高速TIADC并行采样系统综合校正技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电子信号复杂性、特别是宽带和非平稳特性的增长极为迅速,以扫频为主的频域测试仪器从测量原理上难以满足宽带、瞬态信号的实时测试要求。以数字示波器为代表的、基于实时采样的时域仪器正在成为现代电子测试技术的主流发展趋势,孕育着电子仪器体系和测量方法的重要变革。
     高速率高精度采样已经成为现代时域测试仪器的瓶颈问题。采样速率、采样精度越高,可采集的模拟信号带宽越宽,对信号的还原能力越强。虽然近几年单片模数转换器件(analog-to-digital converter,ADC)的采样速率有了很大提高,仍然难以同时兼顾高速与高精度。ADC时间交替(Time-interleaved ADC,TIADC)并行采样技术是在现有器件条件下,最大限度提高实时采样率,并保持采集精度的最有效方法之一,可以突破ADC以及相关器件工作速度的限制,实现超高速数据采集系统。
     然而,TIADC并行采样技术依赖于各通道间参数的精确匹配。由于各通道ADC之间的增益和偏置难以达到严格一致,各通道间的采样时钟相位延时也难以准确无偏,这将导致采样信号非均匀,严重降低了系统性能。如何使用数字信号处理方法实现通道失配误差的估计和校正是本文的研究重点。结合攻读博士学位期间参与的国家自然科学基金研究项目,着眼于宽带并行采样数字存储示波器等高性能时域测试仪器实现技术,本文主要从如下几个方面展开了深入的研究:
     (1)TIADC并行采样系统行为模型的建立。根据TIADC并行采样系统的基本结构与原理,建立了基于Matlab的TIADC采样系统行为模型,深入分析了系统误差来源和非均匀信号频谱特性,推导了性能指标的计算公式,给出了通道失配误差对ADC系统性能的影响。指导并行采样性能的分析以及非均匀误差估计和校正算法的设计。
     (2)通道失配盲估计方法。根据通道采样数据的统计特性,分别提出了基于迭代盲估计和极大似然估计的时基误差估计算法。研究了通道失配误差的特点,建立了通道失配误差自适应综合估计模型,分别给出了频域和时域自适应估计算法。其中,针对不同的应用情况,基于时域的自适应综合估计算法又分为线性插值(Linear Interpolation, LI)估计和分数延时(Fractional Delay,FD)估计两种估计算法。应用自适应算法,综合考虑三种误差的影响,一次性实现三种通道失配误差的估计。
     (3)非均匀信号综合重构方法。首先,给出了离散Fourier变换多通道分解方法,通过较少的运算量实现了基于频域的多通道时基误差频谱重构算法。其次,基于LI重构和FD重构,提出了两种时域综合校正算法,同时解决幅度和时基非均匀校正问题,提高了系统性能,并对比了两种算法的校正效果,讨论了两种算法的适用情况,评价了校正前后的系统性能指标。提出了新的FD滤波器约束准则,给出了优化设计方法。
     (4)实际2GSa/s双通道TIADC并行采集系统验证。给出了应用两片ADC(AT84AD001: 1GSa/s、8Bit)实现一套双通道、采样率为2GSa/s的高速TIADC并行采样数字存储示波器系统实例;利用数字后端处理系统,基于FPGA实现了经优化设计的FD滤波器,以及通道失配误差综合校正;分别对频率为10MHz和150MHz的正弦信号进行测试,实现了非均匀信号的重构,评估了采集系统的技术指标,取得了较好的实验结果,验证了算法的有效性和可行性。
The rapid growth of modern electronic signal’s complication, especially the wide band and non-stationary characteristics, makes it very difficult for the traditional frequency-domain sweep test to meet the test requirements of broad-band and transient signal. The time-domain test measurements based on real-time sampling, as represented by digital oscilloscope, are becoming the mainstream of electronic instrumentations’development, and also gestating an important transformation of electronic instrumentation systems.
     The dependence on sampling rate and sampling accuracy has already become the bottleneck of modern time-domain test instruments. Higher sampling speed and sampling precision mean that the instrument could sample wider-band signal and have stronger signal reconstruction ability. Although the monolithic ADC has achieved a remarkable sampling speed in recent years, it is still hard to guarantee high sampling speed and high sampling accuracy simultaneously. Due to the restriction of electronic device as well as manufacture technique, the most effective method to acquire high sampling speed as much as possible and maintain sampling precision, is to build Time-interleaved parallel sampling system.
