状及评价[J].环境科学研究. 2001, 14(1): 19-23
    [161].毛小苓,倪晋仁.生态风险评价研究述评[J].北京大学学报,自然科学版2005, 4: 148-156
    [162].聂庆华,包浩生,王海英.基于GIS农田土地质量评价与立地分析[J].地理科学, 2000, 20(4): 307-313
    [163].潘耀忠,陈志军,聂娟等.基于多源遥感的土地利用动态变化信息综合监测方法研究[J].地球科学进展, 2002, 17(2): 182-187
    [164].彭光雄,徐兵,沈蔚,等.TM图像的城镇用地信息提取方法研究[J].遥感技术与应用, 2006, 21(1):31-37
    [165].齐文启,汪志国. X射线荧光分析法及其在环境监测中的应用[J].环境监测管理与技术, 2004, 16(4): 9-12
    [166].钱迎倩,田彦转.基因植物的生态风险评价[J].植物生态学报. 1998, 22(4). 289-299
    [167].曲格平.关注生态安全之二:影响中国生态安全的若干问题[J].环境保护;2002,7:3-6
    [168].任志远,张艳芳,李晶等.土地利用变化与生态安全评价[M].北京:科学出版社, 2003
    [169].任志远.陕北黄土高原生态安全动态变化定量分析[J].干旱区地理, 2005,28(5): 642-646
    [170].沈英娃,曹洪法.生态风险评价方法简述[J].中国环境科学, 1991,11(6): 464-468
    [171].石常蕴,周慧珍. GIS技术在土地质量评价中的应用—以苏州市水田为例[J].土壤学报, 2001, 38(3): 248-255
    [172].史崇文,赵玲芝,郭新波等.山西土壤元素背景值及其特征[J].华北地质矿产杂志, 1994, 9(2):188-196
    [173].史华.土地系统研究的几个问题[J].地球科学进展, 1993, 5
    [174].史培军,宫鹏,李晓兵等.土地利用/覆盖变化研究的方法与实践[M].北京:科学出版社, 2000
    [175].史培军,江源,王静爱等.土地利用覆盖变化与生态安全响应机制[M].北京:科学出版社, 2003
    [176].史培军,潘耀忠.深圳市土地利用/覆盖变化与生态环境安全分析[J].自然资源学报[J], 1999, 14(4): 293-299
    [177].史培军,宋长青,景贵飞.加强我国LUCC及其对生态环境安全影响的研究一从荷兰“全球变化开放科学会议”看人地系统动力学研究的发展趋势[J].地球科学进展, 2002, l7(2): 161-168
    [178].孙家柄.遥感原理与应用[M].武汉:武汉大学出版社, 2003
    [179].陶澍,邓宝山,陈伟元.深圳地区土壤汞含量分布与污染[J].土壤学报, 1993, 13(1): 35-38
    [180].汪权方,李家永,陈百明.基于地表覆盖物光谱特征的土地覆被分类系统-鄱阳湖流域为例[J].地理学报, 2006, 61(4):359-368
    [181].王军,傅伯杰,邱扬,陈利顶.黄土高原小流域土壤养分的空间异质性[J].生态学报, 2002, 22(8): 1173-1178.
    [182].王军,邱扬.土地质量的空间变异与尺度效应研究进展[J].地理科学进展, 2005, 24(4): 28-35
    [183].王如松.现代生态学的热点问题研究[M].北京:中国科学技术出版社, 1996
    [184].王万茂,高波,夏太寿.土地生态经济学[M].北京:科学技术出版社, 1992.
    [185].王学军,邓宝山,等.北京污灌区表层土壤微量元素的小尺度空间结构特征[J].环境科学学报, 1997, 17(4): 412-416
    [186].王雪军.晋陕蒙接壤地区土地利用格局动态遥感研究与预测[J].水土保持学报, 2002, 16(4): 58-61
    [187].王禹,董玉瑛,等.有机磷类杀螺增效剂在土壤中的吸附行为[J].环境化学, 2001, 20(3): 232-237
    [188].王振祥,朱晓东,石磊等.安徽省沿淮地区生态安全评价模型和指标体系[J].应用生态学报, 2006, 17(12): 2431-2435
    [189].王政权.地统计学及在生态学中的应用[M].北京:科学出版社, 1999
    [190].王志霞.区域规划环境风险评价理论方法与实践[D].同济大学博士学位论文,2007
    [191].王子健,吕怡兵等.河水体取代苯类污染及其生态风险[J].环境科学学报, 2002, 22(3): 300-303
    [192].王宗明,张树清,张柏.土地利用变化对三江平原生态系统服务价值的影响[J].中国环境科学, 2004, 24(1): 125-129
    [193].吴后建,王学雷,宁龙梅,等.土地利用变化对生态系统服务价值的影响—以武汉市为例[J].长江流域资源与环境, 2006,15(2): 185-190
    [194].吴澎. RS与GIS技术在土地资源管理中的应用[J].平原大学学报, 2004, 21(5): 69-70
    [195].夏明革,何友.基于小波分析的图像融合评述[J].红外与激光工程, 2003, 32(2): 177-181
    [196].肖风劲,欧阳华,程淑兰,等.中国森林健康生态风险评价[J].应用生态学报, 2004, 15(2): 349-353
    [197].谢花林,刘黎明,李波,等.土地利用变化的多尺度空间自相关分析—以内蒙古翁牛特旗为例[J].地理学报, 2006, 61(4): 389-399
    [198].谢学锦.“化学定时炸弹”与可持续发展-早日制定治理延缓性地球化学灾害的长期战略[J].中国青年科技, 2000,11: 32-35
    [199].熊德琪,陈钢等.重大环境污染事故风险模糊排序方法研究[J].中国工程科学, 2001, 3(8): 46-50
    [200].徐冠华.遥感与资源环境信息系统应用与展望[J].环境遥感,1994,9(4):241-246
