Pt系催化剂的制备及其电催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温燃料电池是一种小型的电源技术,由于其具有操作简单、燃料储存运输方便、适合作为便携设备电源等特点,吸引了越来越多研究者的关注。然而,低温燃料电池中阴极和阳极催化剂低的催化效率及其高昂价格是抑制低温燃料电池商业化的瓶颈之一。因此,如何提高催化剂的活性和稳定性,减少贵金属的载量,有效降低电池的制造成本成为非常有意义的工作。本文围绕这一研究主题,开展了以下几个方面的工作。
     1.络合-自还原法制备碳载Pt纳米粒子催化剂及其对乙醇的电催化氧化
     使用乙二胺四甲叉膦酸为络合剂制备Pt~(Ⅳ)络合物,利用Pt~(Ⅳ)络合物自还原法制备Vulcan XC-72碳载Pt纳米粒子(Pt/C)催化剂的方法。在制备Pt/C催化剂的过程中,Pt纳米粒子的大小可以通过控制反应溶液的pH有效控制。TEM照片显示,Pt纳米粒子在Vulcan XC-72碳载体上分散性良好,并且具有较小的粒径分布范围。因此,利用这种方法制备的系列Pt/C催化剂非常适合用来研究Pt纳米粒子电催化乙醇氧化的粒径效应。Pt/C催化剂中Pt纳米粒子粒径大小与其催化乙醇电氧化的活性关系研究表明:平均粒径在2.5 nm左右的碳载Pt纳米粒子对乙醇的氧化具有最佳的电催化性能。
     2.碳载Pt-Sn催化剂的制备及其对乙醇氧化的电催化性能
     以Pt(NO_3)_2和SnO作前驱体,使用热分解法制备了碳载Pt-Sn纳米粒子(Pt-Sn/C)催化剂。X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)等表征技术显示该法制备的Pt-Sn/C催化剂中的Pt-Sn纳米粒子具有Pt-Sn合金粒子外壳和SnO_x粒子为核的核壳结构。循环伏安法、CO溶出等电化学方法显示催化剂对乙醇氧化的电催化性能要好于商业化的碳载Pt(Pt/C)催化剂。特别是乙醇在Pt-Sn/C催化剂电极上的循环伏安曲线中,出现了一个少有报道的0.32 V左右的乙醇氧化肩峰。此外,该制备方法没有引入Cl~-,制得的催化剂不需要洗涤,不易引起环境污染。因此,这是一种具有潜在实现的、可规模化工业生产的制备方法。
     3.碳载Pt-P催化剂的制备及其氧还原电催化性能
     利用硝酸亚铂(Pt(NO_3)_2)和白磷(P4)制备出了碳载Pt-P纳米粒子(Pt-P/C)催化剂。该方法制备的Pt-P/C催化剂中磷含量较高,Pt-P粒子的粒径随着P4投料量的增加而减小。该方法制备的Pt-P/C催化剂的氧还原催化(ORR)性能优于商业化的Pt/C催化剂。实验结果显示白磷直接还原掺杂法制备Pt-P/C催化剂的方法是一种实践可行的制备方法。磷掺杂后,Pt/C催化剂对氧还原(ORR)电催化性能提高的主要原因是Pt、P之间形成合金,降低了Pt的电子密度。
     4.均相沉淀-原位还原法制备高分散的Pd/C催化剂
     利用简单的均相沉淀-原位还原法制备了一种超细、高分散的碳载Pd纳米粒子(Pd/C)催化剂。在特定的pH条件下,由于自身缓慢的水解作用,PdCl_2溶液中可溶性的[PdCl_4]~(2-)物种会缓慢转化为不可溶的氧化钯水合物(PdO·H_2O),这导致高分散、小粒径的碳载PdO·H_2O纳米粒子(PdO·H_2O/C)的生成。随后利用NaBH_4还原即可制得高分散、超细的Pd/C催化剂。电化学性能测试显示该种Pd/C催化剂对甲酸的电催化氧化具有很高的活性,这与该种Pd/C催化剂具有较小粒子粒径和高分散性相关。
Low temperature fuel cells are attracting increasing interest as a compact power sources for portable applications, mainly due to the relatively simple handling, storage, and transportation of fuel molecules. However, the low electrocatalytic performance of catalyst for target molecules is one of the major challenges in the commercialization of low tempeture fuel cell. Thus, it is important to improve the activity or stability of catalyst, reduce the platinum group metal loading and decrease particle size of platinum group metal catalyst. As these issues to be addressed, the following researches have been carried out.