     However, Time-interleaved parallel sampling technique relies on the exact matching of channels. Unfortunately, it is tough to achieve strict identicalness of gain and offset among various channels and synchronize of sampling clock’s phase delay accurately. All of these problems will result in signal nonuniform sampling and degrade the system’s performance seriously. How to use digital signal processing method to calibrate the sampling signal is the emphasis of this dissertation. Combining with two research projects granted by National Natural Science Foundation of China, and focusing on the high performance time-domain test instruments such as wide-band parallel sampling digital storage oscilloscope and so on, this dissertation mainly does some thorough research on the following aspects:
     (1) Time-interleaved parallel sampling system behavioral model establishment. Through the analysis of Time-interleaved parallel sampling system’s basic structure and principle, this dissertation established Time-interleaved parallel sampling system’s behavioral model based on Matlab, profoundly analyzed the origination of channel mismatches and the nonuniform signal frequency spectrum characteristic, and deduced the computation of ADC system performance.
     (2) Channel mismatches blind estimation method. Based on channel sampling data statistics, this dissertation proposed two time skew error estimation algorithms using the adaptive blind estimation and the maximum likelihood correlation estimation method. Based on channel mismatches characteristic, the channel mismatches self-adaptive synthesis estimation model was established. This dissertation gave self-adaptive time skew error estimation algorithm based on frequency domain. For different applications of input frequency, it also gave two self-adaptive synthesis estimation algorithms based on time domain, which were the linear interpolation and the fractional interpolation estimation method. Taking the influence brought by three kinds of channel mismatches in consider, these methods carried on self-adaptive mismatches synthesis estimation at one time.
     (3) Nonuniform signal reconstruction method. First, using Fourier analysis capability provided by most time-domain measuring instruments, this dissertation proposed a multi-channel frequency spectrum reconstruction method based on frequency-domain processing. Second, the linear interpolation method and the fractional interpolation method were applied to time-domain signal reconstruction, and channel mismatches were solved simultaneously. By contrasting their reconstruction effects, we gave the condition of these two time-domain reconstruction algorithms, and evaluated the system performance. And new fractional interpolation filter criterion and optimization design method were proposed.
     (4) 2GSa/s two-channel Time-interleaved parallel sampling system application. A practical two-channel ADC parallel sampling digital storage oscilloscope system based on two ADCs(AT84AD001: 1GSa/s、8Bit) Time-interleaved sampling technology was introduced. Using flexible FPGA post signal processing, this system realized the FD filter and the real-time mismatches synthesis calibration. 10MHz and 150MHz sinusoidal signals were applied to confirm the performance separately, and the evaluation of the system performance has verified the validity and feasibility of synthesis algorithm.
引文
[1]田书林.基于数字采样的高速波形产生与获取技术研究:[博士学位论文].成都:电子科技大学,2009.
    [2] Robert H W. Analog-to-Digital Converter Survey and Analysis. IEEE Journal on selected areas in communications, 1999, 17(4): 539-550
    [3] Le B, Rondeau T W. Analog-to-Digital Converters. IEEE Signal Processing Magazine. 2005:69-78.
    [4] Black W C, Hodges D A. Time interleaved converter arrays. IEEE Journal of Solid-State Circuits, 1980, 15(6):1022-1029.
    [5] Lowenborg P, Johansson H, Wanhammar L. A class of two-channel approximately perfect reconstruction hybrid analog/digital filter banks. The 2000 IEEE International Symposium on Circuits and Systems, 2000 :579-582.
    [6] S R Velazques,T Q Nguyen,R Broadstone. Design of hybrid filterbanks for analog/ digital conversion .IEEE Transactions on Signal Processing,1998, 46 (4):956-967.
    [7]王洪.宽带数字接收机关键技术研究及系统实现:[博士学位论文].成都:电子科技大学,2007.
