小鼠动情周期卵巢中Wnt/β-catenin信号通路受体基因Frizzleds的表达与定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢是重要的雌性生殖器官,决定了动物的繁殖潜能。尽管哺乳动物卵巢含有的卵泡甚多,但其一生能成熟排卵的卵泡数很少,绝大多数(约有99.9%)的卵泡在腔前卵泡阶段闭锁、退化,这无疑是极大的资源浪费。现有的研究已表明,Wnt/p-catenin通路与卵泡发育和卵巢机能有密切关联。本研究以动情周期小鼠为研究对象,通过real-time Q-PCR和阴道涂片方法确定了小鼠的动情周期;利用real-time Q-PCR技术检测了Frizzled家族基因mRNA在小鼠动情周期卵巢组织中的表达规律;运用ISH、IHC和Western blotting方法深入研究了小鼠动情周期卵巢组织中Frizzled 2和3的时空表达模式。本研究有助于阐明雌性生殖细胞的发育中Wnt/Frizzled信号通路的具体功能和机制,对提高雌性动物繁殖力、更合理有效地开发利用卵巢内的卵泡资源,以及探究繁殖疾病病因和治疗方法,都具有重要的理论和现实意义。
     1.小鼠动情周期的判断与证实
     为了选择合理的动情周期和准确的动情时期,采用阴道涂片观察和判断动情周期阴道内的细胞学变化,并通过检测动情周期子宫湿重和组蛋白H3.2的mRNA表达水平变化来进一步证实。结果显示,小鼠动情周期划分为4个时期(动情前期、动情期、动情后期、间情期),在整个动情周期中,子宫湿重是变化的,动情前期和动情期的子宫最重(P<0.05);组蛋白H3.2水平变化类似于子宫湿重,并与子宫细胞增殖变化一致(P<0.05)。这表明本研究中实验材料小鼠的动情周期划分是合理和准确的,从而为后续研究奠定基础。
     2. Frizzled家族基因mRNA在小鼠动情周期卵巢组织中的表达水平
     哺乳动物中已确定了10种Frizzled蛋白,其能作为受体被一类糖脂蛋白Wnt配体激活,从而影响细胞命运,包括卵巢的胚胎期发育,但这些受体分子在成年动物卵泡发育期间的表达和具体作用知之甚少。故本研究运用real-time Q-PCR方法分析研究了Frizzled 1-10 mRNA在小鼠动情周期卵巢中的相对表达水平,结果表明,10个Frizzled家族基因中,除Frizzled 8外,其他都有不同水平的表达(A-I)。Frizzled 1和Frizzled 2动情前期表达水平显著高于其他三个时期水平,都约是间情期水平的4倍(P<0.05)(A、B); Frizzled 3动情前期和间情期表达水平都显著高于另两个时期的1.5倍(P<0.05)(C);Frizzled 4在动情期显著高于其他三时期的2~3倍(P<0.05)(D);间情期Frizzled 5表达显著高于动情前期和动情期,约是动情期水平的5倍(P<0.05)(E), Frizzled 7表达类似于Frizzled 5,约是动情前期水平的4倍(P<0.05)(G);Frizzled 10的表达在动情前期显著高于动情期和间情期,约是动情期的3倍多9(P<0.05)(I); Frizzled 6和Frizzled 9在四个时期的表达没显著差别(P<0.05)(F、H)。这些结果提示Frizzled 1-4可能在动情周期卵泡发育过程中具有更重要作用,Frizzled 1和Frizzled 4已被研究证实,但有关表达水平较高的Frizzled 2和Frizzled 3在卵巢中的研究报道甚少。因此,后面研究将深入探明Frizzled 2和Frizzled 3在卵巢组织中的时空表达模式。
     3. Frizzled-2的mRNA和蛋白质在小鼠动情周期卵巢中的时空表达模式
     Wnt/p-catenin通路是保守的信号通路,其调节基因表达和控制细胞命运规律、细胞增殖和分化等多种发育过程。当前,有关该通路在成年动物卵巢中作用研究报道几乎没有。本研究通过实时定量PCR、原位杂交、Western印迹杂交和免疫组织化学等方法,检测了Frizzled 2在动情周期的小鼠卵巢中的表达情况。研究发现,动情前期的Frizzled 2 mRNA和蛋白水平最高,自动情期到间情期快速减弱。原位杂交结果表明:动情前期卵母细胞和基质中Frizzled 2信号强;而后三个时期的卵母细胞、颗粒细胞、基质和黄体中具有中等或微弱信号。Frizzled 2蛋白的表达模式大部分与mRNA的一致,但是,强的表达信号存在动情前期和动情期的颗粒细胞和卵母细胞膜上。以上结果表明,Frizzled 2可能调控动情周期的卵泡生长、卵母细胞成熟。
     4. Frizzled-3的mRNA和蛋白质在小鼠动情周期卵巢中的表达与定位
     动物早期和成年期间,Frizzled基因调节胚胎发育、组织和细胞极性、神经突触形成、增殖等各种生长发育过程。当前,有关Frizzled 3在成年动物卵巢中的研究报道几乎没有。所以,运用实时定量PCR、原位杂交和免疫组织化学方法检测了Frizzled3的mRNA和蛋白在动情周期的小鼠卵巢中的表达规律。结果发现,动情前期和间情期Frizzled 3相对表达水平最高,动情期和动情后期出现显著降低(P<0.05)。原位杂交结果表明:动情前期,Frizzled 3 mRNA在各期卵泡的颗粒细胞和基质上高表达;黄体上弱表达。动情期,基质中信号强,但颗粒细胞和黄体上水平弱的几乎看不见。动情后期,基质中表达中等水平,黄体细胞表达水平弱,各级卵泡几乎不表达。间情期,基质中高水平表达,颗粒细胞和黄体中水平很弱。整体来看,动情前期和间情期杂交信号最强,其他二时期次之,这基本与real time Q-PCR的结果一致。Frizzled 3蛋白的表达模式大部分与mRNA的一致,基质上的信号最强,但是,动情期和间情期的颗粒细胞存在中等强度的表达信号,以及动情前期和动情期的卵母细胞膜上低水平表达。以上结果表明,Frizzled 3可能参与调控动情周期的卵泡生长和卵母细胞成熟。
Ovary, an important female reproductive organ, determines animal breeding potential. Although many follicles is in the mammalian ovary, few can develop the ovulatory follicles in life and the vast majority (about 99.9%) are atresia or degradation in preantral phase among them. This is a great waste. Existing research has shown that Wnt/β-catenin pathway closely relative to follicular development and ovarian function. In this study, firstly, we confirmed vaginal cytology-based estrous cycle stage classification through the real-time Q-PCR method, then detected mRNA expression of the Frizzled family genes in the mice ovary during estrous cycle by real-time Q-PCR, at last, using ISH, IHC and Western blotting methods, studied the temporal and spatial expression patterns of Frizzled 2 and 3 in the estrous ovary in mice. These works should have great theoretical and practical significance, help to clarify specific function and mechanism of Wnt/Frizzled signaling pathway during the development of female germ cells, to improve the fertility of female animals, a more reasonable utilization of follicles in the ovary, as well as to study the etiology and treatment of the reproductive disease.