     1. Ethanol electrooxidation on carbon-supported Pt catalyst prepared using complexing self-reduction method
     A novel self-reduction of Pt-complex method is used to prepare Vulcan XC-72 carbon-supported Pt nanoparticles (Pt/C) catalysts by employing ethylenediamine-tetramethylene phosphonic acid (EDTMP) as complexing reagent. During the preparation of Pt/C catalysts, the particles size of Pt nanoparticles (Pt-NPs) can be controlled effectively by reaction solution pH. TEM images demonstrate that the Pt nanoparticles well disperse on the Vulcan XC-72 carbon support with a relatively narrow particle size distribution by using the complex self-reduction method. Therefore, the Pt/C catalysts prepared by the same method are suitable for evaluating the size effect of the Pt-NPs on electrocatalytic performance for ethanol electrooxidation. A correlation between the electrocatalytic activity of ethanol oxidation and particle size of the Pt/C catalysts indicates that Pt-NPs with mean particle size of 2.5 nm possesse the highest electrocatalytic performance for ethanol electrooxidation.
     2. Synthesis of carbon supported PtSn catalyst and its elctrocatalytic performance for ethanol oxidation
     One kind Pt-Sn/C catalyst had been synthesized firstly by solid phase reacted and then direct thermo-decomposition treatment. It is the first time that stannous oxide was used as the reactor for PtSn/C, and our product almost needn’t any distilled water for our reaction without Cl~(-1). In our experiments, an enhancement of the activity for the ethanol oxidation was observed on the binary catalyst. The catalyst was investigated by employing various physicochemical analyses: X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) measurements showed that the affiliation of Sn improves the electro-catalytic activities for the oxidation of ethanol. The initial potential of the anodic peak of ethanol at the Pt-Sn/C catalyst electrode with the atomic ratio of Pt and Sn = 1:1 is at -67 mV. This is attributed to that Sn can promote the oxidation of ethanol at Pt through the direct pathway because Sn can decrease the adsorption strength of CO on Pt.
     3. Preparation of carbon supported Pt-P catalysts and its elctrocatalytic performance for oxygen reduction
     The carbon supported PtP (PtP/C) catalysts were synthesized from Pt(NO_3)_2 and phosphorus yellow at the room temperature. The content of P in the PtP/C catalysts prepared with this method is high and the average size of the PtP particles is decreased with increasing the content of P. The electrocatalytic performances of the PtP/C catalysts prepared with this method for the oxygen reduction reaction (ORR) are better than that of the commercial Pt/C catalyst. The promotion action of P for enhancing the electrocatalytic performances of the PtP/C catalyst for ORR is mainly due to that Pt and P form the alloy and then the electron density of Pt is decreased.
     4. Preparation of highly dispersed carbon supported Pd catalyst by facile homogeneous precipitation-reduction reaction method
     A highly dispersed and ultrafine carbon supported Pd nanoparticles (Pd/C) catalyst was synthesized by a facile homogeneous precipitation method. Under the appropriate pH conditions, [PdCl_4]~(2-) species in PdCl_2 solution can slowly transformed into the insoluble palladium oxide hydrate (PdO·H_2O) precipitation by treatment due to slow hydrolysis reaction, which results in the generation of carbon supported PdO·H_2O nanoparticles (PdO·H_2O/C) sample with the high dispersion and small particle size. Thus, a highly dispersed and ultrafine Pd/C catalyst can be synthesized by PdO·H_2O→Pd~0 in-situ reduction reaction path in the presence of NaBH_4. As a result, the resulting Pd/C catalyst possessed a significantly electrocatalytic performance for formic acid oxidation, which can be attributed to the uniformly sized and highly dispersed nanostructure, which provided a larger overall electrochemical active surface area.
引文
[1] http://gb.cri.cn/27824/2010/06/07/5187s2877915.htm, 2011.
    [2] Wang YJ, Wu B, Gao Y, Tang YW, Lu TH, Xing W, Liu CP, Kinetic study of formic acid oxidation on carbon supported Pd electrocatalyst, Journal of Power Sources, 2009, 192, 372-375.
    [3] Chen Y, Zhou YM, Tang YW, Lu TH, Electrocatalytic properties of carbon-supported Pt-Ru catalysts with the high alloying degree for formic acid electrooxidation, Journal of Power Sources, 2010, 195, 4129-4134.
