悬臂弯振换能器式圆筒型行波超声电机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声电机是最近三十年发展起来的一种新型的驱动器,其工作原理是利用压电陶瓷的逆压电效应,将材料的微观变形通过共振放大和摩擦运动转化成转子的宏观运动。由于超声电机具有结构简单、设计灵活、低速大转矩、响应快、无电磁干扰等优点,受到国内外研究者的广泛关注,其中对行波超声电机的研究最多,并且应用最广。
     本文介绍了一种新型结构的行波超声电机,采用夹心式弯振换能器对压电陶瓷产生的超声振动进行放大,通过悬臂将放大后的振动传递到定子圆筒上,定子圆筒上有起进一步振幅放大作用的齿,这些齿在定子圆筒产生的行波作用下,生成椭圆形轨迹,驱动转子产生宏观运动。本文介绍的行波超声电机具有以下特点:1、采用夹心换能器激发圆筒的弯振模态,能量密度高;2、将定转子之间的动态点面接触改为线面接触,增大接触面积,提高输出力;3、采用压电陶瓷的d33模式,可以提高机电转化效率。
     本文还设计了与圆筒型超声电机定子配套的圆柱形转子,该转子可以实现定子与转子之间预紧力的调节,可以对定子与转子之间的间隙自动补偿,解决了圆筒型超声电机工作时由于摩擦使得定子与转子之间产生间隙的问题。
     本文首先对换能器式圆筒型超声电机的基本结构进行介绍,并对圆筒型定子进行理论分析,推导出了弹性体中弯曲行波的方程,在理论层面验证该结构电机的可行性。接着本文以理论计算得到的初始结构参数为基础,采用有限元分析软件ANSYS10.0设计了振动模态相互匹配的圆筒型超声电机定子和换能器。然后在此基础上,对超声电机进行整体建模,通过模态分析,得到整个超声电机定子的模态振型和特征频率,然后通过瞬态分析,得到齿端质点的运动轨迹,在仿真层面上验证了该结构超声电机的可行性。
     在理论分析的基础上,制作了悬臂弯振夹心换能器式行波超声电机的实验样机,搭建了实验平台,测试了超声电机的机械输出性能,验证了该结构超声电机的可行性。并结合样机的制作过程和测试数据分析了影响电机运转的不利因素。
Ultrasonic motor (USM) is a new-style actuator developed in recent thirty years. With so many advantages such as simple structure, flexible design, low speed, high torque, quick response, and non-electro-magnetic interference, the USM has been attracting intensive attention at home and abroad and widely applied in many fields, especially the traveling wave USM.
     This paper introduces a new structure of traveling wave USM, using bending sandwich-type transducer amplify ultrasonic vibration generated by piezoelectric ceramic, then through the cantilever the amplified vibration was transferred to the stator cylinder. There are tooth on the stator cylinder, which can further amplify the vibration amplitude on the stator cylinder. On the effect of traveling wave generated on stator cylinder. These tooth produce ellipse trajectory and drive the rotor. Then the rotor produces macroscopic motion. The traveling wave USM described in this paper has the following characteristics: 1, using sandwich-type transducer excite the bending vibration mode of cylinder, have high energy density; 2, the point to surface dynamic contact between rotor and stator is replaced by line to surface dynamic contact. Enlarge the contact area, and increase the output power; 3, By using the d33 mode of piezoelectric ceramics, electromechanical conversion efficiency can be improved.
     This article also designed cylindrical rotor conformed with the cylinder stator, the rotor can adjust the preload between the stator and rotor, also automatic compensate the gap between the stator and rotor, to resolve the problems that there are gaps between the stator and rotor during the USM is working.
     This article first introduces the basic structure of cylinder USM using sandwich-type transducer. Derived bending traveling wave equation in elastic objects, theoretically verify the feasibility of this type of motor structure. Then on the basis of initial structural parameters generated by theoretical calculation, this paper use the finite element analysis software ANSYS10.0 design the cylinder-type USM stator and the transducer have matched vibration mode. On this basis, Create the overall model of ultrasonic motors. By modal analysis, get the mode shape and the characteristic frequency of USM stator, and then by transient analysis, get the trajectory of tooth. Verify the feasibility of this type of USM structure in the simulation level.
     On the basis of theoretical analysis, manufacture the prototype of cantilever-bending-vibration-sandwich-transducer-type traveling wave USM, built an experimental platform to test the performance of ultrasonic motor's mechanical output, to verify the feasibility of this structure of USM. Combined with prototype production process and test data, analyze the adverse factors affecting motor functioning.