     1. Estrous cycle stage classification and validation in mice
     In order to choose a reasonable and accurate estrous cycle, the author observed vaginal cytology changes within estrous cycle by vaginal smears and dividing into four periods (proestrus, estrus, metestrus, diestrus). To confirm vaginal cytology-based estrous cycle stage classification, uterine wet weights and histone H3.2 mRNA expression were analyzed. Uterine weight varies with the estrous cycle. Uteri obtained from mice are the heaviest in the proestrus and estrus (p< 0.05). The relative expression level of H3.2 mRNA parallels wet weight and consistent with known changes in uterine cellular proliferation (p< 0.05). This suggest that sampled mice hav the reasonable and accurate estrous cycle in this study and lay the foundation for our follow-up study.
     2. The relative expression levels of Frizzled family genes mRNA in the estrous ovary in mice
     Ten Frizzled genes encoding Frizzleds have been identified in mammals. They can be activated as a receptor binding to Wnt ligands (a class of glycoproteins) to affect cell fate, including the development of embryonic ovary, but little known about the expression and function of the receptor molecules in the adult ovary. Therefore, we used real-time Q-PCR to analyze the relative expression levels of Frizzled 1-10 mRNAs in estrous ovary in mice. The results showed that The others had a different expression level except Frizzled 8(A-I). Expressions of Frizzled 1 and 2 were highest in proestrus and both were about 4 times higher than that in diestrus (P<0.05) (A, B); Frizzled 3 was 1.5 fold higher in proestrus and diestrus than those in the other two periods (P<0.05) (C); Frizzled 4 was found significantly high expression in estrus, which 2-3 fold than ones of the other three stages (P <0.05) (D); Frizzled 5 had marked higher signal in diestrus than those in proestrus and estrus, being approximately 5 times higher than that in estrus (P<0.05) (E), Frizzled 7 was similar to Frizzled 5, about 4 fold high than the level of proestrus (P<0.05) (G); Frizzled 10 expression in proestrus was significantly higher than those in estrus and diestrus and about more than 3 times higher than that in estrus(P<0.05) (I); but Frizzled 6 and 9 were no significant difference during estrous cycle(P<0.05) (F、H). These results suggested that Frizzled 1-4 may play an more important role in the development of follicle during estrous cycle stage. As previously studied, Frizzled 1 and 4 have been confirmed, but Frizzled 2 and 3 with higher expression levels have been little reported in the adult ovary. Therefore, the next work is that study the temporal and spatial expression patterns of Frizzled 2 and 3 in the estrus mouse ovary.
     3. The temporal and spatial expression patterns of Frizzled 2 mRNA and protein in estrous ovary in mice
     The Wnt/β-catenin pathway is a conserved signalling pathway that regulates gene expression and controls diverse developmental processes such as cell fate specification, cell proliferation and cell differentiation. To our knowledge, the potential role of this pathway in the adult ovary has been poorly addressed. To this end, we investigated the expression pattern of Frizzled 2 in the mouse ovary during estrous cycle by real-time Q-PCR, in situ hybridization, Western blotting and immunohistochemistry. In this study, We found that during estrous cycle, Frizzled 2 mRNA and protein exhibited the highest level in the proestrus stage and rapidly decreased from estrus to diestrus. In situ hybridization results showed that the positive signals for Frizzled 2 were highly detected in the oocyte and stroma in proestrus stage, while moderate or weak Frizzled 2 mRNAs were localized in the oocyte, granulose cells, stroma and corpus luteum from estrus to diestrus. The localization pattern of Frizzled 2 protein was mostly consistent with its mRNA, but stronger Frizzled 2 proteins were present in the granulosa cells and membrane of oocyte in proestrus and estrus. Our data suggested that Frizzled 2 may be involved in regulating follicle growth, oocyte maturation during estrous cycle.
     4. Expression and localization of Frizzled 3 in the mice ovary during estrous cycle
     During the early period and adult, Frizzled genes regulate embryonic development, tissue and cell polarity, the formation of neural synapses, the cell proliferation, etc. To date, Frizzled 3 have not been investigated in adult ovary. Here, we detected the expression and localization of Frizzled 3 mRNA and protein in the mice ovary during estrous cycle through real-time Q-PCR, in situ hybridization and immunohistochemistry. It was found that the relative expression level of Frizzled 3 was highest in proestrus and diestrus, significantly decreased in estrus and metestrus (P<0.05). In situ hybridization results showed that in proestrus, high expression signals were found in the granulosa cell and stroma, weak level in corpus luteum. In estrous, stroma displayed high level, but granulosa cells and corpus luteum were revealed weak almost invisible levels. In metestrus, the moderate expression level was found in stroma, luteal cells were weak and almost no expression signals at all follicles. In diestrus, high expression level was in stroma, weak in granulosa cells and corpus luteum. Overall, the strongest hybridization signals were in proestrus and diestrus, second level in the other stages. This was mostly consistent with real-time Q-PCR. Expression patterns of Frizzled 3 protein were almost in accord with mRNA, the strongest signal was in the stroma, but moderate level were displayed in granulosa cells of estrus and diestrus, as well as low expression level in the oocyte cell membrane during proestrus and estrus. These results show that Frizzled 3 may regulate the developement of follicle, oocyte maturation in estrous cycle.
引文
1. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol,2004,20:781-810.
    2. MARK P, PAUL P. Wnt signaling in oncogenesis and embryogenesis-a look outside the nucleus. Science,2000,287:1606-1609.
    3. Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by WNT4 signalling. Nature,1999,397:405-409.
    4. Katherine Jeays-Ward, Christine Hoyle, Jennifer Brennan, Mathieu Dandonneau, Graham Alldus,Blanche Cape, Amanda Swain. Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development,2003,130:3663-3670.
    5. Yao HH, Matzuk MM, Jorgez CJ, Menke DB, Page DC, Swain A, Capel B. Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn,2004,230:210-215.
    6. Derek Boerboom, Marilene Paquet, Minnie Hsieh, Jinsong Liu, Soazik P. Jamin, Richard R. Behringer, Jean Sirois, Makoto M. Taketo, JoAnne S. Richards. Misregulated Wnt/β-Catenin signaling leads to ovarian granulosa cell tumor development. Cancer Res,2005,65:9206-9215.
