蛋白质和DNA多组分化学发光检测新技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质和DNA的多组分同时检测是目前临床诊断、环境监测、微生物检验等领域的一个研究热点,具有分析通量高、所需时间短、样品消耗少、分析成本低等突出优点。目前多组分检测通常采用标记物识别模式或空间位置识别模式,但由于受到标记物数目以及所用仪器设备较为昂贵等因素的影响,在一定程度上限制了多组分检测技术的广泛应用。
     化学发光(CL)分析法不需光源,仪器设备简单、操作简便,具有极高的灵敏度,已成为近年来一个非常活跃的研究领域,目前已成功地应用在药学、生物学、分子生物学、临床医学和环境学等诸多领域。为此,本论文采用化学发光分析法,利用不同载体物化性质差异分离识别不同待测物,发展了三种具有创新意义的多组分同时检测技术,实现了同一份样品中多组分的同时检测,整个论文由以下四部分构成:
     第一章:绪论
     本绪论由三节构成,其中第一节简单介绍了基于标记物识别模式的多组分检测技术的研究进展及其意义,主要内容包括:荧光标记、金属标记、酶标记等,并列举了近年来它们在该分析领域的部分典型示例;第二节中介绍了基于空间位置识别模式的多组分检测技术的研究进展及其意义,也列举了近年来它们在该分析领域的部分典型示例;第三节阐述了本博士论文的目的、意义、主要研究内容及创新之处。
     第二章:基于不同载体的无标记多组分DNA化学发光检测新技术
     无标记简单快速检测特定序列DNA在临床诊断、环境监测等领域具有非常重要的意义,尤其是无标记多组分同时检测技术,本章基于特异性化学发光试剂3,4,5-三甲氧基苯甲酰甲醛(TMPG)与鸟嘌呤(G)碱基之间的瞬时衍生反应,能够产生CL的原理,实现了单份样品中无标记多组分特定序列DNA的同时检测。具体采用磁珠、聚苯乙烯微球和温度敏感高分子(PNIP)三种载体,以乙型肝炎病毒(HBV)的三条DNA合成片段为例,优化构建了新型的基于不同载体的无标记多组分DNA化学发光检测新技术。整个分析过程由以下两步构成:(1)分别制备三种载体修饰探针、混合后与以上三条DNA合成片段在同一试管中杂交;(2)依据三种载体的物化性质差异分离洗涤,利用TMPG与目标DNA中的G碱基之间的瞬时衍生反应,产生特异性CL来定量三条DNA合成片段。结果表明:该方法具有操作简便、分析速度快和灵敏度高等特点,目标序列在0.1-6 pmol范围内具有良好的线性相关性,最低检测限可达100 fmol。为了进一步提高检测灵敏度,随后又采用G30放大检测技术,在载体修饰探针与DNA合成片段杂交后,再与一段富含G的放大序列(含有两个功能序列段:一是能够与目标序列的15个核苷酸单位杂交的序列段,另一个是富含G的放大信号序列段---(T2G15)2)进行第二次杂交,最低检测限可达15 fmol。方法选择性研究表明:本法对单碱基错配和完全不互补序列有较好的识别能力。综合而言:这种新型的载体识别无标记多组分DNA化学发光检测技术,不同于目前的多组分编码策略,首次采用不同载体物理化学差异分辨、瞬时衍生化学发光反应来同时检测三种目标序列DNA:其次采用仪器设备简单、操作简便的CL分析法来替代目前常用于多组分检测的流动注射或成像系统等昂贵设备,有望为临床、环境、生物防护等领域的DNA多组分定量分析提供有价值的手段。
     第三章:基于不同载体的无标记多组分PCR扩增产物的化学发光检测新技术
     第二章测定HBV的PCR真实样品的研究过程中发现:双链PCR扩增产物(PCR amplicon)只有一条链与探针互补,所以在PCR扩增产物检测时,探针会与扩增产物另一条链存在竞争杂交,这将显著降低检测灵敏度;不对称PCR扩增技术的使用虽可改善检测灵敏度,但PCR扩增效率也会因引物量的减少而下降。为此,本章旨在设计能够直接进行双链PCR产物同时检测的载体识别无标记多组分检测新技术,进一步提高和发展第二章所构建的无标记多组分检测技术,具体分析过程由以下三步构成:(1)通过改造上游引物的方式使三条PCR扩增产物上分别标记地高辛(digoxin),生物素(biotin)和荧光素(FITC);(2)三条标记物修饰的PCR扩增产物的混合物分别与相应的标记有抗地高辛(anti-digoxin),链霉亲和素(SA),抗荧光素(anti-FITC)的载体混合物发生免疫反应;(3)依据三种载体的物化性质差异分离洗涤,利用TMPG与PCR产物中的G碱基之间的瞬时衍生反应,产生特异性CL来定量三条PCR产物。相比于目前的PCR检测方法,本法具有以下特点,第一,传统的PCR检测技术多采用PCR产物95℃加热解链实现竞争杂交反应,我们的检测可直接检测双链PCR产物,无需将双链DNA加热变性,避免了竞争杂交对检测灵敏度的影响;第二,多组分实时PCR技术必须采用发射波长不相互交叉的荧光标记物来实现多组分同时检测;本法采用瞬时衍生载体分辨无标记检测技术,直接进行双链PCR产物的多组分同时检测;第三,实时PCR仪器设备相对昂贵,而化学发光仪仪器设备简单、操作简便。综合而言,本章发展的载体分辨无标记多组分PCR扩增产物化学发光检测新技术,具有简单,快速,灵敏度高等特点,有望在临床诊断、环境监测、微生物检验等领域发挥作用。
     第四章:基于温度敏感的四种蛋白质同时检测化学发光新技术
     鉴于以上两章中多组分DNA检测技术取得的成果,本章尝试将这种新型的载体分辨化学发光技术拓宽至多种蛋白质的同时检测。为此,本章以免疫球蛋白IgG、IgM、IgA和蛋白多肽药物GH作为四个模型蛋白质分析物,采用磁珠和温敏高分子两种载体以及碱性膦酸酯酶(AP)和辣根过氧化物酶(HRP)两种标记物,构建了一个均相的非竞争的ELISA反应,实现了四种蛋白质的化学发光同时检测。整个分析过程由以下三步构成:(1)分别制备两对第一抗体偶联物:抗IgG-磁珠、抗IgM-磁珠、抗IgA-PNIP和抗GH-PNIP,混合并与四种抗原混合物IgG、IgM、IgA和GH在同一试管中进行免疫反应:(2)再与四种标记了HRP、AP的第二抗体混合物进行夹心反应:(3)依据两种载体的性质差异进行分离洗涤,将两种载体各均分两份,用相应的试剂盒进行检测。研究结果表明:该法IgG、IgM、IgA和GH的检测限分别为0.5,0.5,1.0和0.5 ng/mL。此外,还可通过引入不同的载体,如:对不同温度敏感的温敏高分子或对不同PH值敏感的PH敏感高分子;以及采用多种标记物,如采用酶(HRP和ALP)或胶体金等,进一步增加分析物的数目,提高检测的灵敏度。综合而言,该技术有望在多组分蛋白质的分析、测定方面发挥重要的作用。
Simultaneous detection of multiplex has gained considerable interest in clinical, environmental,and biodefense applications,etc.Numerous multianalyte assays have been developed due to its high sample throughput,short assay time,low sample consumption and reduced overall cost,as compared to parallel single-analyte assays. In recent years,considerable effort is mainly focused on developing multi-label-based multianalyte assay methods.Most of the current developed approaches for multianalyte are based on spatially resolution or multiple-labels mode.However,there are some restrictions in the number of labels and,therefore,of analytes that could be determined simultaneously.