引文
1赵淳生.21世纪超声电机技术展望.振动、测试与诊断.2000.20(1):7~11
    2 K.Uchino Piezoelectric Ultrasonic Motors:Overview. Smart Mater. Structure 1998,(7):173-285
    3 Wang J, Guo JF. Development of a Radial-Torsional Vibration Hybrid Type Ultrasonic Motor with a Hollow and Short Cylindrical Structure. IEEE transactions on ultrasonics ferroelectrics and frequency control, 2009,56(5): 1054~1058
    4赵淳生,朱华.超声电机技术的发展和应用.机械制造与自动化, 2008,(03)
    5林华,洪尚任,翁志刚,林星陵.纵扭复合型超声波电机的结构设计与实验.装备制造技术, 2008,(11)
    6时运来,金家楣,赵淳生.单相激励旋转步进超声电机原理.光学精密工程, 2009,(02)
    7卢亚萍,孟繁琴,姜开利,袁云龙.超声电机研究现状.微电机. 2005,38(5):75~77
    8 Ueha S, Tomikawa Y. Ultrasonic Motors:Theory and Application. Claren-don Press, Oxford,1993,4(24):5~7
    9朱美玲,金龙,赵淳生.行波超声电机传动机理的研究(一)――运动传动机理、定子中行波存在条件.振动、测试与诊断.1996,16(4):7~14
    10 R.Inaba,.A.Tokushima,O.Kawasaki..Piezoelectric.Ultrasonic.Motor.Proceedings of IEEE Ultrasonics Symposium. 1987:747~756
    11伊势悠纪彦.超音波モ―タ.日本音响学会誌.1987,43(3):184~188
    12赵淳生,李朝东.日本超声电机的产业化、应用和发展.振动.测试与诊断.1999,(1):1~5
    13 S. Ueha. Present State of the Art of Ultrasonic Motors. Japanese Journal of Applied Physics. 1989, 28(3):34~37
    14 K. Nakamura, M. Kurosawa and S. Ueha. Characteristics of a Hybrid Transducer-Type Ultrasonic Motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1991, 38(3): 188~193
    15 K. Nakamura, J. Margairaz, T. Ishii and S. Ueha. Ultrasonic Stepping Motor Using Spatially Shifted Standing Vibrations. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1997, 44(4): 823~828
    16 J. R. Friend, J. Satonobu, K. Nakamura, S. Ueha and D. S. Stutts. A Single-Element Tuning Fork Piezoelectric Linear Actuator. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2003, 50(2): 179~186
    17 J. Satonobu, J. R. Friend, K. Nakamura and S. Ueha. Numerical Analysis of the Symmetric Hybrid Transducer Ultrasonic Motor. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2001, 48(6): 1625~1631
    18 Y. Tomikawa, M. Yaginuma, S. Hirose and T. Takano. Equivalent Circuit Expression of an Ultrasonic Motor and Measurement of Its Elements. In the Case of L1-B8 Multimode Rectangular Thin-Form Motor. Japanese Journal of Applied Physics. 1991, 30(9B): 2398~2401
    19 Y. Tomikawa, M. Yaginuma, S. Hirose and T. Takano. An Equivalent-Circuit Expression of an Ultrasonic Motor and Measurement of Its Elements - in the Case of L1-B8 Multimode Rectangular Thin-Form Motor. Japanese Journal of Applied Physics. 1991, 30(9B): 2398-2401
    20 Y. Tomikawa, T. Takano and H. Umeda. Thin Rotary and Linear Ultrasonic Motors Using a Double-Mode Piezoelectric Vibrator of the First Longitudinal and Second Bending Modes. Japanese Journal of Applied Physics. 1992, 31(9B): 3073~3076
    21 Y. Tomikawa, K. Adachi, M. Aoyagi, T. Sagae and T. Takano. Ultrasonic Motors Using Longitudinal and Torsional Modes of a Rod Vibrator. Japanese Journal of Applied Physics. 1990, 29: 188~190
    22 C. Kusakabe, Y. Tomikawa, T. Takano and M. Aoyagi. Waveform of Driving Pulse Train to Prevent Metallic Sound of Ultrasonic Motors. Japanese Journal of Applied Physics. 1993, 32(5B): 2408~2411
    23 M. Aoyagi, S. P. Beeby and N. M. White. A Novel Multi-Degree-of-Freedom Thick-Film Ultrasonic Motor. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2002, 49(2): 151~158
    24 M. Aoyagi, T. Nakajima, Y. Tomikawa and T. Takano. Examination of Disk-Type Multidegree-of-Freedom Ultrasonic Motor. Japanese Journal of Applied Physics 2004, 43(5B): 2884~2890
    25 T. Takano, Y. Tomikawa and C. Kusakabe. Operating Characteristics of a Same-Phase Drive-Type Ultrasonic Motor Using a Flexural Disk Vibrator. Japanese Journal of Applied Physics. 1999, 38(5B): 3322~3326
    26 T. Takano, Y. Tomikawa, M. Aoyagi and C. Kusakabe. Transient-Response Characteristics of a Same-Phase Drive-Type Ultrasonic Motor. Japanese Journal of Applied Physics. 1994, 33(9B): 5370-5373
    27 T. S. Glenn. Mixed-Domain Performance Model of the Piezoelectric Traveling-Wave Motor and the Development of a Two-Sided Device. Massachusetts Institute of TechnologyDoctor Thesis. 2002.