    7. Minnie Hsieh, Mac A. Johnson, Norman M. Greenberg, Joanne S. Richards. Regulated expression of Wnts and Frizzleds at specific stages of follicular development in the rodent ovary. Endocrinology,2002,143:898-908.
    8. Minnie Hsieh, Derek Boerboom, Masayuki Shimada, Yuet Lo, Albert F. Parlow, Ulrich F.O. Luhmann, Wolfgang Berger, JoAnne S. Richards. Mice null for Frizzled4 (fzd4-/-) are infertile and exhibit impaired corpora lutea formation and function. Biology of Reproduction,2005,73: 1135-1146.
    9. Ricken Albert, Lochhead Paul, Kontogiannea Maria, Farookhi Riaz. Wnt signaling in the ovary: identification and compartmentalized expression of Wnt2, Wnt2b, and Frizzled-4 mRNAs. Endocrinology,2002,143:2741-2749.
    1. Nusse R, Varmns HE. Many tumors induced by the mouse mammary tumor virus contain a provirns integrated in the sall region of the host genome. Cell,1982,31:99-109.
    2. Van Ooyen A, R Nusse. Structure and nucleotide sequence of the putative mammary oncogene int-1; proviral insertions leave the protein-encoding domain intact. Cell,1984,39:233-240.
    3. Cabrera C.V., M. C. Alonso, P. Johnston, R. G. Phillips, P. A. Lawrence. Phenocopies induced with antisense RNA identify the wingless gene. Cell,1987,50:659-663.
    4. Rijsewijk F., M. Schuermann, E. Wagenaar, P. Parren, D. Weigel, R. Nusse. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell,1987,50:649-657.
    5. Dale TC. Signal transduction by the Wnt family of ligands. Biochem J,1998,329:209-223.
    6. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol,1998, 14:59-88.
    7. Dierick H, Bejsovec A. Cellular mechanisms of wingless/Wnt signal transduction. Curr Top Dev Biol,1999,43:153-190.
    8. Akira Kikuchi, Hideki Yamamoto, Shosei Kishida. Multiplicity of the interactions of Wnt proteins and their receptors. Cellular Signalling,2007,19:659-671.
    9. S. Kishida, H. Yamamoto, A. Kikuchi, Wnt3a and Dvl induce neurite retraction by activating Rho-associated kinase. Mol. Cell. Biol,2004,24:4487-4501.
    10. K. Willert, J.D. Brown, E. Danenberg, A.W Duncan, I.L. Weissman, T. Reya, J.R.I. Yates, R. Nusse. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature,2003,423: 448-452.
    11. AJ Mikels, R Nusse. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol.2006,4:570-582.
    12. M. Kurayoshi, N. Oue, H. Yamamoto, M. Kishida, A. Inoue, T. Asahara, W. Yasui, A. Kikuchi. Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res,2006,66:10439-10448.
    13. M. Kurayoshi, H. Yamamoto, S. Izumi, A. Kikuchi, Post-translational palmitoylation and glycosylation of Wnt5a are necessary for its signalling. Biochem,2007,402:515-523
    14. Bradley RS, Brown AM. A soluble form of Wnt-1 protein with mitogenic activity on mammary epithelial cells. Mol Cell Biol,1995,15:4616-4622.
    15. S. Nakagawa, S. Takada, R. Takada,M. Takeichi. Identification of the laminar-inducing factor:
    Wnt-signal from the anterior rim induces correct laminar formation of the neural retina in vitro. Dev Biol,2003,260:414-425.
    16. S.G. Hwang, J.H. Ryu, I.C. Kim, E.H. Jho, H.C. Jung, K. Kim, S.J. Kim, J.S. Chun. Wnt-7a causes loss of differentiated phenotype and inhibits apoptosis of articular chondrocytes via different mechanisms. J Biol Chem,2004,279:26597-26604.
    17. Y. Hirabayashi, Y. Itoh, H. Tabata, K. Nakajima, T. Akiyama, N. Masuyama, Y. Gotoh. The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development,2004,131:2791-2801.
    18. P. Pandur, M. Lasche, L.M. Eisenberg, M. Kuhl. Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature,2002,418:636-641.
    19. B.D. Smolich, J.A. McMahon, A.P. McMahon, J. Papkoff. Wnt family proteins are secreted and associated with the cell surface. Mol Biol Cell,1993,4:1267-1275.
    20. J.O. Mason, J. Kitajewski, H.E. Varmus. Mutational analysis of mouse Wnt-1 identifies two temperature-sensitive alleles and attributes of Wnt-1 protein essential for transformation of a mammary cell line. Mol Biol Cell,1992,3:521-533.
    21. C. Banziger, D. Soldini, C. Schutt, P. Zipperlen, G. Hausmann, K. Basler. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell,2006,125: 509-522.
    22. A. Helenius. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell,1994,5:253-265.
    23. B. Imperiali, S.E. O'Connor. Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Curr Opin Chem Biol,1999,3:643-649.
    24. R. Nusse. Wnts and Hedgehogs:lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development,2003,130:5297-5305.
    25. K. Hofmann. A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem Sci,2000,25:111-112.
    26. M. van den Heuvel, C. Harryman-Samos, J. Klingensmith, N. Perrimon, R. Nusse. Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J, 1993,12:5293-5302.
    27. K. Tanaka, K. Okabayashi, M. Asashima, N. Perrimon, T. Kadowaki. The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. Eur. J. Biochem,2000,267: 4300-4311.
    28. R.S. Bradley, A.M. Brown. The proto-oncogene int-1 encodes a secreted protein associated with the extracellular matrix. EMBO J,1990,9:1569-1575.
    29. F Reichsman, L Smith, S Cumberledge. Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction. J. Cell Biol,1996,135: 819-827.
    30. V. Greco, M. Hannus, S. Eaton. Argosomes:a potential vehicle for the spread of morphogens through epithelia. Cell,2001,106:633-645.
    31. M. Tsuda, K. Kamimura, H. Nakato, M. Archer, W. Staatz, B. Fox, M. Humphrey, S. Olson, T. Futch, V. Kaluza, E. Siegfried, L. Stam, S.B. Selleck. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature,1999,400:276-280.
    32. H.H. Song, J. Filmus. The role of glypicans in mammalian development. Biochim Biophys Acta, 2002,1573:241-246.
    33. H.H. Song, W. Shi, Y.Y. Xiang, J. Filmus. The loss of Glypican-3 induces alterations in Wnt signaling. J. Biol. Chem,2005,280:2116-2125.