    [4] Chen W, Tang YW, Bao JC, Gao Y, Liu CP, Xing W, Lu TH, Study on carbon supported Au catalyst prepared polyvinyl alcohol protection method as cathodic catalystin direct formic acid fuel cell, Journal of Power Sources, 2007, 167, 2, 315-318.
    [5] Zhang LL, Tang YW, Bao JC, Lu TH, Li C, A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell, Journal of Power Sources, 2006, 162, 177-179.
    [6] Zhang LL, Lu TH, Bao JC, Tang YW, Li C, Preparation method of an ultrafine carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell, Electrochem Comm, 2006, 8, 1625-1627.
    [7] Rice C, Ha S, Masel RI, Wieckowski A, Catalysts for direct formic acid fuel cells, Journal of Power Sources, 2003, 115, 2, 229-235.
    [8] Daimon H, Kurobe Y, Size reduction of PtRu catalyst particle deposited on carbon support by addition of non-metallic elements, Catalysis Today, 2006, 111, 3-4, 182-187.
    [9] Antolini E, Formation of carbon-supported PtM alloys for low temperature fuel cells: a review, Materials Chemistry and Physics, 2003, 78, 3, 563-573.
    [10] Jiang LH, Zhou ZH, Li WZ, Zhou WJ, Song SQ, Li HQ, et al., Effects of treatment in different atmosphere on Pt3Sn/C electrocatalysts for ethanol electro-oxidation, Energy & Fuels, 2004, 18, 3, 866-871.
    [11] Thotiyl MMO, Kumar TR, Sampath S, Pd supported on titanium nitride for efficient ethanol oxidation, The Journal of Physical Chemistry C, 2010, 114, 41, 17934-17941.
    [12] Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Leger JM, Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts, Electrochimica Acta, 2004, 49, 22-23, 3901-3908.
    [13] Chen Y, Zhang GJ, Ma J, Zhou YM, Tang YW, Lu TH, Electro-oxidation of methanol at the different carbon materials supported Pt nano-particles, International Journal of Hydrogen Energy, 2010, 35, 19, 10109-10117.
    [14] Venkateswara RC, Viswanathan B, ORR activity and direct ethanol fuel cell performance of carbon-supported Pt?M (M = Fe, Co, and Cr) alloys prepared by polyol reduction method, The Journal of Physical Chemistry C, 1985, 113, 43, 18907-18913.
    [15] Di NV, Negro E, Pt-Fe and Pt-Ni carbon nitride-based core-shell ORR electrocatalysts for polymer electrolyte membrane fuel cells, Fuel Cells, 2010, 10, 2, 234-244.
    [16] Ozturk O, Ozdemir OK, Ulusoy I, Ahsen AS, Slavcheva E, Effect of Tisublayer on the ORR catalytic efficiency of dc magnetron sputtered thin Pt films, International Journal of Hydrogen Energy, 2010, 35, 10, 4466-4473.
    [17] Xu Y, Ruban AV, Mavrikakis M, Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys, Journal of the American Chemical Society, 2004, 126, 14, 4717-4725.
    [18] Fernandez JL, Walsh DA, Bard AJ, Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy M-Co (M : Pd, Ag, Au), Journal of the American Chemical Society, 2005, 127, 1, 357-365.
    [19] Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G F, et al., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nature Materials, 2007, 6, 3, 241-247.
    [20] Suo YG, Zhuang L, Lu JT, First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction, Angewandte Chemie-International Edition, 2007, 119, 16, 2920-2922.
    [21] Lefevre M, Proietti E, Jaouen F, Dodelet JP, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells, Science, 2009, 324, 5923, 71-74.
    [22] Shao YY, Liu J, Wang Y, Lin YH, Novel catalyst support materials for PEM fuel cells: current status and future prospects, Journal of Materials Chemistry, 2009, 19, 1, 46-59.
    [23] Escudero MJ, Hontanon E, Schwartz S, Boutonnet M, Daza L, Development and performance characterisation of new electrocatalysts for PEMFC, Journal of Power Sources, 2002, 106, 1, 206-214.
    [24] Kishida M, Ichiki K, Hanaoka T, Nagata H, Wakabayashi K, Preparation method for supported metal catalysts using w/o microemulsion: Study on immobilization conditions of metal particles by hydrolysis of alkoxide, Catalysis Today, 1998, 45, 1-4, 203-208.
    [25] Lu CH, Lin YK, Microemulsion preparation and electrochemical characteristics of LiNi/3Co/3Mn/3O2 powders, Journal of Power Sources, 2009, 189, 1, 40-44.