     Chemiluminescence(CL) has been exploited within a wide range of applications in various fields,due to their extremely high sensitivity along with their extra advantages such as simple instrumentation,wide calibration ranges,and suitability for miniaturization in analytical chemistry.In contrast to current multi-label-based detection techniques,we took good advantage of three different kinds of carriers to separate targets by thermo-triggered precipitation,and one label rather than multiple was employed.According to their character in common,all of them could be seperated by centrifugation at 35℃.Meanwhile,each of them has its unique attributes;namely,they can be seperated from each by magnetic force,centrifugation under room temperature and 35℃,respectively.Description of research in my thesis is presented as follows:
     Chapter 1:This thesis first addresses multi-label-based detection techniques,and then presents current state of knowledge,including fluorescent-labe,enzyme-labe,etc. The second phase of this chapter reviews current main spatially resolution mode and its applications in various fields,and discusses the development in this field. Following that,objectives and significance of this research are summarized.
     Chapter 2:Instantaneous Derivatization Technology for Simultaneous and Homogeneous Determination of Multiple DNA Targets
     There are potential advantages,in terms of simplicity and speed,for detecting DNA hybridization steps directly without using any external labels,especially for the multiplexed assays.In the current paper,we describe the use of a carrier-resolved label-free multiplexed assay for the simultaneous detection of multiple DNA targets. Herein we demonstrate that this protocol,using three homogeneous carriers' thermosensitive poly(N-isopropylacrylamide),polystyrene beads,and magnetic beads, respectively,for simultaneous determination of three short DNA fragments specific to hepatitis B virus.Briefly,one hybridization occurs between a mixture of three different capture probe DNAs immobilized onto three carriers and three targets in a single vessel,and then chemiluminescence(CL) detection proceeds via an instantaneous derivatization reaction between the specific CL reagent 3,4,5-trimethoxylphenylglyoxal(TMPG) and the guanine nucleotide-rich regions within the target DNA.An excellent linearity is found within the range between 0.1 and 6.0 pmol with the lowest detection limit of 100 fmol.In contrast to current encoding strategies,every hybridization signal for the corresponding DNA target in our protocol is uniquely immobilized onto one carrier vehicle with a unique and intrinsic physical-chemical signature.Moreover,an instantaneous derivatization reaction is employed for the label-free determination of three targets in a single vessel. In addition,a simple CL setup is employed to read the carrier code instead of an expensive and complicated flow cytometer or imaging system commonly used for multiplexed assays.Further signal amplification is achieved by employing three amplified DNAs for second hybridization,which include a guanine nucleobase-rich sequence domain for the generation of light and an additional tethered nucleic acid domain complementary with one of the target DNA as an amplification platform. Such simple amplified CL transduction allows detection of DNA targets down to the 15-fmol level.This new protocol also provided a good capability in discriminating perfectly complementary DNA from single-base mismatches and noncomplementary sequences.Overall,the protocol described here may have value in a variety of clinical, environmental,and biodefense applications for which the accurate quantitative analysis of multiple DNA targets is desired.
     Chapter 3:Carrier-resolved Technology for Homogeneous and Simultaneous Detection of Multiple PCR Amplicons
     A general purpose label-free chemiluminescence(CL) platform is developed wherein polymerase chain reaction(PCR) amplicons labeled with one hapten are detected via an instantaneous derivatization reaction between the specific CL reagent 3,4,5-trimethoxyl-phenylglyoxal(TMPG) and the guanine nucleotides within the PCR target DNA.As a proof of principle,the response selectivity of this platform is evauated for simultaneous determination of three PCR amplicons specific to Hepatitis B Virus(HBV) by using three homogeneous carriers magnetic beads,polystyrene beads,and thermo-sensitive poly-N-isopropylacrylamide(PNIP),respectively. Briefly,PCR amplicons are labeled with digoxin,biotin or FITC via the modified up-stream primers.After PCR amplification,the immunoreactions occur between a mixture of three target PCR amplicons and three modified carriers with either anti-digoxin,streptavidin or anti-FITC in a single vessel and then each carrier is separated from the others under different conditions based on their attributes for direct CL detection.Different from conventional endpoint PCR detection techniques where dsDNA PCR amplicons have to be denatured(e.g.,heated to 95℃for a few minutes) before the detection hybridization,firstly this new protocol offers the enhanced sensitivity due to the absence of competitive hybridization.Secondly, multiplex real-time PCR required the use of multiple fluorophores with emission peaks that can be unequivocally separated,whereas herein an instantaneous derivatization reaction is employed for the label-free determination of three targets in a single vessel,and every signal for the corresponding PCR amplicon in our protocol is uniquely immobilized onto one carrier with a unique and intrinsic physical-chemical signature.Thirdly,specialized expensive equipment is required for the detection of real-time PCR amplicons whereas herein a simple CL setup was employed to perform our novel multiplexed PCR assays.Overall,the assay is sentive,safe,and cost-effetive when compared to conventional agarose gel electrophoresis,real-time PCR for the detection of PCR amplicons.Furthermore, the protocol described here may have value in a variety of clinical,environmental, and biodefense applications for which the accurate quantitative analysis of multiple PCR amplicons is desired.
