基于超磁致伸缩的小型超精密尺蠖直线电机的设计及实现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的飞速发展,尤其在精密光学工程、半导体制造、超精密微细加工与测量技术、航空航天技术等诸多尖端科技领域,越来越需要一种高性能的精密直线驱动技术。本课题正是基于这种背景下提出了一种“小型超精密超磁致伸缩直线电机”。直线电机基于尺蠖运动原理,并以超磁致伸缩驱动器(Giant Magnetostrictive Actuator,GMA)为驱动核心元件。本文以直线电机为研究目标,从基础理论、结构设计与优化分析、实验测试及相关控制技术几方面进行了系统的研究。
     第一章首先介绍了直线电机的特点与分类,并对新型直线驱动技术的发展做了归纳,而后简述了超磁致伸缩材料的特性与磁滞模型及尺蠖直线电机的原理与分类。
     第二章首先给出了小型尺蠖直线电机的设计要求,并依据设计要求阐述了电机的总体结构方案设计、中间推动部分与箝位机构的方案设计以及导轨方案设计,并对GMA进行详细设计。
     第三章描述了直线电机的关键部件——箝位机构中的杠杆型柔性位移放大机构和中间推动部分桥式柔性位移放大机构的详细设计、优化分析与实验验证。
     第四章根据超磁致伸缩直线电机的机械结构和超磁致伸缩材料的材料特性建立了电机的动力学模型,并利用MATLAB/SIMULINK软件实现了电机在变幅值和变频率的输入信号激励下的仿真研究。
     第五章首先介绍了实验设备与原理以及实验平台的搭建情况。而后介绍了直线电机的实验测试,主要测试了直线电机的速度特性、运动分辨率以及往返复位情况,并对实验数据进行了分析。
     第六章在前文所建立的动力学模型和实验测试所得数据的基础上,提出了实现超磁致伸缩直线电机精密定位的控制方法,进行了单步跨距控制实验,最后分析了影响定位精度的相关因素。
     第七章对全文的工作内容进行总结,并对后续研究进行展望。
With the development of modern science and technology, there is an increasing demand for active-materials-drive linear motor in the cutting-edge field of precision optical engineering, semiconductor manufacturing, super precision microfabrication and measuring technology and astronautic industries in nowadays. In this background, this thesis presents a magnetostrictive inchworm linear motor which has the potential to secure a long stroke with mini size and nano-metric positioning. The design of the magnetostrictive inchworm linear motor is based on inchworm motion principle and giant magnetostrictive actuators (GMA). In this thesis, the research on the linear motor includes basic theory, structural design and optimum analysis, experiments and control system of the motor.
     Chapter 1 introduces the characteristics and classification of linear motor and summarizes the development of the technology of linear driver technology. and then briefly describe the characteristics and hysteresis model of giant magnetostrictive material and principle and the classification of inchworm linear motor.
     Chapter 2 raises the design requirements of the mini giant magnetostrictive inchworm linear motor firstly, then recounts scheme of the global motor, the pushpart, clamping mechanism and the guiderail of the motor system and presents the detail design of GMA.
     Chapter 3 introduces the detail design, optimization and experimental verification of the critical parts of the motor, which are the lever-type flexible displacement amplification mechanism (DAM) of clamping part and the bridge-type flexible DAM of push part.
     Chapter 4 establishes the dynamic model of the magnetostrictive inchworm linear motor according to the motor's mechanical structure and characteristic of GMM. The model may be used to simulate the dynamic motion of the linear motor on input signals at different amplitudes and different frequency. The simulating results will be used to compare with the experimental results and to do locomotion analysis of the general motor system.
     Chapter 5 introduces the experimental facilities and the setup of the experimental platform firstly, then the speed performances, positioning resolutions and reset states of backwards and forwards are checked with experimental tests and the experimental data are analyzed at the end of the chapter.
     Chapter 6 presents the tests based upon the research work in chapter 4 and in chapter 5, and a step-span positioning closed loop control system is created in an attempt to realize the nano-metric positioning. The related experiments are carried out and the positioning error is discussed.
     Chapter 7 summarizes main work of the thesis, and discusses the further researches finally.
引文
[1]叶云岳.直线电机技术的研究发展与应用综述
    [2]叶云岳.国内外直线电机技术的发展与应用综述[J].电器工业, 2003, (1): 12~16.
    [3]叶云岳.直线电机原理与应用[M].机械工业出版社, 2000.