    [26] Remona AM, Phani KLN, Methanol-tolerant oxygen reduction reaction at Pt-Pd/C alloy nanocatalysts, Journal of Fuel Cell Science and Technology, 2011, 8, 1, 0110011-0110016.
    [27] Schilling T, Okunola A, Masa J, Schuhmann W, Bron M, Carbon nanotubes modified with electrodeposited metal porphyrins and phenanthrolines for electrocatalytic applications, Electrochimica Acta, 2010, 55, 26, 7597-7602.
    [28] Santiago D, Rodriguez-Calero GG, Rivera H, Tryk DA, Scibioh MA, Cabrera C R, Platinum electrodeposition at high surface area carbon Vulcan-XC-72R material using a rotating disk-slurry electrode technique, Journal of the Electrochemical Society, 2010, 157, 12, F189-F195.
    [29] Lertviriyapaisan S, Tantavichet N, Sublayers for Pt catalyst electrodeposition electrodes in PEMFC, International Journal of Hydrogen Energy, 2010, 35, 19, 10464-10471.
    [30]王树博,王要武,谢晓峰,汪浩,严辉,直接甲醇燃料电池阳极催化剂的制备,化工进展, 2006, 25, 6, 658-662.
    [31] Massong H, Tillmann S, Langkau T, Baltruschat H, On the influence of tin and bismuth UPD on Pt(111) and Pt(332) on the oxidation of CO, Electrochimica Acta, 1998, 44, 8-9, 1379-1388.
    [32] Taylor EJ, Anderson EB, Vilambi NRK, Preparation of high-Platinum-utilization gas diffusion electrodes for proton-exchange-membrane fuel cells, Journal of the Electrochemical Society, 1992, 139, 5, L45-L46.
    [33] Tian N, Zhou ZY, Yu NF, Wang LY, Sun SG, Direct Electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation, Journal of the American Chemical Society, 2010, 132, 22, 7580-7581.
    [34] Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL, Synthesis of tetrahexahedral Platinum nanocrystals with high-index facets and high electro-oxidation activity, Science, 2007, 316, 5825, 732-735.
    [35] Ignaszak A, Teo C, Ye S, Gyenge E, Pt-SnO2?Pd/C electrocatalyst with enhanced activity and durability for the oxygen reduction reaction at low pt loading: the effect of carbon support type and activation, The Journal of Physical Chemistry C, 2010, 114, 39, 16488-16504.
    [36] Tsuji M, Matsumoto K, Miyamae N, Tsuji T, Zhang X, Rapid preparation of silver nanorods and nanowires by a microwave-polyol method in the presence of pt catalyst and polyvinylpyrrolidone, Crystal Growth & Design, 2006, 7, 2, 311-320.
    [37]赵新生,姜鲁华,孙公权,杨少华,衣宝廉,辛勤,新型PtSn/C阳极催化剂对乙醇的电催化氧化性能,催化学报, 2004, 25, 12, 983-988.
    [38] Unni SM, Dhavale VM, Pillai VK, Kurungot S, High Pt utilization electrodes for polymer electrolyte membrane fuel cells by dispersing Pt particles formed by a preprecipitation method on carbon“polished”with polypyrrole, The Journal of Physical Chemistry C, 2010, 114, 34, 14654-14661.
    [39] Yoshitake T, Shimakawa Y, Kuroshima S, Kimura H, Ichihashi T, Kubo Y, et al., Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application, Physica B: Condensed Matter, 2002, 323, 1-4, 124-126.
    [40] Tu HC, Wang WL, Wan CC, Wang YY, Novel Method for the synthesis of hydrophobic Pt?Ru nanoparticles and its application to preparing a nafion-free anode for the direct methanol fuel cell, The Journal of Physical Chemistry B, 2006, 110, 32, 15988-15993.
    [41] Henglein FA, Formation of a Pt-carbonyl colloid by reaction of colloidal Pt with CO, The Journal of Physical Chemistry B, 1997, 101, 31, 5889-5894.
    [42] Lu P, Dong J, Toshima N, Surface-enhanced raman scattering of a Cu/Pd alloy colloid protected by poly(N-vinyl-2-pyrrolidone), Langmuir, 1999, 15, 23, 7980-7992.
    [43] Huang YJ, Zhou XiC, Liao JH, Liu CP, Lu TH, Xing W, Preparation of Pd/C catalyst for formic acid oxidation using a novel colloid method, Electrochemistry Communications, 2008, 10, 4, 621-624.