     Chapter 4:Sequential Determination of Four Proteins by Temperature-Triggered Homogeneous Chemiluminescent Immunoassay
     A novel protocol for performing a sequential multiplex immunoassay,based on a temperature-triggered separation/mixing process and alkaline phosphatase(AP) and horseradish peroxidase(HRP) catalyzed chemiluminescence(CL) detection,is described.Herein we introduce poly(N-isopropylacrylamide)(PNIP) and magnetic beads as bimolecular immobilizing carriers to separate different antigens by taking advantage of thermal response.PNIP is known to aggregate and precipitate out of water when the temperature is raised above the lower critical solution temperature (LCST) of 31℃;thus,it can be separated from supernatant by centrifugation.Besides, magnetic beads can be separated from PNIP by magnetic force as the temperature is lower than LCST.A homogeneous noncompetitive ELISA was employed,formed by using IgG,IgM,IgA,and growth hormone(GH) as two couples of carrier analytes, two couples of capture antibodies were immobilized onto the surface of magnetic beads and PNIP,respectively and AP and HRP labeled second antibodies.With a sandwich format,highly sensitive CL detection of HRP was applied,and the detection limits ofIgG and IgA were as low as 2.0 and 1.5 ng/mL,respectively.
引文
1.程介克.单细胞分析.北京:科学出版社,2005,127-128.
    2.李天星.现代临床免疫学检验.北京:军事医学科学出版社,2001,167-252.
    3.Swartzman,E.E.;Miraglia,S.J.;Mellentin-Michelotti,J.;Evangelista,L.A homogeneous and multiplexed immunoassay for high-throughput screening using fluorometric microvolume assay technology,Anal.Biochem.1999,271,143-151.
    4.Rosenthal,S.J.Bar-coding biomolecules with fluorescent nanocrystals,Nat Biotechnol 2001,19,621-622.
    5.Chan,W.C.;Maxwell,D.J.;Gao,X.Luminescent quantum dots for multiplexed biological detection and imaging,Curt Opin Biotech 2002,13,40-46.
    6.Jaiswal,J.K.;Mattoussi,H.;Mauro,J.M.;Simonl,S.M.Long-term multiple color imaging of live cells using quantum dot bioconjugates,Nat Biotechnol 2003,21,47-51.
    7.Xu,C.;Bakker,E.Multicolor quantum dot encoding for polymeric particle-based optical ion sensors,Anal Chem 2007,79,3716-3723
    8.So,M.K.;Loening,A.M.;Gambhir,S.S.;Rao,J.Creating self-illuminating quantum dot conjugates,Nat Protoc.2006,1,1160-1164.
    9.Pitsillides,C.M.;Joe,E.K.;Wei,X.Selective cell targeting with light-absorbing microparticles and nanoparticles,Biophys J.2003,84,4023-4032.
    10.Gao,X.;Yang,L.;Petros,J.A.In vivo molecular and cellular imaging with quantum dots,Curt Opin Biotechno12005,6,63-72.
    11.Goldman,E.R.;Balighian,E.D.;Mattoussi,H.;Kuno,M K.Avidin:a natural bridge for quantum dot-antibody conjugates,J.Am.Chem.Soc.2002,124,6378-6382.
    12.Goldman,E.R.;Clapp,A.R.;Anderson,G.P.;Uyeda,H.T.;Mauro,J.M.;Medintz,I..L.;Mattoussi,H.Multiplexed toxinanalysis using four colors of quantum dot fluororeagents,Anal.Chem.2004,76,684-688.
    13.Hayes,F.J.;Halsall,H.B.;Heineman,W.R.Simultaneous immunoassay using electrochemical detection of metal ion labels,Anal.Chem.1994,66,1860-1865.
    14.Taton,T.A.;Gang,L.;Mirkin,C.A.Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes, J. Am. Chem. Soc. 2001, 123, 5164-5165.
    15. Wang, J.; Liu, G.; Merkoci, A. Electrochemical coding technology for simultaneous detection of multiple DNA targets, J. Am. Chem. Soc. 2003, 125, 3214-3215.
    16. Liu, G.; Wang, J.H.; Kim, Electrochemical coding for multiplexed immunoassays of proteins, J. Anal. Chem. 2004, 76: 7126-7130.
    17. Hansen, J.A.; Mukhopadhyay, R.; Hansen, J.; Gothelf, K. V. Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles, J. Am. Chem. Soc. 2006,128, 3860-3861.
    18. Wang, J.H.; Kawde, A.N. Dual enzyme electrochemical coding for detecting DNA hybridization, Analyst 2002, 127, 1279-1282.
    19. Fu, Z.; Liu, H.; Ju, H. Flow-Through Multianalyte chemiluminescent immunosensing system with designed substrate zone-resolved technique for sequential detection of tumormarkers, Anal. Chem. 2006, 78, 6999-7005
    20. Fu, Z.; Yang, Z.; Tang,J.; Liu, H.; Yan, F.; Ju, H. Channel and substrate zone two-dimensional resolution for chemiluminescent multiplex immunoassay, Anal.Chem. 2007, 79, 7376-7382
    21. Elenis, D.S.; Ioannou, P.C.; Christopoulos, T. K. Quadruple-analyte chemiluminometric hybridization assay. Application to double quantitative competitive polymerase chain reaction, Anal.Chem. 2007, 79, 9433-9440.