    28 N. W. Hagood and A. J. Mcfarland. Modeling of a Piezoelectric Rotary Ultrasonic Motor. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1995, 42(2): 210~224
    29 B. Koc, P. Bouchilloux and K. Uchino. Piezoelectric Micromotor Using a Metal-Ceramic Composite Structure. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2000, 47(4): 836~843
    30 S. X. Dong, S. P. Lim, K. H. Lee, J. D. Zhang, L. C. Lim and K. Uchino. Piezoelectric Ultrasonic Micromotor with 1.5 Mm Diameter. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2003, 50(4): 361~367
    31 S. Cagatay, B. Koc and K. Uchino. A 1.6-Mm, Metal Tube Ultrasonic Motor. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2003, 50(7): 782~786
    32 S. X. Dong, J. D. Zhang, H. W. Kim, M. T. Strauss, K. Uchino and D. Viehland. Flexural Traveling Wave Excitation Based on Shear-Shear Mode. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2004, 51(10): 1240~1246
    33 S. Manuspiya, P. Laoratanakul and K. Uchino. Integration of a Piezoelectric Transformer and an Ultrasonic Motor. Ultrasonics. 2003, 41(2): 83~87
    34 J. Wallaschek. Piezoelectric Ultrasonic Motors. Journal of Intelligent Material Systems and Structures. 1995, 6(1): 71~83
    35 J. Wallaschek. Contact Mechanics of Piezoelectric Ultrasonic Motors. Smart Materials & Structures. 1998, 7(3): 369~381
    36 P. Hagedorn, J. Wallaschek and W. Konrad. Traveling-Wave UltrasonicMotors, .2. A Numerical-Method for the Flexural Vibrations of the Stator. Journal of Sound and Vibration. 1993, 168(1): 115~122
    37 P. Hagedorn and J. Wallaschek. Traveling-Wave Ultrasonic Motors- Working Principle and Mathematical-Modeling of the Stator. Journal of Sound and Vibration. 1992, 155(1): 31~46
    38 O. Vyshnevskyy, S. Kovalev and J. Mehner. Coupled Tangential-Axial Resonant Modes of Piezoelectric Hollow Cylinders and Their Application in Ultrasonic Motors. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2005, 52(1): 31~36
    39 E. Vyshnevskyy, S. Kovalev and W. Wischnewskiy. A Novel, Single-Mode Piezoceramic Plate Actuator for Ultrasonic Linear Motors. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2005, 52(11): 2047~2053
    40 A. Ferreira. Optimized Friction Drive Controller for a Multi-Dof Ultrasonic Nanopositioner. IEEE-Asme Transactions on Mechatronics. 2004, 9(3): 481~490
    41 L. Petit and P. Gonnard. Industrial Design of a Centimetric "Twila" Ultrasonic Motor. Sensors and Actuators a-Physical. 2005, 120(1): 211~224
    42 L. Petit and P. Gonnard. Inter-Phases Mechanical Coupling in Ultrasonic Motors. Sensors and Actuators a-Physical. 2004, 116(3): 492~500
    43 P. Minotti, P. LeMoal, L. Buchaillot and A. Ferreira. Traveling Wave Ultrasonic Motors .1. Modeling of the Mechanical Energy Transduction at the Stator/Rotor Interface. Journal De Physique Iii. 1996, 6(10): 1315~1337
    44 J. F. Manceau and F. Bastien. Production of a Quasi-Traveling Wave in a Silicon Rectangular Plate Using Single-Phase Drive. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1995, 42(1): 59~65