    [8] Schiller C, Byrne P. A 4GHz 8-bit ADC system. IEEE Journal of Solid-state Circuit. 1992, 12(11):1781-1789
    [9] Montijo A, Rush K. Accuracy in interleaved ADC systems. Hewlett-Packard Journal, 1993: 36-42
    [10] K. Poulton, et aL, A 20GS/s 8-b ADC with a 1MB Memory in 0.18mm CMOS. IEEE International Conference on Solid State Circuits, Feb 2003, pp. 318-319
    [11] ADC08D1500 data sheet. http://www.national.com/pf/DC/ADC08D1500.html#Overview
    [12] Max101A data sheet. A http://china.maxim-ic.com/quick_view2.cfm/qv_pk/1448/t/al
    [13] AD12400 data sheet. www.analog.com
    [14] Alegria F C, Serra A C. Precision of ADC gain and offset Error estimation with the standard histogram Test. The 2005 IEEE Instrumentation and Measurement Technology Conference, 2005, (1): 282-286.
    [15] Jenq Y C. Digital spectra of nonuniformly sampled signals: fundamentals and high-speed waveform digitizers. IEEE Transactions on Instrumentation and Measurement, 1988, 37(2): 245-251.
    [16] Vogel C. The Impact of Combined Channel Mismatch Effects in Time-Interleaved ADCs. IEEE Transactions on Instrumentation and Measurement, 2005,54(1):415-427.
    [17] Kurosawa N, Kobayashi H. Channel linearity mismatch effects in time-interleaved ADC systems. The 2001 IEEE International Symposium on Circuits and Systems, 2001, (1):420-423.
    [18] Mitra S K, Petraglia A. Analysis of mismatch effects among A/D converters in a time-interleaved waveform digitizer. IEEE Transactions on Instrumentation and Measurement, 1991, 40(5): 831-835.
    [19] Jenq Y C. Digital Spectra of Nonunifomly Sampled Signals: Theory and Applications --Measuring Clock/Aperture Jitter of an A/D System. IEEE Transactions on Instrumentation and Measurement, 1990, 39(6): 969-971.
    [20]林茂六,黄汉萍,初仁辛.非均匀取样周期信号时间偏差估计算法研究.电子学报,1997, 25(9):89-91.
    [21] Jenq Y C. Digital spectra of nonuniformly sampled signals: a robust sampling time offset estimation algorithm for ultra high-speed waveform digitizers using interleaving. IEEE Transactions on Instrumentation and Measurement, 1990, 39(1): 71-75.
    [22] Jin H, Lee E K F. A digital-background calibration technique for minimizing timing-error effects in time-interleaved ADCs. IEEE Transactions on Circuits and Systems, 2000, 47(7):603-613.
    [23] John P D, Soulders T M, Solomon O M, et al. Bounds on Least-squares Four-parameter Sine-fit Errors Due to Harmonic Distortion and Noise. IEEE Transactions on Instrumentation and Measurement, 1995, 44(3): 637-642.
    [24]梁志国,朱济杰.数据采集系统通道间延迟时间差的精确评价.仪器仪表学报,1999, 20(61):619-623.
    [25] Elbornsson J, Gustafsson F, Eklund J E, et al. Blind adaptive equalization of mismatch errors in a Time-Interleaved converter system. IEEE Transactions on Circuits and Systems, 2004, 51(1): 151-158.
    [26]张昊,师奕兵,王志刚.时间交替ADC系统的一种动态误差补偿方法.仪器仪表学报, 2009, 30(11):2279-2284.
    [27] Huang L, Lin B Y, Zhang S D. A Digital-Background TIADC Calibration Architecture and a Fast Calibration Algorithm for Timing-Error Mismatch. The 2007 International Conference on ASIC, 2007, (1): 253-256.
    [28] Knapp C, Carter G. The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics Speech and Signal Processing, 1976, 24(4):320-327.
    [29]邱天爽,王琏.广义相关时间延迟估计的自适应实现.海洋技术, 1994,13(4):20-31.
    [30] Raghuveer M R, Nikias C L. Bispectrum estimation: A digital signal processing framework. Proceedings of the IEEE, 1987, 75(7):869-891.
    [31] Mori F, Distefano J J. Optimal nonuniform sampling interval and test input design for identification of physiological system from very limited data. IEEE Transactions on Automatic Control, 1979, 22(4): 893-900.
    [32] Dela S M, Dormido S. Nonperiodic sampling and identifiability. Electronics Letters, 1981, 17(24):922-924.