    34. B. De Cat, S.Y. Muyldermans, C. Coomans, G. Degeest, B. Vanderschueren, J. Creemers, F. Biemar, B. Peers, G. David. Processing by proprotein convertases is required for glypican-3 modulation of cell survival, Wnt signaling, and gastrulation movem. J Cell Biol,2003,163:625-636.
    35. Huelsken J, Birchmeier W. New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev,2001,11:547-553.
    36. D.I. Strutt, U. Weber, M. Mlodzik. The role of RhoA in tissue polarity and Frizzled signaling. Nature,1997,387:292-295.
    37. M. Boutros, N. Paricio, D.I. Strutt, M. Mlodzik. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell,1998,94:109-118.
    38. P.N. Adler. Planar Signaling and Morphogenesis in Drosophila. Dev. Cell,2002,2:525-535.
    39. Thorpe CJ, Schlesinger A, Bowerman B. Wnt signalling in Caenorhabditis elegans:regulating repressors and polarizing the cytoskeleton. Trends Cell Biol,2000,10:10-17.
    40. M. Kuhl, L.C. Sheldahl, M. Park, J.R. Miller, R.T. Moon. The Wnt/Ca2+ pathway:a new vertebrate Wnt signaling pathway takes shape. Trends Genet,2000,16:279-283.
    41. T. Ishitani, S. Kishida, J. Hyodo-Miura, N. Ueno, J. Yasuda, M.Waterman, H. Shibuya, R.T. Moon, J. Ninomiya-Tsuji, K. Matsumoto. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca2+ pathway to antagonize Wnt/beta-catenin signaling. Mol. Cell. Biol, 2003,23:131-139.
    42. M.T. Veeman, J.D. Axelrod, R.T. Moon. A second canon:review functions and mechanisms of β-catenin-independent Wnt signaling. Dev. Cell,2003,5:367-377.
    43. Bienz M. Spindles cotton on to junctions, APC and EB1. Nat Cell Biol,2001,3:67-68.
    44. Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, Delius H, Hoppe D, Stannek P, Walter C, Glinka A, Niehrs C. Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signaling. Nature,2002,417:664-667.
    45. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol,2004,20:781-810.
    46. MARK P, PAUL P. Wnt signaling in oncogenesis and embryogenesis-a look outside the nucleus. Science,2000,287:1606-1609.
    47. Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by WNT4 signalling. Nature,1999,397:405-409.
    48. Molenaar M, van de Wetering, M. Oosterwegel, M. Peterson-Maduro, J. Godsave, S. Korinek, V. Roose, J. Destree, O. Clevers H. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell,1996,86:391-399.
    49. Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek T. J, Perry W. L, Lee J. J, Tilghman S. M, Gumbiner B. M, Costantini F. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell,1997,90:181-192.
    50. Katherine Jeays-Ward, Christine Hoyle, Jennifer Brennan, Mathieu Dandonneau, Graham Alldus, Blanche Cape, Amanda Swain. Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development,2003,130:3663-3670.
    51. Yao HH, Matzuk MM, Jorgez CJ, Menke DB, Page DC, Swain A, Capel B. Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn,2004,230:210-215.
    52. Minnie Hsieh, Mac A. Johnson, Norman M. Greenberg, Joanne S. Richards. Regulated expression of Wnts and Frizzleds at specific stages of follicular development in the rodent ovary. Endocrinology,2002,143:898-908.
    53. Minnie Hsieh, Derek Boerboom, Masayuki Shimada, Yuet Lo, Albert F. Parlow, Ulrich F.O. Luhmann, Wolfgang Berger, JoAnne S. Richards. Mice null for Frizzled4 (fzd4-/-) are infertile and exhibit impaired corpora lutea formation and function. Biology of Reproduction,2005,73: 1135-1146.
    54. Albert Ricken, Paul Lochhead, Maria Kontogiannea, Riaz Farookhi. Wnt signaling in the ovary: identification and compartmentalized expression of Wnt2, Wnt2b, and Frizzled-4 mRNAs. Endocrinology,2002,143:2741-2749.
    55. Minnie Hsieh, Sabine M. Mulders, Robert R. Friis, Arun Dharmarajan, Joanne S. Richards. Expression and localization of secreted Frizzled-related protein-4 in the rodent ovary:evidence for selective up-regulation in luteinized granulosa cells. Endocrinology,2003,144:4597-4606.
    56. Derek Boerboom, Marilene Paquet, Minnie Hsieh, Jinsong Liu, Soazik P. Jamin, Richard R. Behringer, Jean Sirois, Makoto M. Taketo, JoAnne S. Richards. Misregulated Wnt/β-Catenin signaling leads to ovarian granulosa cell tumor development. Cancer Res,2005,65:9206-9215.
    57. Derek Boerboom, Lisa D. White, Sophie Dalle, Jose'Courty, JoAnne S. Richards. Dominant-stable β-catenin expression causes cell fate alterations and Wnt signaling antagonist expression in a murine granulosa cell tumor model. Cancer Res,2006,66:1964-1973.
    1. Adler PN. Planar signaling and morphogenesis in Drosophila. Dev Cell,2002,2:525-535.
    2. Wang Y, Macke JP, Abella BS, Andreasson K, Worley P, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J. A large family of putative transmembrane receptors homologous to the product of the Drosophila tissue polarity gene frizzled. J Biol Chem,1996,271:4468-4476.
    3. Adell T, Nefkens I, Muller WE. Polarity factor "Frizzled" in the demosponge Suberites domuncula: identification, expression and localization of the receptor in the epithelium/pinacoderm. FEBS Letters,2003,554:363-368.
    4. Minobe S, Fei K, Yan L, Sarras Jr M, Werle M. Identification and characterization of the epithelial polarity receptor "Frizzled" in Hydra vulgaris. Dev Genes Evol,2000,210:258-262.
    5. Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature,1996, 382:225-230.
    6. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. The G protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol,2003,63:1256-1272.
    7. Hui-Chuan Huang, Peter S Klein. The Frizzled family:receptors for multiple signal transduction pathways. Genome Biology,2004,5:1-7.
    8. R. Nusse. Wnt signaling in disease and in development. Cell Res,2005,15:28-32.
    9. M. Povelones, R. Nusse. The role of the cysteine-rich domain of Frizzled in Wingless-Armadillo signaling. EMBO J,2005,24:3493-3503.
    10. S.T. George, A.E. Ruoho, C.C. Malbon. N-glycosylation in expression and function of beta-adrenergic receptors. J. Biol. Chem,1986,261:16559-16564.
    11. A.J. Morris, C.C. Malbon. Physiological regulation of G protein-linked signaling. Physiol. Rev, 1999,79:1373-1430.
    12. C.P. Moxham, C.C. Malbon. Fat cell.beta.1-adrenergic receptor:structural evidence for existence of disulfide bridges essential for ligand binding. Biochemistry,1985,24:6072-6077.