    22. Yun, W.; Cao, C.; Jin, R.; Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science 2002, 297, 1536-1540.
    23. Moreno-Bondi, M.C.; Alarie, J.P.; Vo-Dinh T. Multi-analyte analysis system using an antibody-based biochip, Anal. Bioanal. Chem. 2003, 375, 120-124.
    24. Chen, C.S.; Durst, R.A. Simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes with an array-based immunosorbent assay using universal protein G-liposomal nanovesicles, Talanta 2006, 69, 232-238.
    25. Song, S.P.; Li, B.; Hu, J. Simultaneous multianalysis for tumor markers by antibody fragments microarray system, Anal. Chim.Acta 2004, 510, 147-152.
    26. Belleville E. Dufva M, Aamand J. Quantitative microarray pesticide analysis, J.lmmunol.Methods 2004, 286, 219-229.
    27. Wadkins, R.M; Golden, J.P.; Pritisolas, L.M. Detection of multiple toxic agents using a planar array immunosensor, Biosens.Bioelectron. 1998, 13: 407-415.
    28. Christodoulides, N.; Tran, M.; Floriano, P.N. A microchip-based multianalyte assay system for the assessment of cardiac risk, Anal.Chem. 2002, 74, 3030 -3036.
    29. Roda,A.; Mirasoli, M.; Venturoli, S. Microtiter format for simultaneous multianalyte detection and development of a PCR-chemiluminescent enzyme immunoassay for typing human papillomavirus DNAs, Clin.Chem. 2002, 48, 1654-1660.
    30. Strasser, A. Dietrich, R. Usleber, E. Immunochemical rapid test for multiresidue analysis of antimicrobial drugs in milk using monoclonal antibodies and hapten-glucose Oxidase conjugates, Anal. Chim.Acta 2003, 495, 11-19.
    31. Meyerhoff ME, Duan C, Meusel M, Novel nonseparation sandwich-type electrochemical enzyme-immunoassay system for detecting marker proteins in undiluted blood, Clin. Chem. 1995,41: 1378-1384.
    32. Ding. Y.; Zhou, L. P.; Halsall, H. B. Feasibility studies of simultaneous multianalyte amperometric immunoassay based on spatial resolution, J. Pharm. Biomed. Anal. 1999, 19, 153-161.
    33. Kojima, K.; Hiratsuka, A.; Suzuki H.; Electrochemical protein chip with arrayed immunosensors with antibodies immobilized in a plasma-polymerized film, Anal. Chem. 2003, 75, 1116-1122.
    34. Knecht, B.C.; Strasser, A.; Dietrich, R. Automated microarray system for the simultaneous detection of antibiotics in milk, Anal. Chem. 2004, 76, 646-654.
    35. Ogasawara, D.; Hirano, Y.; Yasukawa, T. Electrochemical microdevice with separable electrode and antibody chips for simultaneous detection of pepsinogens 1 and 2, Biosens. Bioelectron. 2006, 21:1784-1790.
    36. Wilson, M.S. Electrochemical immunosensors for the simultaneous detection of two tumor markers,Anal.Chem.2005,77:1496-1502.
    37.Wilson,M.S.;Nie,W.Electrochemical multianalyte immunoassays using an array-based sensor,Anal.Chem.2006,78:2507-2513.
    38.Wilson,M.S.;Nie,W.Multiplex Measurement of Seven Tumor Markers Using an Electrochemical Protein Chip,Anal.Chem.2006,78:6476-6483.
    39.Michael,K.L.;Taylor,L.C.;Sehultz,S.L.Randomly ordered addressable high-density optical sensor arrays,Anal.Chem.1998,70:1242-1248.
    40.Szurdoki,F.;Michael,K.L.;Walt,D.R.A duplexed microsphere-based fluorescent immunoassay,Anal.Biochem.2001,291:219-228.
    41.Rissin,D.M.;Walt,D.R.Duplexed sandwich immunoassays on a fiber-optic microarray,Anal.Chim.Acta 2006,564:34-39.
    42.Ferguson,J.A.;Steemers,F.J.;Walt,D.R.High-density tber-optic DNA random microsphere array,Anal.Chem.2000,72,5618-5624
    43.Zhi,Z.L.;Murakami,Y.Multianalyte immunoassay with self-assembled addressable microparticle array on a chip,Anal.Biochem.2003,318,236-243.
    44.Ray,C.A.;Bowsher,R.R.;Smith,W.C.Development,validation,and implementation of a multiplex immunoassay for the simultaneous determination of five cytokines in human serum,J.Pharm.Biomed.Anal.2005,36,1037-1044.
    45.Han,M.;Gao,X.;Su,J.Z.;Nie,S.Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,Nature Biotechnology 2001,19,631-635.
    46.Zhou,Y.;Zhang,Y.;Lau,C.;Lu,J.Sequential determination of two proteins by temperature-triggered homogeneous chemiluminescent immunoassay,Anal.Chem.2006,78,5920-5924.
    47.林金明.化学发光基础理论与应用.北京:化学工业出版社,2004
    1.Endo,T.;Kerman,K.;Nagatani,N.;Takamura,Y.;Tamiya,E.Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor,Anal.Chem.2005,77,6976-6984.
    2.李敏,王志举,付庆,赵国强,董子明.人食管癌顺铂耐药细胞系的建立及耐药相关基因的筛选.中国卫生检验杂志,2007,17,18-20.
    3.Dubus,S.;Gravel,J.F.;Le Drogoff,B.;Nobert,P.;Veres,T.;Boudreau,D.PCR-free DNA detection using a magnetic bead-supported polymeric transducer and microelectromagnetic traps,Anal.Chem.2006,78,4457-4464.
    4.Bowden,M.;Song,L.;Walt,D.R.Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection,Anal.Chem.2005,77,5583-5588.
    5.郭建军,周建党,黄辉,陈颖.肝移植术后感染大肠埃希菌的DNA多态性与耐药性分析.微生物学杂志,2006,27-29.
    6.周卫江,张春林.DNA亲缘关系分析在凶杀案件中应用1例.中国法医学杂志,2006,310.
    7.Taton,T.A.;Lu,G.;Mirkin,C.A.Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes,J.Am.Chem.Soc.2001,123,5164-5165.