    [33] Ehrenberg J E, Ewatt T E, Morris R D. Signal processing techniques for resolving individual pulses in multipath signal. Journal of the Acoustical Society of America, 1978, 63(6):1861-1865.
    [34] Camarero D, Naviner J F, Loumeau P. Digital background and blind calibration for clock skew error in time-interleaved analog-to-digital converters. The 2004 Symposium on Integrated Circuits and Systems Design, 2004:228-232
    [35] Feder M, Weinstein E. Parameter estimation of superimposed signals using the EM algorithm. Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(4):477-489.
    [36] Pereira J M, Silva, P M B, Serra A M C. An FFT - based Method to Evaluate and Compensate Gain and Offset Errors of Interleaved ADC Systems. IEEE Transactions on Instrumentation and Measurement, 2004, 53(2): 423- 430.
    [37]解本钊,林茂六,权太范.另一类幅度非均匀取样信号的数字频谱及补偿算法研究.高技术通讯,2001,11:27-30.
    [38] Dyer K C, Fu D, Lewis S H, et al. An analog background calibration technique for time-interleaved analog-to-digital converters. IEEE Journal of Solid-State Circuits, 1998, 33(12): 1912-1919.
    [39] Eklund J E, Gustafsson F. Digital offset compensation of timeinterleaved ADC using random chopper sampling. The 2000 IEEE International Symposium on Circuits and Systems, 2000, (3):447-450.
    [40] Looney M. Advanced digital post-processing techniques enhance Time Interleaved A/D performance. Analog Dialogue, 2003.
    [41] Inkol R, Szwarc V, Desormeaux L, et al. A 400 megasample per second digital receiver. IEEE Conference on ASIC, 1996:235-238.
    [42] Jin H, Lee E K F, Hassoun M. Time-interleaved A/D converter with channel randomization. The 1997 IEEE International Symposium on Circuits and Systems, 1997, (1):425-428.
    [43] Tamba M, Shimizu A, Munakata H. A method to improve SFDR with random interleaved sampling method. The 2001 IEEE International Test Conference, 2001, (1):512–520.
    [44] Velazquez S R. Hybrid Filter Banks for Analog/Digital Conversion. PhD thesis, Massachusetts Institute of Technology, 1997.
    [45] Jamal S M, Fu D H, Singh MP, et al. Calibration of Sample-Time Error in a Two-Channel Time- Interleaved Analog-to-Digital Converter. IEEE Transactions on Circuits and Systems, 2004, 51(1): 130-139.
    [46] Jenq Y C. Perfect reconstruction of digital spectrum from nonuniformly sampled signals. IEEE Transactions on Instrumentation and Measurement, 1997, 46(3):649-651.
    [47] Jamal S M, Fu D H, Chang N C, et al. A 10-b 120-msample/s time-interleaved analog-to-digital converter with digital background calibration. IEEE Journal of Solid-State Circuits, 2002, 37(12):1618-1627.
    [48] Dooley S R, Nandi A K. On explicit time delay estimation using the Farrow structure. Signal Processing, 1999, 72:53-57.
    [49] Laakso T I, Valimaki V, Karjalainen M, et al. Splitting the unit delay, Signal Processing Magazine, 1996:30-60.
    [50] Vesma J, Saram?ki T. Optimization and efficient implementation of FIR filters with adjustable fractional delay. The 1997 IEEE International Symposium on Circuits and Systems, 1997, (4): 2256-2259.
    [51] Johansson H, L?wenborg P. On Adjustable Fractional Delay FIR Filters and Their Design. European Conference on Circuit Theory and Design, 2001:297-300.
    [52] Makundi M, Laakso T I, Valimaki V. Efficient tunable IIR and allpass filter structures. Electronics Letters, 2001, 37(6):344-345.
    [53] Makundi M, Valimaki V, Laakso T I. Closed-form design of tunable fractional-delay allpass filter structures. The 2001 International Symposium on Circuits and Systems, 2001, (4):434-437.
    [54] Kim K Y, Kusayanagi N, Abidi A A. A 10-b 100-MS/s CMOS A/D converter. IEEE Journal of Solid-State Circuits, 1997, 32(3):302-311.
    [55] Dyer K C, Fu D, Lewis S H, et al. A comparison of monolithic background calibration in two time-interleaved analog-to-digital converters. The 1998 IEEE International Symposium on Circuits and Systems, 1998, (1):13-16.