    45 F. Giraud, B. Semail and J. T. Audren. Analysis and Phase Control of a Piezoelectric Traveling-Wave Ultrasonic Motor for Haptic Stick Application. IEEE Transactions on Industry Applications. 2004, 40(6): 1541~1549
    46上羽贞行,富川义郎著.超声电机理论与应用.杨志刚,郑学伦译.上海科学技术出版社, 1998
    47陈超,曾劲松,朱华,赵淳生.微型行波超声电机定子的参数优化设计.中国机械工程, 2009,(05)
    48时运来,李玉宝,赵淳生.面内模态直线型超声电机的优化设计.中国电机工程学报, 2008,(30)
    49 C. S. Zhao, Z. R. Li and W. Q. Huang. Optimal Design of the Stator of a Three-Dof Ultrasonic Motor. Sensors and Actuators a-Physical. 2005, 121(2): 494~499
    50 Zhihua Chen, Chunsheng Zhao and Weiqing Huang. An Effective Frequency Tracking Control and Balancing Compensation between Cw and Ccw Rotation Speed Techniques for Ultrasonic Motor. IEEE Ultrasonics Symposium. Montreal, Que., Canada, 2004: 2251~2254
    51周铁英,董蜀湘,刘小萍,李龙土,张孝文.超声振子箝位压电直线微动马达研究.声学学报(中文版). 1993, 18(1): 30~32
    52 T. Zhou, L. Y. Chai, C. X. He, Y. B. He and A. X. Kuang. A Standing Wave Type Ultrasonic Motor. Ferroelectrics. 1999, 232(1-4): 1133~1137
    53 T. Y. Zhou, K. Zhang, Y. Chen, H. Wang, J. G. Wu, K. L. Jiang and P. Xue. A Cylindrical Rod Ultrasonic Motor with 1 Mm Diameter and Its Application in Endoscopic Oct. Chinese Science Bulletin. 2005, 50(8): 826~830
    54陈宇,刘庆利,周铁英.大力矩行波超声电机的性能.清华大学学报(自然科学版). 2006, 46(3): 396~398
    55郝铭,陈维山,刘军考,赵学涛.环形行波超声电机的分析与设计.微特电机, 2007,(6): 13~15
    56陈维山,石胜君,赵学涛,李霞.用于机床进给系统的双向驻波直线超声电机.组合机床与自动化加工技术.2007,(7): 39~42
    57 J. F. Guo, S. J. Gong, H. X. Guo, X. Liu and K. H. Ji. Force Transfer Model and Characteristics of Hybrid Transducer Type Ultrasonic Motors. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2004, 51(4): 387~395
    58丁敬,周广睿,傅平,郭吉丰.基于dsp的超声波电机瞬态特性测试系统.机电工程. 2006, 23(7): 15~17
    59向馗,郭吉丰,蒋静坪.基于hht的超声电机噪声源分析.振动工程学报. 2005, 18(2): 200~203
    60郭吉丰,傅平.多自由度球形超声波电机的研究进展.电工电能新技术. 2005, 24(2): 65~68
    61赵炎彤.超声波马达的研究.哈尔滨工业大学硕士论文. 1993
    62 S. Y. He, W. S. Chen and Z. L. Chen. A Uniformizing Method for the Free Vibration Analysis of Metal-Piezoceramic Composite Thin Plates. Journal of Sound and Vibration. 1998, 217(2): 261~281
    63 F. Zhang, W. S. Chen, J. A. Liu and Z. S. Wang. Bidirectional Linear Ultrasonic Motor Using Longitudinal Vibrating Transducers. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2005, 52(1): 134~138
    64赵学涛,陈维山,刘军考.三种基于夹心换能器驱动的球形超声马达设计.组合机床与自动化加工技术. 2006, 7): 11~14
    65颜佳佳,阮新波,李华峰,黄卫清,赵淳生.超声电机的软开关驱动电路.中国电机工程学报, 2009,(03):85~91
    66 Roytamn, O. trrova. An Analytical Approach to Determining the Dynamic Characteristics of a Cylindrical Shell with Closing Cracks. Journal of Sound and Vibration. 2002, 254(2):379~386
    67 I.A.Jones. Flugge Shell Theory and Solution for Orthotropic Cylinrical Shells under Pinching Loads. Composite Structure. 1998, Vol. 42:53~72
    68王志松.夹心换能器式超声波马达研究.哈尔滨工业大学硕士论文. 2004:9
    69林仲茂.超声变幅杆的原理与设计[M].北京:科学出版社. 1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700