    8.Cao,Y.W.C.;Jin,R.;Mirkin,C.A.Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection,Science 2002,297,1536-1540.
    9.Han,M.;Gao,X.;Su,J.;Nie,S.Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,Nat.Biotechnol.2001,19,631-635.
    10.Li,Y.G.;Cu,V.T.H.;Luo,D.Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes,Nat.Biotechnol.2005,23,885-889.
    11. Nicewarner-Pena, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Pena, D. J.; Walton, I. D.; Cromer, R.; Keating, C. D.; Natan, M. J. Submicrometer metallic barcodes, Science 2001, 294, 137-141.
    12. Steemers, F.J.; Ferguson, J.A.; Walt, D. R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays, Nat. Biotechnol. 2000, 18, 91-94.
    13. Ferguson, J. A.; Steemers, F. J.; Walt, D. R. High-density fiber-optic DNA random microsphere array, Anal. Chem. 2000, 72, 5618.
    14. Wang, J.; Liu, G.; Merkoci, A. Electrochemical coding technology for simultaneous detection of multiple DNA targets, J. Am. Chem. Soc. 2003, 125, 3214-3215.
    15. Hansen, J.A.; Mukhopadhyay, R.; Hansen, J.O.; Gothelf, K.V. Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles, J. Am. Chem. Soc. 2006, 128, 3860-3861.
    16. Liu, Y.; Gong, Z.; Morin, N.; Pui, O.; Cheung, M.; Zhang, H.; Li, X. F. Electronic deoxyribonucleic acid (DNA) microarray detection of viable pathogenic Escherichia coli, Vibrio cholerae, and Salmonella typhi, Anal. Chim. Acta 2006, 578, 75-81.
    17. Braeckmans, K.; De Smedt, S. C.; Leblans, M.; Pauwels, R.; Demeester, J. Nat. Rev. Drug Discovery 2002, 1,447-456.
    18. Wilson, R.; Cossins, A. R. and Spiller, D. G. Encoded microcarriers for high-throughput multiplexed detection Angew. Chem. Int. Ed. 2006, 45, 6104-6117.
    19. Riccardi, C.D.; Yamanaka, H.; Josowicz, M., et al. Label-free DNA detection based on modified conducting polypyrrole films at microelectrodes, Anal. Chem. 2006,78,1139-1145.
    20. Thompson, L.A.; Kowalik, J.; Josowicz, M. and Janata, J. Label-free DNA hybridization probe based on a conducting polymer, J. Am. Chem. Soc. 2003, 125, 324-325.
    21. Li, Z.; Chen, Y.; Li, X.; Kamins, T. I.; Nauka, K.; Williams, R. S. Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires, Nano Lett. 2004, 4, 245-247.
    22. Wang, J.; Kawde, A.N.; Musameh, M. Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization, Analyst, 2003, 128, 912-916.
    23. Jelen, F.; Yosypchuk, B.; Kourilova, A.; Novotny, L.; Palecek, E. Label-free determination of picogram quantities of DNA by stripping voltammetry with solid copper amalgam or mercury electrodes in the presence of copper, Anal. Chem. 2002, 74, 4788-4793.
    24. Gooding, J. J.; Chou, A.; Mearns, F. J. Wong, E.; Jericho, K. L. The ion gating effect: using a change in flexibility to allow label free electrochemical detection of DNA hybridization, Chem. Commun. 2003, 1938-1939.
    25. Lee, H. J.; Li, Y.; Wark, A. W.; Corn, R. M. Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays, Anal. Chem. 2005, 77, 5096-5100.
    26. Goodrich, T. T.; Lee, H. J.; Corn, R. M. Enzymatically amplified surface plasmon resonance imaging method using RNase H and RNA microarrays for the ultrasensitive detection of nucleic acids, Anal. Chem. 2004, 76, 6173-6178.
    27. Goodrich, T. T.; Lee, H. J.; Corn, R. M. Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays, J. Am. Chem. Soc. 2004, 126, 4086-4087.
    28. Caruso, F.; Rodda, E.; Furlong, D. N. Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development Anal. Chem. 1997, 69, 2043-2049.
    29. Su, X.; Robelek, R.; Wu, Y.; Wang, G.; Knoll, W. Detection of point mutation and insertion mutations in DNA using a quartz crystal microbalance and MutS, a mismatch binding protein, Anal. Chem. 2004, 76, 489-494.
    30. Pfeiffer, I.; Hololk, F. Quantification of oligonucleotide modifications of small unilamellar lipid vesicles, Anal. Chem. 2006, 78, 7493-7498.
    31. Lu, J.; Lau, C.; Kai, M. Magnetic bead-based label-free chemiluminescence detection of telomeres, Chem. Commun. 2003, 2888-2889.
    32. Zhou, Y.; Zhang, Y.; Lau, C.; Lu, J. Sequential determination of two proteins by temperature-triggered homogeneous chemiluminescent immunoassay, Anal. Chem. 2006, 78, 5920-5924.
    33. Wang, J.; Liu, G.; Munge, B.; Lin, L.; Zhu, Q. DNA-Based amplified bioelectronic detection and coding of proteins, Angew. Chem. Int. Ed. 2004, 43, 2158-2161.
    34. Fan, A.; Lau, C.; Lu, J. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label, Anal. Chem. 2005, 77, 3238-3242.
    35. Chen, J. P.; Yang, H. J.; Hoffman, A. S. Polymer protein conjugates. 1. effect of protein conjugation on the cloud point of poly(N-isopropylacrylamide) Biomaterials. 1990, 11,625-630.
    36. Hoffman, A. S. Bioconjugates of intelligent polymers and recognition proteins for use in diagnostics and affinity separations, Clin. Chem. 2000, 46, 1478-1486.
    37. Malmstadt, N.; Yager, P.; Hoffman, A. S.; Stayton, P. S. A smart microfluidic affinity chromatography matrix composed of poly (N-isopropylacrylamide)-coated beads, Anal. Chem. 2003, 75, 2943-2949.
    38. Bromberg, L. E.; Ron, E. S. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery, Adv. Drug. Delivery Rev.1998, 31,197-221.