    13. K. Palczewski, T. Kumasaka, T. Hori, C.A. Behnke, H. Motoshima, B.A. Fox, I. T.Le, D.C. Teller, T. Okada, R.E. Stenkamp, M. Yamamoto, M. Miyano. Crystal structure of rhodopsin:A G protein-coupled receptor. Science,2000,289:739-745.
    14. B.K. Kay, J.W. Kehoe. PDZ domains and their ligands. Chem. Biol,2004,11:423-425.
    15. Hsien-yu Wang, Tong Liu, Craig C. Malbon. Structure-function analysis of Frizzleds. Cellular Signalling,2006,18:934-941.
    16. The Wnt Gene Homepage [http://www. stanford.edu/-musse/wntwindow.html]
    17. Thorpe CJ, Schlesinger A, Bowerman B. Wnt signalling in Caenorhabditis elegans:regulating repressors and polarizing the cytoskeleton. Trends Cell Biol,2000,10:10-17.
    18. Chen W, ten Berge D, Brown J, Ahn S, Hu LA, Miller WE, Caron MG, Barak LS, Nusse R, Lefkowitz RJ. Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science,2003,301:1391-1394.
    19. Dubois L, Lecourtois M, Alexandre C, Hirst E, Vincent JP. Regulated endocytic routing modulates wingless signaling in Drosophila embryos. Cell,2001,105:613-624.
    20. Gradl D, Kuhl M, Wedlich D. Keeping a close eye on Wntl/wg signaling in Xenopus. Mech Dev, 1999,86:3-15.
    21. Chen CM, Struhl G. Wingless transduction by the Frizzled and Frizzled2 proteins of Drosophila. Development 1999,126:5441-5452.
    22. Sheldahl LC, Park M, Malbon CC, Moon RT. Protein kinase C is differentially stimulated by wnt and frizzled homologs in a G-protein-dependent manner. Curr Biol,1999,9:695-698.
    23. Gubb D, Garcia-Bellido A. A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J Embryol Exp Morphol,1982,68:37-57.
    24. Muller H, Samanta R, Wieschaus E:Wingless signaling in the Drosophila embryo. zygotic requirements and the role of the frizzled genes. Development,1999,126:577-586.
    25. Bhanot P, Fish M, Jemison JA, Nusse R, Nathans J, Cadigan KM. Frizzled and DFrizzled-2 function as redundant receptors for Wingless during Drosophila embryonic development. Development,1999,126:4175-4186.
    26. Bhat KM. frizzled and frizzled 2 play a partially redundant role in wingless signaling and have similar requirements to wingless in neurogenesis. Cell,1998,95:1027-1036.
    27. Kennerdell JR, Carthew RW. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell,1998,95:1017-1026.
    28. Sato A, Kojima T, Ui-Tei K, Miyata Y, Saigo K. Dfrizzled-3, a new Drosophila Wnt receptor, acting as an attenuator of Wingless signaling in wingless hypomorphic mutants. Development,1999, 126:4421-4430.
    29. Rocheleau CE, Downs WD, Lin R, Wittmann C, Bei Y, Cha YH, Ali M, Priess JR, Mello CC. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell,1997,90: 707-716.
    30. Harris J, Honigberg L, Robinson N, Kenyon C. Neuronal cell migration in C. elegans:regulation of Hox gene expression and cell position. Development 1996,122:3117-3131.
    31. Sawa H, Lobel L, Horvitz HR:The Caenorhabditis elegans gene lin-17, which is required for certain asymmetric cell divisions, encodes a putative seven-transmembrane protein similar to the Drosophila frizzled protein. Genes Dev 1996,10:2189-2197.
    32. Wang Y, Thekdi N, Smallwood PM, Macke JP, Nathans J. Frizzled-3 is required for the development of major fiber tracts in the rostral CNS. J Neurosci,2002,22:8563-8573.
    33. Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, Kelley MW, Jiang L, Tasman W, Zhang K, Nathans J. Vascular development in the retina and inner ear:control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell,2004,116:883-895.
    34. Wang Y, Huso D, Cahill H, Ryugo D, Nathans J. Progressive cerebellar, auditory, and esophageal dysfunction caused by targeted disruption of the frizzled-4 gene. J Neurosci,2001,21:4761-4771.
    35. Ishikawa T, Tamai Y, Zorn AM, Yoshida H, Seldin MF, Nishikawa S, Taketo MM. Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development,2001, 128:25-33.
    36. Johane Robitaille, Marcia L.E. MacDonald, Ajamete Kaykas, Laird C. Sheldahl, Jutta Zeisler, Marie-Pierre Dube, Lin-Hua Zhang, Roshni R. Singaraja, Duane L. Guernsey, Binyou Zheng, Lee F. Siebert, Ann Hoskin-Mott, Michael T. Trese, Simon N. Pimstone, Barkur S. Shastry, Randall T. Moon, Michael R. Hayden, Y. Paul Goldberg, Mark E. Samuels. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat Genet,2002,32:326-330.
    37. Deardorff MA, Tan C, Saint-Jeannet JP, Klein PS. A role for frizzled 3 in neural crest development. Development,2001,128:3655-3663.
    38. Sumanas S, Strege P, Heasman J, Ekker SC. The putative wnt receptor Xenopus frizzled-7 functions upstream of beta-catenin in vertebrate dorsoventral mesoderm patterning. Development, 2000,127:1981-1990.
    39. Winklbauer R, Medina A, Swain RK, Steinbeisser H. Frizzled-7 signalling controls tissue separation during Xenopus gastrulation. Nature,2001,413:856-860.
    40. Minnie Hsieh, Mac A. Johnson, Norman M. Greenberg, Joanne S. Richards. Regulated expression of Wnts and Frizzleds at specific stages of follicular development in the rodent ovary. Endocrinology,2002,143:898-908.
    41. Minnie Hsieh, Derek Boerboom, Masayuki Shimada, Yuet Lo, Albert F. Parlow, Ulrich F.O. Luhmann, Wolfgang Berger, JoAnne S. Richards. Mice null for Frizzled4 (fzd4-/-) are infertile and exhibit impaired corpora lutea formation and function. Biology of Reproduction,2005,73: 1135-1146.
    42. Albert Ricken, Paul Lochhead, Maria Kontogiannea, Riaz Farookhi. Wnt Signaling in the Ovary: Identification and Compartmentalized Expression of Wnt2, Wnt2b, and Frizzled-4 mRNAs. Endocrinology,2002,143:2741-2749.
    1. 蔡文琴,王伯云主编.实用免疫细胞化学与核酸分子杂交技术.成都:四川科学技术出版社,1994,P406.