    [56] Batten R D, Eshraghi A, Fiez T S. Calibration of parallel ADCs. Transactions on Circuits and Systems II, 2002, 49: 390-399.
    [57] Ibukic A, Hummels D. Continuous gain calibration of parallel Delta Sigma A/D converters. The 2002 IEEE Instrumentation Measurement Technology Conference, 2006:905-909.
    [58] Conroy C S G, Cline D W, Gray P R. An 8-b 85-MS/s parallel pipeline A/D converter in 1-μm CMOS. IEEE Journal of Solid-State Circuits, 1993, 28(4): 447-454.
    [59] Sumanen L, Waltari M, Halonen K A I. A 10-bit 200-MS/s CMOS parallel pipeline A/D converter. IEEE Journal of Solid-State Circuits, 2001: 1048-1055.
    [60] Fu D, Dyer K C, Lewis S H, et al. A digital background calibration technique for time-interleaved analog-to-digital converters. IEEE Journal of Solid-State Circuits, 1998, (33): 1904-1911.
    [61] Shannon C E. A mathematical theory of communication. Mobile Computing and Communications, 1948, 27(1):3-55.
    [62] Bremaud P. Mathematical Principles of Signal Processing: Fourier and Wavelet Analysis. New York: Springer-Verlag, 2002.
    [63] Vogel C. Comprehensive error analysis of combined channel mismatch effects in time-interleaved ADCs. The 20th IEEE Instrumentation and Measurement Technology Conference, 2003, (1): 733-738.
    [64] Jenq Y C. Digital Spectra of Nonunifomly Sampled Signals: Theory and Applications Measuring Clock/Aperture Jitter of an A/D System. IEEE Transactions on Instrumentation and Measurement, 1990, 39(6): 969-971
    [65] Turlington T R. Behavioral Modeling of Nonlinear RR and Microwave devices. Norwood, MA:Artech House, 2000
    [66] Brannon B, Downing S. Analog Devices Aplication Note 737- How ADIsimADC Models an ADC. Analog Inc. www.analog.com/ADIsimADC.htm, 2004
    [67] IEEE Standard for Terminology and Test Methods for Analog-to-Digita Converters, IEEE Instrumentation and Measurement Society Std. IEEE Standard 1241-2000, 2000.
    [68] Kurosawa N, Kobayashi H, Maruyama K, et al. Explicit Analysis of Channel Mismatch Effects in Time Interleaved ADC Systems. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2001, 48(3):261-271
    [69] Conroy C S G. A high-speed parallel pipelined A/D converter technique in CMOS. Ph.D. dissertation, University of California at Berkeley, 1994.
    [70]张清洪,吕幼新,王洪,刘霖.多片ADC并行采集系统的误差时域测量与校正.电讯技术,2005,4(4):189-193.
    [71] Schmidt R O. Multiple Emitter Location and Signal Parameter Estimation. IEEE Transactions on Antennas and Propagation, 1986, 34(3):276-280.
    [72] Tufts D W, Kumaresan A, Kirsteins I. Data Adaptive Signal Estimation by Singular Value Decomposition of a Data Matrix. Proceedings of the IEEE, 1982, 70 (6):684-685.
    [73] Bresler Y, Macovski A. Exact Maximum Likelihood Parameter Estimation of Superimposed Exponential Signal in Noise.IEEE Transactions On Acoustice,Speech and Signal Processing, 1986, 34 (10):1081-1089.
    [74]刘进军,吕幼新,王洪.并行ADC采集系统的时间误差测量与校正.电子科技大学学报, 2005, 34(6):736-738.
    [75] Wu X Y, Wu H W. On a Class of Quadratic Convergence Iteration Formulae Without Derivatives. Application Math Compute, 2000, 107: 77-80.
    [76] Analog Devices, Inc. Ideal_8_Bit.adc. http:// www.analog.com/en/analog-to-digital-converter /ad-converter/products/evaluation-boardstools/CU_ADIsimADC_evaluation_tools/resources/fca.html.
    [77] Elbornsson J, Eklund J E. Blind estimation of timing errors in interleaved AD converters. ICASSP, 2001(6): 3913-3916.
    [78] Aldrich J. R. A. Fisher and the Making of Maximum Likelihood 1912-1922. Statistical Science, 1997, 12(3):162-176.