    39. Kojima, E.; Ohba, Y.; Kai, M.; Ohkura, Y. Phenylglyoxal and glyoxal as fluorogenic reagents selective for N-terminal tryptophan-containing peptides, Anal. Chim. Acta 1993, 280, 157-162.
    40. Chen, J.P.; Hoffman, A. S. Polymer protein conjugates .2. Affinity precipitation separation of human immuno-gamma-globulin by a poly (N-isopropylacrylamide) -protein-a conjugate, Biomaterials 1990, 11, 631-634.
    41.Erout, M. N.; Troesch, A.; Pichot, C.; Cros, P. Preparation of Conjugates between Oligonucleotides and N-Vinylpyrrolidone/N-Acryloxysuccinimide Copolymers and Applications in Nucleic Acid Assays To Improve Sensitivity, Bioconj. Chem. 1996, 7, 568-575.
    42. Mori, T.; Maeda, M. Temperature-responsive formation of colloidal nanoparticles from poly (N-isopropylacrylamide) grafted with single-stranded DNA, Langmuir 2004, 20, 313-319.
    43. Umeno, D.; Mori, T.; Maeda, M. Single stranded DNA-poly(N-isopropylacrylamide) conjugate for affinity precipitation separation of oligonucleotides, Chem. Commun. 1998, 1433-1434.
    44. Schild, H.G. Poly (N-isopropylacrylamide): experiment, theory and application, Prog. Polym. Sci. 1992, 17, 163-249.
    45. Kerman, K.; Vestergaard, M. D. L.; Nagatani, N.; Takamura, Y.; Tamiya, E. Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: Electrostatic interactions with a metal cation, Anal. Chem. 2006,78,2182-2189.
    46. Riccardi, C. S.; Yamanaka, H.; Josowicz, M.; Kowalik, J.; Mizaikoff, B.; Kranz, C. Label-free DNA detection based on modified conducting polypyrrole films at microelectrodes, Anal, Chem. 2006, 78, 1139-1145.
    47. Marquette, C. A.; Lawrence, M. F.; Blum, L. J. DNA covalent immobilization onto screen-printed electrode networks for direct label-free hybridization detection of p53 sequences, Anal. Chem. 2006, 78, 959-964.
    1.Li,W.;Rees,C.B.Development and application of a real-time quantitative PCR assay for determining CYP1A transcripts in three genera of salmonids,Aquatic Toxicolog 2004,66,357-368.
    2.廖勇,罗志强.荧光定量PCR技术及其在鼻咽癌中的研究状况.中国医学文摘耳鼻咽喉科学,2007,22,47-48.
    3.Saukkoriipi,A.;Palmu,A.;Kilpi,T.;Leinonen,M.Real-time quantitative PCR for the detection of Streptococcus pneumoniae in the middle ear fluid of children with acute otitis media,Molecular and Cellular Probes 2002,16,385-390.
    4.蔡兰,罗凯,刘颖等.荧光定量PCR检测活检组织EB病毒感染的临床意义.中国优生与遗传杂志,2003,11,29-30.
    5.Morrison,K.E.;Lake,D.;Crook,J.et al.Confirmation of psaA in all 90serotypes of Streptococcus pneumoniae by PCR and potential of this assay for identification and diagnosis,Journal of Clinical Microbiology 2000,38,434-437.
    6.Higuchi,R.;Fockler,C.;Dollinger,G.;Watson,R.Kinetic PCR analysis-real-time monitoring of DNA amplification reactions,Bio.Technology 1993,11,1026-1030.
    7.Ryncarz,A J.;Goddard,J.;Wald,A.;Huang,M-L;Roizman,B.;Corey,L.;Development of a high-throughput quantitative assay for detecting herpes simplex virus DNA in clinical samples,J Clin Microbiol 1999,37,1941-1947.
    8.Zerr,D.M.;Huang,M-L;Corey,L.;Erickson,M.;Parker,H.L.;Frenkel,L.M.Sensitive method for detection of human herpesviruses 6 and 7 in saliva collected in field studies,J Clin Microbiol 2000,38,1981-1983.
    9.Poddar,S.K.Symmetric vs asymmetric PCR and molecular beacon probe in the detection of a target gene of adenovirus,Molecular and Cellular Probes 2000,14,25-32.
    10.Gyllenstern,U.B.;Erlich,H.A.Generation of Single-Stranded DNA by the Polymerase Chain Reaction and Its Application to Direct Sequencing of the HLA-DQA Locus,Proc.Natl.Acad.Sci.USA.1988,85,7652-7656.
    11.Schmidt,A.M.;Rott,M.E.Real-time Polymerase Chain Reaction(PCR)quantitative detection of Brassica napus using a locked nucleic acid TaqMan probe,J.Agric.Food Chem.2006,54,1158-1165.
    12.Lopparelli,R.M.;Cardazzo,B.;Balzan,S.;Giaccone,V.O.;Novelli,E.Real-time TaqMan polymerase chain reaction detection and quantification of cow DNA in pure water buffalo mozzarella cheese:Method validation and its application on commercial samples,J.Agric.Food Chem.2007,55,3429-3434.
    13.Lopez,I.;Pardo,M.A.Application of relative quantification TaqMan real-time polymerase chain reaction technology for the identification and quantification of Thunnus alalunga and Thunnus albacares,J.Agric.Food Chem.2005,53,4554-4560.
    14.徐丽宏,曹玉玺,何丽芳等.Banna病毒TaqMan探针法RT-PCR检测方法的建立,中华实验和临床病毒学杂志,2006,20,47-51.
    15.Summerer,D.;Marx,A.A molecular beacon for quantitative monitoring of the DNA polymerase reaction in real-time,Angew.Chem.Int.Ed 2002,41,3620-3622.
    16.Li,X.;Huang,Y.;Guan,Y.;Zhao,M.;Li,Y.Universal molecular beacon-based tracer system for real-time polymerase chain reaction,Anal.Chem.2006,78,7886-7890.
    17.Kostrikis,L.G.;Tyagi,S.;Musa,M.M.;Ho,D.D.;Kramer F.R.Molecular beacons-Spectral genotyping of human alleles,Science 1998,279,1228-1229.