    2. 王廷龙,冯忠堂,Jean Philippe Merlio主编.分子杂交理论与技术,北京:科学出版社,2005,P21-41.
    3. Dijkman H. B. P. M, Mentzel S, de Jong A. S, Assmann, K. J. M. RNA In Situ hybridization using digoxigenin-labeled cRNA probes. Biochemica (worldwide version) No.2,1995,21-25.
    4. Liu Jing-Yao, Lei Wei-Hong, Brody A R, Hoyle G W. Investigation of tissue preparation conditions for nonradioactive in situ hybridization:localization of transforming growth factor- message in rat kidney. Histochemical Journal,1998,30:793-798.
    5. Le G P, Dumas S, Volle G E, Pidoux E, Moukhtar M S, Treilhou L F. An efficient method to detect calcitonin mRNA in normal and neoplastic rat C-cells (medullary thyroid carcinoma) by in situ hybridization using a digoxigeninlabeled synthetic oligodeoxyribonucleotide probe. J Histochem Cytochem,1993,41:389-395.
    6. Yang Hui, Wanner I B, Roper S D, Chaudhari N. An optimized method for in situ hybridization with signal amplification that allows the detection of rare mRNAs. J Histochem Cytochem,1999, 47:431-445.
    7. Speel E J M, Hopman A H N, Komminoth P. Amplification methods to increase the sensitivity of in situ hybridization:play CARD(S). J Histochem Cytochem,1999,47:281-288.
    8. Maritte P. C, Corput V D, Dirks R W, Gijlswijk R P M, Binnendijk E V. Seneitive mRNA detection by fluorescence in situ hybridization using horseradish peroxidase-labeled oligodeoxynucleotides and tyramide signal amplification. J Histochem Cytochem,1998,46:1249-1259.
    9. Kerstens HM, Poddighe PJ, Hanselaar AG. A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramine. J Histochem Cytochem.1995,43: 347-352.
    10. Ernst J.M. Speel, Frans C.S. Ramaekers, Anton H.N. Hopman. Sensitivity multicolor fluorescence in situ hybridization using catalyzed reporter deposition (CARD) amplification. J Histochem Cytochem,1997,45:1439-1446.
    11. Schmidt BF, Chao J, Zhu Z, DeBiasio R, Fisher G. Signal amplification in the detection of single-copy DNA and RNA by enzymecatalyzed deposition (CARD) of the novel fluorescent reporter substrate Cy3.29-tyramide. J Histochem Cytochem.1997,45:365-373.
    12. Schbfer C, Weipoltshammer K, Almeder M, Wachtler F. Signal amplification at the ultrastructural
    level using biotinylated tyramides and immunogold detection. Histochem Cell Biol.1997,108: 313-319.
    13. Deblock M, Debrouwer D. RNA-RNA in situ hybridization using digoxigenin-labeled probes:the use of high molecular weight polyvinyl alcohol in the alkaline phosphatase indoxyl-nitroblue tetrazolium reaction. Anal Biochem,1993,215:86-89.
    14. David G. Hicks, Gabe Longoria, James Pettay, Tom Grogan, Shannon Tarrl, Raymond Tubbs. In situ hybridization in the pathology laboratory:General principles, automation, and emerging research applications for tissue-based studies of gene expression. Journal of Molecular Histology, 2004,35:595-601.
    15. DeLellis RA. In situ hybridization techniques for the analysis of gene expression:Applications in tumor pathology. Hum Pathol,1994,25:580-585.
    16. Gray JW, Pinkel D, Brown JM. Fluorescence in situ hybridization in cancer and radiation biology. Radiat Res,1994,137:275-289.
    17. Lloyd RV. Molecular probes and endocrine disease. Am J Surg Pathol,1990,14:34-44.
    18. Jin L, Chandles WF, Smart JB, England BG, Lloyd RV. Differentiation of human pituitary adenomas determines the pattern of chromogranin/secretogranin messenger ribonucleic acid expression. J Clin Endocrinol Metab,1993,76:728-735.
    19. Varma VA, Cerjan CM, Abbott KL, Hunter SB. Non-isotopic in situ hybridization method for mitochondria in oncocytes. J Histochem Cytochem,1994,42:273-276.
    20.翁幼竹,黄威权,方永强,姚冰,孙岚.文昌鱼神经系统、哈氏窝和性腺GnRH受体mRNA原位杂交的研究.动物学研究,2000,21:437-441.
    21. Pendas AM, Moran P, Garcia-Vazquez E. Organization and chromosomal location of the major histone cluster in brown trout, Atlantic salmon and rainbow trout. Chromosoma,1994b,103: 147-152.
    22. Gornuny E, Gabrielli I, Cataudella S, Sola L. CMA32banding pattern and fluorescence in situ hybridization with 18s rRNA genes in zebrafish chromosomes. Chromosomes Res,1997,5:40-46.
    23. M Yerle, J Gellin, M Dalens, O Galman. Localization on pig chromosome 6 of markers GPI, APOE, and ENO1, carried by human chromosomes 1 and 19, using in situ hybridization. Cytogenet Cell Genet,1990,54:86-91.
    24. Choi YJ. In situ hybridization using a biotinylated DNA probe on formalin-fixed liver biopsies with hepatitis B-virus infections:In situ hybridization superior to immunohistochemistry. Mod Pathol, 1990,3:343-347.
    25. Chang KL, Chen YY, Shibata DS, Weiss LM. Description of an in situ hybridization methodology for detection of Epstein-Barr virus RNA in paraffin-embedded tissues with a survey of normal and neoplastic tissues. Diagn Mol Pathol,1992,1:246-255.
    26. Hamilton-Dutoit SJ, Pallesen G. Detection of Epstein-Barr virus small RNAs in routin paraffin sections using non-isotopic RNA/RNA in situ hybridization. Histopathology 1994,25:101-111.
    1. 魏泓.医学实验动物学[M].四川:四川科学技术出版社,1998:P164-165.
    2. Kathleen Bove, David W Lincoln, Patricia A Wood, William J.M. Hrushesky. Fertility cycle influence on surgical breast cancer cure. Breast Cancer Research and Treatment,2002,75:65-72.
    3. Paula E Cohen, Liyin Zhu, Kayoko Nishimura, Jeffrey W Pollard. Colony-stimulating factor1 regulation of neuroendocrine pathways that control gonadal function in mice. Endocrinology,2002, 143:1413-1422.
    4. 南京医学院,浙江医科大学,上海第二医科大学.组织胚胎学(第3版)[M].江苏:江苏科学技术出版社,1990:P176-177.
    5. Chateau D, Geiger J M, Samama B, Boehm N. Vaginal keratinization during the estrous cycle in rats:a model for evaluating retinoid activity. Skin Pharmacol,1996,9:9-16.