    [4]王伟进.直线电机的发展与应用概述[J].微电机, 2004, 37(1): 45~50.
    [5]张春良,陈子辰,梅德庆.直线电机驱动技术的研究现状与发展[J].农业机械学报, 2002, 33(5): 119~123.
    [6]叶云岳.现代驱动技术与智能化系统[M].浙江大学出版社, 2001.
    [7]杨亲民.智能材料—传感器与传感器技术、材料的发展方向[J].传感器世界. 1999(04)
    [8]卢全国. GMM的发展现状及其在精密致动器件中的应用[J].湖北工业大学学报, 2006, 21(3): 92~94.
    [9]王传礼. GMM在机械电子工程中的应用研究现状[J].电子机械工程, 2002, 18(4): 1~8.
    [10]杨斌堂.上海浦江人才(10778620)项目“重载微型超磁致伸缩直线电机”项目申请书, 2007.
    [11]金家楣,时运来,李玉宝,赵淳生.新型惯性式直线超声压电电机的运动机理及实验研究[J].光学精密工程. 2008(12)
    [12]于云霞,李文卓.一种大推力的蠕动式压电直线电机[J].微特电机. 2001(05)
    [13]王凤翔,张庆新,吴新杰,李文君,井路生.磁控形状记忆合金蠕动型直线电机研究[J].中国电机工程学报. 2004(07)
    [14] Calkins, F. T., Smith, R.C, Flatau, A.B. Energy-Based Hysteresis Model for Magnetostrictive Transducers[J]. IEEE Trans. Magn., 2000, 36(5): 429~439.
    [15] Kiesewetter, L. The application of Terfenol in linear motors[C]. Proceedings 2nd. International Conference Giant Magnetostrictive Alloys. Marbella, Spain: 1988.
    [16] Goldie, J. H., Gerver, M. J., Kiley, J. E. et al. Observations and theory of Terfenol-D inchworm motors[C]. Smart Structures and Materials 1998: Smart Structures and Integrated Systems. San Diego, CA, USA: SPIE, 1998. 780~785.
    [17] Kim, W. J, Sadighi, A. Design and Relay-Based Control of a Novel Linear Magnetostrictive[C]. American Control Conference. St. Louis, MO, USA: 2009.3482~3487
    [18]周寿增,梅武,唐伟忠.铸态Tb0.27Dy0.73Fex合金的组织与磁特性[J].北京科技大学学报, 1993, 15(2): 159~163.
    [19] McKnight, G. P., Carman, G.P. Large Magnetostriction in Oriented Particle Terfenol-D Composites[C]. Proceeding of the ASME International Mechanical Engineering Congress and Exposition. New York, USA: 2001. 64: 321-326.
    [20] Joule, J. P. On A New Class of Magnetic Forces [J]. Ann. Electr. Magn. Chem, 1842, 8219~224.
    [21] Clark, A. E. , Bozorth, R.M., Desavage, B.F. Anomalous thermal expansion and magnetostriction of single crystals of dysprosium [J]. Physical Letter, 1963, 5(2): 100~102.
    [22] Rhyne, J. J. , Legvold, S. Magnetostriction of Tb Single Crystals [J]. Phys. Rev. A, 1965, 138:507~514.
    [23] Clark, A. E. , Belson, H.S. Giant Room-Temperature Magnetostriction in TbFe2 and DyFe2 [J]. Phys. Rev. B, 1972, 5:3642~3644.
    [24] Clark, A. E. Magnetic and magnetoelastic properties of highly magnetostrictive rare earth-iron laves phase compounds[C]. Proc. AIP Conf. 1974, 18: 1015~1029.
    [25]王博文.超磁致伸缩材料制备与器件设计[M].北京:冶金工业出版社, 2003.
    [26] Smith, R. C. Modeling techniques for magnetostrictive actuators[C]. Proceedings of SPIE. 1997. 3041: 243~253.
    [27] Krasnoselskii, M. A. , Pokrovskii, A.V. Systems with Hysteresis[M]. New York: Springer- Verlag, 1989.
    [28] Mayergoyz, I. D. , Frienman, G. Generalized Preisach Model of Hysteresis [J]. IEEE Transactions on Magnetics, 1988, 24(1): 212~217.
    [29] Torre, E. D. Preisach modeling and reversible magnetization[J]. IEEE transactions on Magnetics, 1990, 26(6): 3052~3058.