    18.张新,何云志,黄敏,王华忠,蒲晓允.分子信标PCR检测脲原体U.Parvum 和U.Urealyticum.重庆医学,2006,35,1547-1549.
    19.Piatek,A.S.,Tyagi,S.,Pol,A.C.,Telenti,A.,Miller,L.P.,Kramer,F.R.et al.Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis,Nature Biotechnology 1998,16,359-363.
    20.Nazarenko,I.A.;Bhatnagar,S.K.;Hohman,R.J.A closed tube format for amplification and detection of DNA based on energy transfer,Nucleic Acids Res.1997,25,2516-2521.
    21.Whitcombe,D.;Theaker,J.;Guy,S.P.Detection of PCR products using self-probing amplicons and fluorescence,Nat.Biotechnol.1999,17,804-807.
    22.Hernandez,M;Rodriguez-Lazaro,D;Zhang,D,et al.Interlaboratory transfer of a PCR multiplex method for simultaneous detection of four genetically modified maize lines:Btll,MON810,T25,and GA21,J.Agric.Food Chem.2005,53,3333-3337
    23.Germini,A.;Zanetti,A.;Salati,C.;Rossi,S.;Forrea,C.;Schmid,S.;Marchelli,R.Development of a seven-target multiplex PCR for the simultaneous detection of transgenic soybean and maize in feeds and foods,J.Agric.Food Chem.2004,52,3275-3280
    24.Kalogianni,D.P.;Elenis,D.S.;Christopoulos,T.K.;Ioannou,P.C.Multiplex quantitative competitive polymerase chain reaction based on a multianalyte hybridization assay performed on spectrally encoded microspheres,Anal Chem.2007,79,6655-6661
    25. Ross, P. L.; Davis, P. A.; Belgrader, P. Analysis of DNA fragments from conventional and microfabricated PCR devices using delayed extraction MALDI-TOF mass spectrometry, Anal. Chem. 1998, 70, 2067-2073
    26. Krahmer, M. T.; Walters, J. J.; Fox, K. F.; Fox, A.; Creek, K. E.; Pirisi, L.MS for identification of single nucleotide polymorphisms and MS/MS for discrimination of isomeric PCR products, Anal. Chem. 2000, 72, 4033-4040
    27. Krahmer, M. T.; Johnson, Y. A.; Walters, J. J.; Fox, K. F.; Fox, A.; Nagpal, M. Electrospray quadrupole mass spectrometry analysis of model oligonucleotides and polymerase chain reaction products: Determination of base substitutions, nucleotide additions/deletions, and chemical modifications, Anal. Chem. 1999, 71,2893-2900
    28. Oberacher, H.; Parson, W.; Muhlmann, R. ; Huber,C. G. Analysis of polymerase chain reaction products by on-line liquid chromatography-mass spectrometry for genotyping of polymorphic short tandem repeat loci, Anal. Chem. 2001, 73, 5109-5115
    29. Hurst, G.B.; Weaver, K.; Doktycz, M. J.; Buchanan, M. V. ; Costello, A. M.; Lidstrom, M. E. MALDI-TOF analysis of polymerase chain reaction products from methanotrophic bacteria, Anal. Chem. 1998, 70, 2693-2698
    30. Lu, J.; Lau, C.; Kai, M. Magnetic bead-based label-free chemiluminescence detection of telomeres, Chem. Commun. 2003, 2888-2889.
    31. Zhou, Y.; Zhang, Y.; Lau, C.; Lu, J. Sequential determination of two proteins by temperature-triggered homogeneous chemiluminescent immunoassay, Anal. Chem. 2006, 78, 5920-5924.
    32. Fan, A.; Lau, C.; Lu, J. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label, Anal. Chem. 2005, 77, 3238-3242.
    33. Chen, J.P.; Hoffman, A. S. Polymer protein conjugates .2. Affinity precipitation separation of human immuno-gamma-globulin by a poly (N-isopropylacrylamide) -protein-a conjugate, Biomaterials 1990, 11, 631-634.
    34. Schild, H.G. Poly (N-isopropylacrylamide): experiment, theory and application, Prog. Polym. Sci. 1992, 17, 163-249.
    1.厉朝龙,陈枢青,刘子贻,生物化学与分子生物学实验技术,浙江大学出社,1999.
    2.Stoscheck,C.M.Protein assay sensitive at nanogram levels,Anal Biochem.1987,160,301-305.
    3.Soedjak,H.S.Colorimetric Micromethod for Protein Determination with Erythrosin B,Anal Biochem.1994,220,142-148.
    4.Li,N.;Li,K.A.;Tong,S.Y.Fluorometric Determination for Micro Amounts of Albumin and Globulin Fractions without Separation by Using α,β,γ,δ-Terta (4'-carboxyphenyl)porphin,Anal.Biochem.1996,233,151 - 155.
    5.Huang,C;Li,Y.;Feng,P.;Li,M.Determination of proteins by their enhancement of resonance light scattering by fuchsine acid,Fresenius J Anal Chem.2001,371,1034-1036.
    6.Zhao,Y.K.;Chang,W.B.;Ci,Y.X.Rapid and sensitive determination of protein by light-scattering technique with Eriochrome Blue Black R,Talanta 2003,59,477-484.
    7.周雅琳,阚健全,陈宗道,高效液相色谱法在蛋白质分析中应用,粮食与油脂.2001,11,37-38.
    8.杨运云,牟德海,童朝阳等,双抗体夹心酶联免疫检测法测定蓖麻毒素,分析化学,2007,35,439-442
    9.颜光涛,郝秀华,王录焕,高灵敏白介素6放射免疫分析的建立及初步应用,生物化学与生物物理进展,2000,27,541-544.
    10.朱海霖,陈恒武,顺序注射可更新表面固相荧光免疫法测定人血清中免疫球蛋白G,分析化学,2004,32,841-846.
    11.Eriksson,S.;Vehnianen,M.;Jansen,T.;Meretoja,V.;Saviranta,P.;Timo,L.Dual-label time-resolved immunofluorometric assay of free and total prostatespecific antigen based on recombinant Fab fragments,Clin.Chem.2000,46,658-666.