    6. Burroughs KD, Fuchs YR, Davis B, Walker CL. Altered hormonal responsiveness of proliferation and apoptosis during myometrial maturation and the development of uterine leiomyomas in the rat. Biol Reprod,2000,63:1322-1330.
    7. Bove K, Lincoln DW, Wood PA, Hrushesky WJ. Fertility cycle influence on surgical breast cancer cure. Breast Cancer Research Treatment,2002,75:65-72.
    1. Espey LL, Lipner H. Ovulation. In:Knobil, E., Neill, J. (ed.), The physiology of reproduction. Raven Press, New York,1994:P725-780.
    2. Greenwald GS, Roy SK. Follicular development and its control. In:Knobil, E., Neill, J. (ed.), The physiology of reproduction. Raven Press, New York,1994:P629-724.
    3. Niswender GD, Nett TM. The corpus luteum and its control in infraprimate species. In:Knobil, E., Neill, J. (ed.), The physiology of reproduction. Raven Press, New York,1994, P781-816.
    4. Richards JS. Hormonal control of gene expression in the ovary. Endocrine Review,1994,15: 725-751.
    5. Hsieh M, Johnson MA, Greenberg NM, Richards JS. Regulated expression of Wnts and Frizzleds at specific stages of follicular development in the rodent ovary. Endocrinology,2002,143:898-908.
    6. Hsieh M, Boerboom D, Shimada M, Lo Y, Parlow AF, Luhmann UF, Berger W, Richards JS. Mice null for Frizzled4 (fzd4-/-) are infertile and exhibit impaired corpora lutea formation and function. Biology of Reproduction,2005,73:1135-1146.
    7. Albert Ricken, Paul Lochhead, Maria Kontogiannea, Riaz Farookhi. Wnt signaling in the ovary: identification and compartmentalized expression of Wnt 2, Wnt 2b, and Frizzled 4 mRNAs, Endocrinology,2002,143:2741-2749.
    8. Dale TC. Signal transduction by the Wnt family of ligands. Biochemistry Journal,1998,329: 209-223.
    9. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology,1998,14:59-88.
    10. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology,2004,20:781-810.
    11. Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature,1999,397:405-409.
    12. Boerboom D, Paquet M, Hsieh M, Liu J, Jamin SP, Behringer RR, Sirois J, Taketo MM, Richards JS. Misregulated Wnt/beta-catenin signaling leads to ovarian granulosa cell tumor development. Cancer Research,2005,65:9206-9215.
    13. Parr BA, McMahon AP. Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature,1998,395:707-710.
    14. Monkley SJ, Delaney SJ, Pennisi DJ, Christiansen JH, Wainwright BJ. Targeted disruption of the Wnt2 gene results in placentation defects. Development,1996,122:3343-3353.
    1. Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt4 signalling. Nature,1999,397:405-409.
    2. Hsieh M, Boerboom D, Shimada M, Lo Y, Parlow AF, Luhmann UF, Berger W, Richards JS. Mice null for Frizzled4 (Fzd4-/-) are infertile and exhibit impaired corpora lutea formation and function. Biology of Reproduction,2005,73:1135-1146.
    3. Ricken A, Lochhead P, Kontogiannea M, Farookhi R. Wnt signaling in the ovary:identification and compartmentalized expression of Wnt2, Wnt2b, and frizzled-4 mRNAs. Endocrinology 2002,143: 2741-2749.
    4. Hsieh M, Johnson MA, Greenberg NM, Richards JS. Regulated expression of Wnts and Frizzleds at specific stages of follicular development in the rodent ovary. Endocrinology,2002,143:898-908.
    5. Boerboom D, Paquet M, Hsieh M, Liu J, Jamin SP, Behringer RR, Sirois J, Taketo MM, Richards JS. Misregulated Wnt/beta-catenin signaling leads to ovarian granulosa cell tumor development. Cancer Research,2005,65:9206-9215.
    6. Wu R, Hendrix-Lucas N, Kuick R, Zhai Y, Schwartz DR, Akyol A, Hanash S, Misek DE, Katabuchi H, Williams BO, Fearon ER, Cho KR. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell,2007,11:321-333.
    7. Chan SD, Karpf DB, Fowlkes ME, Hooks M, Bradley MS, Vuong V, Bambino T, Liu MY, Arnaud CD, Strewler GJ. Two homologs of the Drosophila polarity gene frizzled (fz) are widely expressed in mammalian tissues. Journal of Biological Chemistry,1992,267:25202-25207.
    8. Pandur P, Kuhl M. An arrow for wingless to take-off. Bioessays,2001,23:207-210.
    9. Dann CE, Hsieh JC, Rattner A, Sharma D, Nathans J, Leahy DJ. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature,2001,412:86-90.
    10. Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D, Mlodzik M, Shi DL, Zheng J. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Molecular Cell,2003,12:1251-1260.
    11. Demeestere I, Centner J, Gervy C, Englert Y, Delbaere A. Impact of various endocrine and paracrine factors on in vitro culture of preantral follicles in rodents. Reproduction,2005, 130:147-156.
    12. Hou X, Tan Y, Li M, Dey SK, Das SK. Canonical Wnt signaling is critical to estrogen-mediated uterine growth. Molecular Endocrinology,2004,18:3035-3049.
    13. Ma L, Wang HY. Mitogen-activated protein kinase p38 regulates the Wnt/cyclic GMP/Ca2+ non-canonical pathway. Journal of Biological Chemistry,2007,282:28980-28990.
    14. Wang S, Ning G, Chen X, Yang J, Ouyang H, Zhang H, Tai P, Mu X, Zhou B, Zhang M, Xia G. PDE5 modulates oocyte spontaneous maturation via cGMP-cAMP but not cGMP-PKG signaling. Frontiers in Bioscience,2008,13:7087-7095.
    15. Ullah G, Jung P, Machaca K. Modeling Ca2+ signaling differentiation during oocyte maturation. Cell Calcium,2007,42:556-564.
    1. Espey LL, Lipner H. Ovulation. In:Knobil, E., Neill, J. (ed.), The Physiology of Reproduction. Raven Press, New York,1994:P725-780.
    2. Greenwald GS, Roy SK. Follicular development and its control. In:Knobil, E., Neill, J. (ed.), The Physiology of Reproduction. Raven Press, New York,1994:P 629-724.
    3. Niswender GD, Nett TM. The corpus luteum and its control in infraprimate species. In:Knobil, E., Neill, J. (ed.), The Physiology of Reproduction. Raven Press, New York,1994:P781-816.