    [79] Blom G. Probability theory and statistical theory with applications. Studentlitteratur,1989.
    [80] Carter G C. Coherence and Time Delay Estimation. Proceedings of the IEEE, 1987, 75(2):236-255.
    [81]李功胜,王家军,李秀森.广义Tikhonov正则化及其正则参数的先验选取.工程数学学报,2001, 18(4):127-129.
    [82] Johnston P R, Gulrajani R M. Selecting the Corner in the L-Curve Approach to Tikhonov Regularization. IEEE Transactions on Biomedical Engineering, 2000, 47(9): 1293-1296.
    [83]胡宏昌,孙海燕.正规矩阵R及平滑因子α的选取.测绘工程,2003, 12(4):5-8.
    [84] Widrow B, Stearns S D. Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1985.
    [85]陈新海,李言佼,周军.自适应控制及应用.西安:西北工业大学出版社,1998.
    [86]韩新娜.复杂网络自适应同步的实现: [硕士论文].西安:西安电子科技大学,2006
    [87]张贤达.现代信号处理.清华大学出版社, 2002.
    [88] Burden R L, Faires J D. Numerical analysis. BrookslCole: Thomson Learning Inc., 2001.
    [89] Dooley S R, Nandi A K. Subsample time delay estimation with variable step size control. Signal processing, 2000, 80(2): 343-347.
    [90] Haykin S. Adptive Filter Theory. Prentice Hall, 1996.
    [91] Steven M K. Fundamentals of Statistical Signal Processing. Prentice Hall, 1993.
    [92] Stoica P, Moses R L. Introduction to Spectral Analysis. Prentice Hall, London, 1997. 153-172.
    [93] Wu R B, Li J. Time-Delay Estimation via Optimizing Highly Oscillatory Cost Functions. IEEE Journal of Oceanic Engineering, 1998, 23(3):235-244.
    [94] Saleem S. LMS-based identification and compensation of timing mismatches in a two-channel time-interleaved analog-to-digital converter. Norchip, 2007:1-4.
    [95] LI J, WU R B. An efficient algorithm for time delay estimation.IEEE Transactions on Signal Processing, 1998, 46(8): 2231-2235.
    [96] Johansson H, Lowenborg P. On the design of adjustable fractional delay FIR filters. IEEE Transactions on Circuits and System ll: Analog and Digital Signal Processing, 2003, 50(4):164-169.
    [97] Erup L, Gardner F M, Harris R A. Interpolation in digital modems-part II: Implementation and performance. IEEE Transactions on Communications, 1993, 41(6): 998-1008.
    [98] Vesma J. Optimization and Applications of Polynomial-Based Interpolation Filters. PhD Dissertation, Tampereen Teknillinen Korkeakoulu, Finland, 1999.
    [99] Pei S C, Tseng C C. A comb filter design using fractional sample delay. The 1997 IEEE International Symposium on Circuits and Systems. 1997, (4):2228-2231.
    [100] Deng T B. Discretization-free design of variable fractional-delay FIR filters. The 2001 IEEE International Symposium on Circuits and Systems, 2001, (2): 625-628.
    [101] Vesma J, Saram?ki T. Design and properties of polynomial-based fractional delay filters. The 2000 IEEE International Symposium on Circuits and Systems, 2000, (I): 104-107.
    [102] Valimaki V, Laakso T I. Principle of fractional delay filters. The 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000, (6): 3870-3873.
    [103] Farrow C W. A continuously variable digital delay element. IEEE International Symposium on Circuits and Systems, 1988, (3):2641–2645.
    [104] Vesma J, Saram?ki T. Interpolation filters with arbitrary frequency response for all-digital receivers. The 1996 IEEE International Symposium on Circuits and Systems, 1996: 568-571.
    [105] Harris F. Performance and design of Farrow filter used for arbitrary resampling. 13th International Conference on Digital Signal Processing, 1997, (2):595-599.
    [106] Vesma J, Hamila R, Saram?ki T, et al. Design of polynomial interpolation filters based on Taylor series. The 1998 European signal processing conference, 1998, I: 283-286.
    [107] Olsson M, Johansson H, L?wenborg P. Delay Estimation Using Adjustable Fractional Delay All-Pass Filters. The 2006 Nordic Signal Processing Symposium, 2006: 346 - 349.