    [30] Mayergoyz, I. D. Vector Preisach hysteresis models[J]. Journal of Applied Physics, 1988, 63(8): 2995~3000.
    [31] Mayergoyz, I. D. Mathematical Models of Hysteresis[M]. New York: Springer- Verlag, 1991.
    [32] Restorff, J. B., Savage, H.T., Clark, A.E. Preisach modeling of hysteresis in Terfenol [J]. Journal of Applied Physics, 1990, 67(9): 5016~5018.
    [33] Xiaobo Tan, B., J .S. Modeling and control of hysteresis in magnetostrictive actuators [J]. Automatica, 2004, 40: 1469~1480.
    [34] Vecchio, P. D., Salvini, A. Neural Network and Fourier Descriptor Macromodeling Dynamic Hysteresis[J]. 2000, 36(4): 1249~1246.
    [35] Makaveev, D., Dupré,L., Wulf, D.M. Modeling of quasi-static magnetic hysteresis with feedforward neural networks[J]. J. Appl. Phys, 2001, 89(11): 6737~6739.
    [36] Jiles, D. C., Atherton, D. L. Ferromagnetic Hysteresis[J]. IEEE Trans. Magn., 1983, 19(5): 2183-2185.
    [37] Jiles, D. C., Atherton, D. L. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1986, 61(1-2): 48-60.
    [38] Jiles, D. C., Thoelke, J. B., Devine, M. K. Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis [J]. Magnetics, IEEE Transactions on, 1992, 28(1): 27~35
    [39] Sablik, M. J., Wun, H.K., Burkhardt, G.L. Model for the Effect of Tensile and Compressive Stress on Ferromagnetic Hysteresis[J]. Journal of Applied Physics, 1987, 61(8): 3799~3801.
    [40] Sablik, M. J. A Model for Asymmetry in Magnetic Property Behavior under Tensile and Compressive Stress in Steel[J]. IEEE Trans. Magn., 1997, 61(8): 3799~3801.
    [41] Calkins, F. T., Smith, R.C., Flatau, A.B. Energy-Based Hysteresis Model for Magnetostrictive Transducers[J]. IEEE Trans. Magn., 2000, 36(5): 429~439.
    [42] Smith, R. C., Dapino, M.J., Seelecke, S. Free energy model for hysteresis in magnetostrictive transducers[J]. Journal of Applied Physics, 2009, 93(1): 458~466.
    [43]田春,汪鸿振.超磁致伸缩执行器的自由能磁滞模型研究[J].声学技术, 2004, 23(21): 353~356.
    [44]田春,汪鸿振.超磁致伸缩执行器的自由能磁滞模型的优化算法研究[J].中国机械工程, 2005, 16(1): 24~27.
    [45]张江涛.面向仿人机器人的人工肌肉与关节研究[博士论文].合肥:中国科技大学, 2008.
    [46] Hsu, S. K. ,Albert, Blatter. Transducer:United States, 3292019[P]. 1966.
    [47] Taniguchi, T., Piezoelectric driving apparatus:United States, 4454441[P]. 1984.
    [48] Chen, Q., Yao, D.-J., Kim, C.-J. C. J. et al. Mesoscale actuator device: micro interlocking mechanism to transfer macro load [J]. Sensors and Actuators A: Physical, 1999, 73(1-2): 30-36.
    [49] Kim, J., Lee, J.-H. Self-moving cell linear motor using piezoelectric stack actuators [J]. Smart Materials and Structures, 2005, 14(5): 934~940.
    [50] Kwon, K., Cho, N., Jang, W. The Design and Characterization of a Piezo-Driven Inchworm Linear Motor with a Reduction-Lever Mechanism [J]. JSME
    [51] Salisbury, S. P., Waechter, D. F., Mrad, R. B. et al. Design considerations for complementary inchworm actuators [J]. IEEE-ASME Transactions on Mechatronics, 2006, 11(3): 265~272.
    [52]张兆成.新型压电尺蠖精密驱动器柔性机构分析与实验研究[博士论文].哈尔滨工业大学, 2010
    [53] Hong-Wen Maa, Shao-Ming Yaob, Li-Quan Wanga, Zhi Zhongb. Analysis of the displacement amplification ratio of bridge-type ?exure hinge Sensors and Actuators. A: Physical Volume 132, pp. 730-736, 2006.