    4. Richards JS. Hormonal control of gene expression in the ovary. Endocrine Review,1994,15: 725-751.
    5. Dale TC. Signal transduction by the Wnt family of ligands. Biochemistry Journal,1998,329: 209-223.
    6. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology,1998,14:59-88.
    7. Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature,1999,397:405-409.
    8. Hsieh M, Boerboom D, Shimada M, Lo Y, Parlow AF, Luhmann UF, Berger W, Richards JS. Mice null for Frizzled4 (Fzd4-/-) are infertile and exhibit impaired corpora lutea formation and function. Biology of Reproduction,2005,73:1135-1146.
    9. Ricken A, Lochhead P, Kontogiannea M, Farookhi R. Wnt signaling in the ovary:identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs. Endocrinology,2002,143: 2741-2749.
    10. Hsieh M, Johnson MA, Greenberg NM, Richards JS. Regulated expression of Wnts and Frizzleds at specific stages of follicular development in the rodent ovary. Endocrinology,2002,143:898-908.
    11. Boerboom D, Paquet M, Hsieh M, Liu J, Jamin SP, Behringer RR, Sirois J, Taketo MM, Richards JS. Misregulated Wnt/beta-catenin signaling leads to ovarian granulosa cell tumor development. Cancer Research,2005,65:9206-9215.
    12. Wu R, Hendrix-Lucas N, Kuick R, Zhai Y, Schwartz DR, Akyol A, Hanash S, Misek D E, Katabuchi H, Williams BO, Fearon ER, Cho KR. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell,2007,11:321-333.
    13. Chan SD, Karpf DB, Fowlkes ME, Hooks M, Bradley MS, Vuong V, Bambino T, Liu MY, Arnaud CD, Strewler GJ. Two homologs of the Drosophila polarity gene frizzled (fz) are widely expressed in mammalian tissues. Journal of Biological Chemistry,1992,267:25202-25207.
    14. Yanshu Wang, Nupur Thekdi, Philip M. Smallwood, Jennifer P. Macke, Jeremy Nathans. Frizzled-3 is required for the development of major fiber tracts in the rostral CNS. The Journal of Neuroscience,2002,22:8563-8573.
    15. Yanshu Wang, Nini Guo, Jeremy Nathans. The role of Frizzled 3 and Frizzled 6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. The Journal of Neuroscience,2006, 26:2147-2156.
    16. Yanshu Wang, Jiangyang Zhang, Susumu Mori, Jeremy Nathans. Axonal Growth and Guidance Defects in Frizzled3 Knock-Out Mice:A Comparison of Diffusion Tensor Magnetic Resonance Imaging, Neurofilament Staining, and Genetically Directed Cell Labeling. The Journal of Neuroscience,2006,26:355-364.
    17. Derek Boerboom, Lisa D. White, Sophie Dalle, Jose'Courty, JoAnne S. Richards. Dominant-stable β-catenin expression causes cell fate alterations and Wnt signaling antagonist expression in a murine granulosa cell tumor model. Cancer Res,2006,66:1964-1973.
    18. Kidder GM, Mhawi AA. Gap junctions and ovarian folliculogenesis. Reproduction,2002,123: 613-620.
    19. Juneja SC, Barr KJ, Enders GC, and Kidder GM. Defects in the germ line and gonads of mice lacking connexin43. Biol Reprod,1999,60:1263-1270.
    20. Wright CS, Becker DL, Lin JS, Warner AE, and Hardy K. Stage-specific and differential expression of gap junctions in the mouse ovary:connexin-specific roles in follicular regulation. Reproduction,2001,121:77-88.
    21. Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J. Cardiac malformation in neonatal mice lacking connexin43. Science,1995,267: 1831-1834.
    22. Ackert CL, Gittens JE, O'Brien MJ, Eppig JJ, Kidder GM. Intercellular communication via connexin43 gap junctions is required for ovarian folliculogenesis in the mouse. Dev. Biol,2001, 233:258-270.
    23. Gittens JE, Kidder GM. Differential contributions of connexin37 and connexin43 to oogenesis revealed in chimeric reaggregated mouse ovaries. J. Cell Sci,2005,118:5071-5078.
    24. Gittens JE, Barr KJ, Vanderhyden BC, Kidder GM. Interplay between paracrine signaling and gap junctional communication in ovarian follicles. J. Cell Sci,2005,118:113-122.
    25. Tong D, Gittens JE, Kidder GM, Bai D. Patch-clamp study reveals that the importance of connexin43-mediated gap junctional communication for ovarian folliculogenesis is strain specific in the mouse. Am. J. Physiol. Cell Physiol,2006,290:C290-C297.
    26. Ruangvoravat CP, Lo CW. Connexin 43 expression in the mouse embryo:localization of transcripts within developmentally significant domains. Dev. Dynam,1992,194:261-281.
    27. Patricia G. Melloy, Michellek. Kusnierczyk, Rita A. Meyer, Cecilia W. Lo, and Mary E. Desmond. Overexpression of connexin43 alters the mutant phenotype of midgestational Wnt-1 null mice resulting in recovery of the midbrain and cerebellum. The Anatomical Record part A,2005,283A: 224-238.
    28. Olson, D. J., Christian, J. L. and Moon, R. D. Effects of Wnt-1 and related proteins on gap junctional communication in Xenopus embryos. Science,1991,252:1173-1176.
    29. Olson, D. J. and Moon, R. T. Distinct effects of ectopic expression of Wnt-1, activin B, and bFGF on Gap junctional permeability in 32-cell Xenopus embryos. Dev. Biol,1992,151:204-212.
    30. Rita A. Meyer, Matthew F. Cohen, Scott Recalde, Jozsef Zakany, Sheila M. Bell, William J. Scott Jr, Cecilia W. Lo. Developmental regulation and asymmetric expression of the gene encoding Cx43 gap junctions in the mouse limb bud. Dev. Genet,1997,21:290-300.
    31. Marcel A. G. van der Heyden, Martin B. Rook, Monique M. P. Hermans, Gert Rijksen, Johannes Boonstra, Libert H. K. Defizel, Olivier H. J. Destree. Identification of connexin43 as a functional target for Wnt signalling. J. Cell Sci,1998,111:1741-1749.
    32. Zhaowei Ai, Avi Fischer, David C. Spray, Anthony M.C. Brown, and Glenn I. Fishman. Wnt-1 regulation of connexin43 in cardiac myocytes. J. Clin. Invest,2000,105:161-171.
    33. Xiaoyu Liu, Wen Liu, Ling Yang, Beili Xia, Jinyan Li, Ji Zuo, and Xiaotian Li. Increased connexin 43 expression improves the migratory and proliferative ability of H9c2 cells by Wnt-3a overexpression. Acta Biochim Biophys Sin,2007,39:391-398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700