    12.Swartzman,E.E.;Miraglia,S.J.;Mellentin-Michelotti,J.;Evangelista,L.;Yuan, P.M.A homogeneous and multiplexed immunoassay for high-throughput screening using fluorometric microvolume assay technology,Anal.Biochem.1999.271,143-151.
    13.Guzman-Va'zquez de Prada,A.;Pen~a,N.;Parrado,C.;Reviejo,A.J.;Pingarro'n,J.M.Amperometric multidetection with composite enzyme electrodes,Talanta 2004,62,896-903.
    14.Hayes,F.J.;Halsall,H.B.;Heineman,W.R.Simultaneous immunoassay using electrochemical detection of metal-ion labels,Anal.Chem.1994,66,1860- 1865.
    15.Kricka,L.J.Multianalyte testing,Clin.Chem.1992,38,327-328.
    16.Goldman,E.R.;Clapp,A.R..;Anderson,G.P.;Uyeda,H.T.;Medintz,I.L.;Mattoussi,H.;Mauro,J.M.Multiplexed toxin analysis using four colors of quantum dot fluororeagents,Anal.Chem.2004,76,684-688.
    17.Kojima,K.;Hiratsuka,A.;Suzuki,H.;Yano,K.;Ikebukuro,K.;Karube,I.Electrochemical protein chip with arrayed immunosensors with antibodies immobilized in a plasma-polymerized film,Anal.Chem.2003,75,1116-1122.
    18.Wilson,M.S.Electrochemical immunosensors for the simultaneous detection of two tumor markers,Anal.Chem.2005,77,1496-1502.
    19.Dandliker WB,Feigen GA.Quantification of antigen-antibody reaction by polarization of fluorescence,Biochem.Biophys.Res.Commun.1961,5,299-304
    20.郝新保,汪能平,陈家芳等,中华实验和临床病毒杂志,1995,9,39-41
    21.魏孔吉,赵美萍等,生物素-亲和素放大酶联免疫吸附法测定双酚A,分析化学,2005,33,1122-1124
    22.罗凯忠,杨旭,苏先狮等,时间分辨免疫荧光法检测乙型肝炎病毒标志物,中华肝脏病杂志,2003,11(9),569
    23.Monji N,Hoffman,AS.A novel immunoassay system and bioseparation process based on thermal phase separating polymers,Appl.Biochem.Biotechnol.1987,14,107-120.
    24.Bromberg,L.E.;Ron E.S.Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery,Adv.Drug.Delivery Rev.1998,31,197-221.
    25. Hoffman, A. S. Bioconjugates of intelligent polymers and recognition proteins for use in diagnostics and affinity separations, Clin. Chem. 2000, 46, 1478-1486.
    26. Chen, J. P.; Yang, H. J.; Hoffman, A. S. Ploymer protein conjugates .1. Effect of protein conjugation on the cloud point of poly (N-isopropylacrylamide ), Biomaterials 1990,11, 625-630.
    27. Hafeli, U.; Schutt, W.; Teller, J.; Zborowski, M. The mystery and history of magnetism, Scientific and Clinical Applications of Magnetic Carriers, Plenum: New York, 1997.
    28. Wang, J.; Liu, G.; Munge, B.; Lin, L.; Zhu, Q. DNA-based amplified bioelectronic detection and coding of proteins, Angew. Chem., Int. Ed. 2004, 43, 2158-2161.
    29. Lu, J.; Lau, C.; Kai, M. Magnetic bead-based label-free chemiluminescence detection of telomeres, Chem. Commun. 2003, 2888-2889.
    30. Malmstadt, N.; Yager, P.; Hoffman, A. S.; Stayton, P. S. A smart microfluidic affinity chromatography matrix composed of poly (N-isopropylacrylamide)-coated beads Anal. Chem. 2003, 75, 2943-2949.
    31. Garcia-Campana, A. M.; Baeyens, W. R. G. Chemiluminescence in Analytical Chemistry, Marcel Dekker: New York, 2001.
    32. Agbaria, R. A.; Oldham, P. B.; McCarroll, M.; McGown, L. B.; Warner, I. M. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry, Anal. Chem. 2002, 74, 3952-3962.
    33. Roda, A.; Guardigli, M.; Michelini, E.; Mirasoli, M.; Pasini, P. Analytical bioluminescence and chemiluminescence, Anal. Chem. 2003, 75, 463-470.
    34. Ni, J.; Lipert, R.J.; Dawson, G.B.; Porter, M.D. Immunoassay Readout Method Using Extrinsic Raman Labels Adsorbed on Immunogold Colloids, Anal. Chem. 1999,71,4903-4908.
    35. Fan, A.P.; Lau, C.W.; Lu, J.Z. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label, Anal. Chem. 2005, 77, 3238-3242.
    36. Dequaire, M.; Degrand, C.; Limoges, B. An electrochemical metalloimmunoassay based on a colloidal gold label, Anal. Chem. 2000, 72, 5521-5528.
    37. Evangelista, R.A.; Pollak, A.; Gudgin, T.E.F. Enzyme-amplified lanthanide luminescence for enzyme detection in bioanalytical assays, Anal. Biochem. 1991, 197,213-224.
    38. Lyon, L.A.; Musick, M.D.; Natan, M.J. Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing, Anal. Chem. 1998, 70, 5177-5183.
    39. Liu, G.; Wang, J.; Kim, J.; Jan, M.R. Collins GE, Electrochemical Coding for Multiplexed Immunoassays of Proteins, Anal. Chem. 2004, 76, 7126-7130.
    40. Wilson, M.S.; Nie, W. Electrochemical Multianalyte Immunoassays Using an Array-Based Sensor, Anal. Chem. 2006, 78, 2507-2513.
    41. Sato, K.; Tokeshi, M.; Odake, T.; Kimura, H.; Ooi, T.; Nakao, M.; Kitamori, T. Integration of an Immunosorbent Assay System: Analysis of Secretory Human Immunoglobulin A on Polystyrene Beads in a Microchip, Anal. Chem. 2000, 72, 1144-1147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700