    [108] Farrow C W. A continously variable digital delay element. The 1998 International Symposium on Circuits and Systems, 1988, (3):2641-2645.
    [109] Yli-Kaakinen J, Saram?ki T. An algorithm for the optimization of adjustable fractional-delay all-pass filters. The 2004 International Symposium on Circuits and Systems, 2004, (3):153-156.
    [110] Valimaki V. Simple design of fractional delay allpass filters. The 2000 European Signal Processing Conference, 2000, (1): 1881-1884.
    [111] Tseng C C. Design of 1-D and 2-D variable fractional delay allpass filters using weighted least-squares method. IEEE Transactions on Circuits System. 2002, 49(10):1413-1422.
    [112] Valimaki V, Laakso T I. Suppression of transients in timevarying recursive filters for audio signals. The 1998 IEEE International Conference Acoustics, Speech, and Signal Processing, 1998,(6):3569-3572.
    [113]Yasukawa H, Shimada S, Furukawa I. Acoustic echo canceller with highspeech quality. The 1987 IEEE International Conference on Acoustics Speech and Signal Processing, 1987: 2125-2128.
    [114]叶华,吴伯修.变步长自适应滤波算法的研究.电子学报, 1990, 18(4):63-69.
    [115]石强.基于非均匀采样的高速数据采集系统设计:[硕士学位论文].成都:电子科技大学,2007.
    [116]Black H S. Modulation theory. New York:Van Nostrand,1953. [ 117 ]Won Namgoong. Channelized Digital Receivers for Impulse Radio. The 2003 IEEE Conference on Communications, 2003, (4):2884-2888.
    [118]Gabor D. Theory of communication. Institution of Electrical Engineering, 1946, 93:429-457.
    [119]Tseng C C. Design of variable fractional delay FIR filter using differentiator bank. The 2002 IEEE International Symposium on Circuits and Systems, 2002, 4: 421-424.
    [120] Tarczynski A, Cain G D, Hermanowicz E, et al. WLS design of variable frequency response FIR filters. The 1997 IEEE International Symposium on Circuits and Systems, 1997, (4):2244-2247.
    [121] Lu W S, Deng T B. An improved weighted least-squares design for variable fractional delay FIR filters. IEEE Transactions on Circuits and Systems, 1999, 46(8): 1035-1040.
    [122] Parks T W, McClellan J H. Chebyshev approximation for nonrecursive digital filters with linear phase. IEEE Transactions on Circuit Theory, 1972, 19(2): 189-194.
    [123] Proakis J G, Manolakis D G. Introduction to Digital Signal Processing. Macmillan, New York, 1989.
    [124] Leea A, Ahmadi M, Ramachandranb V, et al. Design of Fractional Delay Filters. Computer and Electrical Engineering, 2001, 27(3): 287-292.
    [125] Pei S C, Shyu J J. Eigenfilter design of higher-order digital differentiators. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(4): 505-511.
    [126] Sunder S, Ramachandra V. Design of equiripple nonrecursive digital differentiators and Hilbert transformers using a weighted least-squares technique. IEEE Transactions on Signal Processing, 1994, 42(8): 2504-2509.
    [127] Mollova G. Compact formulas for least-squares design of digital differentiators. Electronics Letters, 1999, 35(20): 1695-1697.
    [128] Tseng C C. Stable IIR digital differentiator design using iterative quadratic programming approach. Signal Processing, 2000, 80(5): 857-866.
    [129] Parks T W, Burrus C S. Digital Filter Design. John Wiley & Sons, New York, 1987.
    [130] Rabiner L R, McClellan J H, Parks T W. FIR Digital Filter Design Techniques Using Weighted Chebyshev Approximations. Proceedings of the IEEE, 1975, 63(4): 595- 610.
    [131]Powell M J D. A Fast Algorithm for Nonlinearly Constrained Optimization Calculations. Technical Report 77/NA 2, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England, 1977.
    [132]薛毅.求解Minimax优化问题的SQP方法.系统科学与数学, 2002年,22(3):355-364.
    [133]XC3S200A.http://china.xilinx.com/onlinestore/silicon/online_store_s3a.htm
    [134]ADSP-BF531.http://www.analog.com/en/embedded-processing-dsp/blackfin/adsp-bf531/processors/product.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700