    [201].许学工,布仁仓等.黄河三角洲湿地区域生态风险评价[J].北京大学学报:自科版, 2001, 37(1): 111-120
    [202].严雪,沈国兴.水生植物毒性试验及在生态风险评价中的作用[J].上海环境科学, 1998, 17(7): 24-26
    [203].阎守邕.现代遥感技术系统及其发展趋势[J].环境遥感, 1995, 10(1): 52-61
    [204].杨旭,纪玉波.基于遗传算法的SVM参数选取[J].辽宁石油化工大学学报, 2004, 24(1): 54-58
    [205].杨勇,任志远,赵昕,等.西部资源型城市生态安全评价与对策—以铜川市为例[J].生态学杂志, 2006, 25 (9): 1109-1113
    [206].叶依广,厉伟.城市化与土地生态系统优化[J].南京农业大学学报:社会科学版, 2003, 3(1)
    [207].易立新.城市火灾风险评价的指标体系设计[J].灾害学, 2000, 15(4): 90-94
    [208].阴雷鹏,赵景波.西安市主要功能区表层土壤重金属污染现状评价[J].陕西师范大学学报(自然科学版), 2006, 34(3): 109-112
    [209].殷浩文.生态风险评价[M].上海:华东理工大学出版社,2001
    [210].殷浩文.水环境生态风险评价程序[J].上海环境科学.1995,14(11).11-14
    [211].于兴修,杨桂山.土地利用/覆被变化的环境效应研究进展与动向[J].地理科学, 2004, 24(5): 627-633
    [212].余振国.土地利用规划环境影响评价及其经济学分析.浙江大学博士论文[D].2005
    [213].喻锋,李晓兵等.皇甫川流域土地利用变化与生态安全评价[J].地理学报, 2006, 61(6): 645-653
    [214].袁艺,史培军.快速城市化过程中土地覆盖格局研究-以深圳市为例[J].生态学报, 2003, 23(9): 1832-1840
    [215].岳健,张雪梅.关于我国土地利用分类问题的讨论[J].干旱区地理, 2003, 26(1): 78-88
    [216].曾光明,李新民.水环境健康风险评价模型及其应用[J].水电能源科学. 1997, 15(4): 28-33
    [217].曾光明,李新民.突发性水环境风险评价模型事故泄漏行为的模拟分析[J].中国环境科学.1998, 18(5): 403-406
    [218].张乃明,李保国,胡克林.太原污灌区土壤重金属及盐分的空间变异特征[J].环境科学学报, 2001, 21(3): 348-353
    [219].张乃明,李保国,胡克林.污水灌区耕层土壤中铅、镉的空间变异特征[J].土壤学报, 2003, 40(1): 151-154
    [220].张心昱,陈利顶,李琪等.不同农业土地利用类型对北方传统农耕区土壤养分含量及垂直分布的影响[J].农业环境科学学报, 2006, 25(2): 377-381
    [221].张学林,王金达,张博等.区域农业景观生态风险评价[J].地球科学进展.2000, 15(6): 712-716
    [222].张艳芳.景观尺度上的区域生态安全研究[D].陕西师范大学博士论文,2005
    [223].张义彬,曲家惠.世界遥感技术发展现状及其地质应用[J].国土资源遥感,1998,4:67-75
    [224].张有山,林启美.大比例尺区域土壤养分空间变异定量分析[J].华北农学报, 1998, 13(1): 122-128
    [225].赵劲松,袁星等.环境激素对水蚤的影响[J].环境污染与防治. 2001, 23(6): 314-316
    [226].赵米金,徐涛.土地利用土地覆被变化环境效应研究[J].水土保持研究, 2005, 12(1): 43-46
    [227].赵沁娜.城市土地置换过程中土壤污染风险评价与风险管理研究.华东师范大学博士论文[D]. 2007
    [228].赵英时,等编著.遥感应用分析原理与方法[M].北京:科学出版社, 2003
    [229].郑海龙,陈杰,邓文靖等.南京城市边缘带化工园区土壤重金属污染评价[J].环境科学报, 2005, 25(9): 1182-1188
    [230].钟政林,曾光明,杨春平.环境风险评价研究进展[J].江苏环境科技, 1997(1): 43-46
    [231].钟政林,曾光明.随机理论在环境影响风险评价中的应用[J].湖南大学学报. 1997, 24(1): 33-38
    [232].周成虎,骆剑承等.遥感影像地学理解与分析[M].北京:科学出版社, 1999
    [233].周启星,王如松.城镇化过程生态风险评价案例研究[J].生态学报.1998, 18(4): 337-342
    [234].周远全;从系统科学(SCI)探析中国的环境管理[D],陕西师范大学, 2003
    [235].周兆永,汪西莉,曹艳龙.基于GA优选参数的SVM水质评价方法研究[J].计算机工程与应用, 2008, 44(4): 190-193
    [236].朱彬,刘进.航天项目风险综合评价模型研究[J].管理工程学报. 2002,16(10): 206-208
    [237].朱琳,佟玉洁.中国生态风险评价应用探讨[J].安全与环境学报; 2003, 3: 20-22
    [238].朱永恒,濮励杰,赵春雨.土地质量的概念及其评价指标体系研究[J].国土与自然资源研究, 2005, 2: 31-33
    [239].祝民强,周万蓬,吴仁贵等.赣中丘陵区TM影像的耕地信息提取模型研究[J].遥感技术与应用, 2004, 19(3): 173-176
    [240].左伟,王桥,王文杰等.区域生态安全评价指标与标准研究[J].地理学与国土研究, 2002, (1): 67-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700