    [54]许文秉超磁致伸缩直线电机的结构优化设计与控制研究[硕士论文].上海交通大学2011
    [55]邬义杰,刘楚辉.超磁致伸缩驱动器设计准则的建立[J].工程设计学报. 2004(04)
    [56]谭先涛.超磁致伸缩驱动器的优化设计研究[硕士论文].上海交通大学2010
    [57]林其壬,赵佑民.磁路设计原理.北京:机械工业出版社, 1987, 11
    [58] Clark A. Magnetostr ictive Rare Earth-Fe2 Compounds ,Ferromagnetic Materials ( Volume 1 ) [M ]. North-Holland Pub, Amsterdam, 1980
    [59] Engdahl G . Handbook of GiantMagnetostrictive Materials[M]. San Diego: Academic Press, 2000
    [60]杨斌堂,陶华, Bonis M, Prelle C, Lamarque F. Terfenol-D磁致伸缩微小驱动器磁路设计[J].机械科学与技术. 2005(03)
    [61]吴锡珑.大学物理教程.北京:高等教育出版社1999, 5
    [62]李团结.柔性机构与智能材料[J].压电与声光. 2004(03)
    [63]于靖军.全柔性机器人机构分析及设计方法研究.北京航空航天大学博士学位论文, 2002:p35~44
    [64]于志远,姚晓先,宋晓东.基于柔性铰链的微位移放大机构设计[J].仪器仪表学报. 2009(09)
    [65] Xu Wu,King T.Flexure hinges for piezoactuator displacement amplifiers: flexibility, accuracy, and stress onsiderations [J]. Precision Engineering, 1996, 19:4~10.
    [66] Tian, Y. and B. Shirinzadeh, et al. (2009). Development and dynamic modelling of a flexure-based Scott–Russell mechanism for nano-manipulation. Mechanical Systems and Signal Processing 23 (3): 957-978.
    [67] Yuen, K. Y. and S. S. Aphale, et al. (2009). Design, Identification, and Control of a Flexure-Based XY Stage for Fast Nanoscale Positioning. Nanotechnology, IEEE Transactions on 8 (1): 46-54.
    [68]庄茁等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.1
    [69]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.6
    [70] B.J. Pokines, E. Garcis, A smart material microamplification mechanism fabricated using LIGA, Smart Mater. Struct. 7 (1998) 105–112.
    [71] J.H. Kim, S.H. Kim, Y.K. Kwak, Development of a piezoelectric actuator using a three-dimensional bridge-type hingemechanism, Rev. Sci. Instrum.74 (2003) 933–956.
    [72]杜习波.基于三角放大原理的压电型精密定位机构研究[硕士论文].河南理工大学, 2009
    [73]张兆成.新型压电尺蠖精密驱动器柔性机构分析与实验研究[博士论文].哈尔滨工业大学, 2010
    [74] N.Lobontiu. Compliant Mechanisms: Design of Flexue Hinges. CRC Press. 2003
    [75]贝克(Anton van Beek),刘传军.现代机械工程设计:全寿命周期性能与可靠性.清华大学出版社, 2010, 12
    [76]刘德忠等,柔性铰链放大器的设计与加工技术.北京工业大学学报, 2001, 02: p161-p163.
    [77] Jiles, D. C., Atherton, D. L. Ferromagnetic Hysteresis[J]. IEEE Trans. Magn., 1983, 19(5): 2183-2185.
    [78] Jiles, D. C., Atherton, D. L. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1986, 61(1-2): 48-60.
    [79] Jiles, D. C., Thoelke, J. B., Devine, M. K. Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis [J]. Magnetics, IEEE Transactions on, 1992, 28(1): 27~35
    [80] Jiles, D.C. Introduction to Magnetism and Magnetic Materials[M]. New York: Chapman and Hall, 1991.
    [81]曹淑瑛.超磁致伸缩致动器的磁滞非线性动态模型与控制技术[博士论文].天津:河北工业大学, 2004.
    [82]李立京,李醒飞,张国雄,李真.电梯轿厢水平振动模型[J].起重运输机械. 2002(05)
    [83]徐彭有.超磁致伸缩驱动器精密位移驱动控制研究[硕士论文].上海:上海交通大学, 2010.
    [84]李英雄.超磁致伸缩爬行电机的设计与仿真[硕士论文].天津:河北工业大学, 2004
    [85]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,1998
    [86]黄战华,蔡怀宇.三角法激光测量系统的误差分析及消除方法[J].光电工程, 2002, 29(3): 58~61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700