    [44] Xu SB, Yang Q, Well-dispersed water-soluble Pd nanocrystals: facile reducing synthesis and application in catalyzing organic reactions in aqueous media, The Journal of Physical Chemistry C, 2008, 112, 35, 13419-13425.
    [45] Chen L, Hu GZ, Zou GJ, Shao SJ, Wang XL, Efficient anchorage of Pd nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation, Electrochemistry Communications, 2009, 11, 2, 504-507.
    [46] Gamez A, Richard D, Gallezot P, Gloaguen F, Faure R, Durand R, Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer, Electrochimica Acta, 1996, 41, 2, 307-314.
    [47] Adams BD, Wu GS, Nigro SS, Chen A, Facile synthesis of Pd?Cd nanostructures with high capacity for hydrogen storage, Journal of the American Chemical Society, 2009, 131, 20, 6930-6931.
    [48] Chang YG, Xu J, Zhang YY, Ma Shiyu, Xin Lihui, Zhu Lina, et al., Opticalproperties and photocatalytic performances of Pd modified ZnO samples, The Journal ofPhysical Chemistry C, 2009, 113, 43, 18761-18767.
    [49] Xiong GW, Luo LT, Li CG, Yang XM, Synthesis of mesoporous ZnO (m-ZnO)and catalytic performance of the Pd/m-ZnO catalyst for methanol steam reforming,Energy & Fuels, 2009, 23, 3, 1342-1346.
    [50] Xue XY, Chen ZH, Xing LL, Ma CH, Chen YJ, Wang TH, Enhanced opticaland sensing properties of one-step synthesized Pt?ZnO nanoflowers, The Journal ofPhysical Chemistry C, 2010, 114, 43, 18607-18611.
    [51] Song H, Rioux RM, Hoefelmeyer JD, Komor R, Niesz K, GM, et al.,Hydrothermal growth of mesoporous SBA-15 silica in the presence of pvp-stabilized Ptnanoparticles: synthesis, characterization, and catalytic properties, Journal of theAmerican Chemical Society, 2006, 128, 9, 3027-3037.
    [52] Nishiyama N, Ichioka K, Park DH, Egashira Y, Ueyama K, Gora L, et al.,Reactant-selective hydrogenation over composite silicalite-1-coated Pt/TiO2 particles,Industrial & Engineering Chemistry Research, 2004, 43, 5, 1211-1215.
    [53] Contreras-Andrade I, Vazquez-Zavala A, Viveros T, Influence of the synthesismethod on the catalytic behavior of Pt and PtSn/Al2O3 reforming catalyst, Energy &Fuels, 2009, 23, 8, 3835-3841.
    [54] Villullas HM, Mattos-Costa FI, Nascente PAP, Bulhoes LOS, Sol?Gelprepared Pt-modified oxide layers: synthesis, characterization, and electrocatalyticactivity, Chemistry of Materials, 2006, 18, 23, 5563-5570.
    [55] Pawelec B, Murcia-Mascaros S, Fierro JLG, Surface and structural features ofPt/Pd-loaded mesoporous silica-delaminated zirconium phosphate systems, Langmuir,2002, 18, 21, 7953-7963.
    [56] Zhang MC, Zhang WQ, Wang SN, Synthesis of well-defined silica andPd/silica nanotubes through a surface sol?gel process on a self-assembled chelate blockcopolymer, The Journal of Physical Chemistry C, 2010, 114, 37, 15640-15644.
    [57] Scott RWJ., Wilson OM, Crooks RM, Titania-supported Au and Pdcomposites synthesized from dendrimer-encapsulated metal nanoparticle precursors,Chemistry of Materials, 2004, 16, 26, 5682-5688.
    [58] Virginia G, Ultrasonic chemical effects, Industrial & Engineering Chemistry,1955, 47, 6, 1180-1180.
    [59] Nagao D, Shimazaki Y, Saeki S, Kobayashi Y, Konno M, Effect of ultrasonic irradiation on carbon-supported Pt-Ru nanoparticles prepared at high metal concentration, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 1-3, 623-627.
    [60] Tong H, Li HL, Zhang XG, Ultrasonic synthesis of highly dispersed Pt nanoparticles supported on MWCNTs and their electrocatalytic activity towards methanol oxidation, Carbon, 2007, 45, 12, 2424-2432.
    [61] Rhee CY, Kim BJ, Ham C, Kim YJ, Song K, Kwon K, Size effect of Pt nanoparticle on catalytic activity in oxidation of methanol and formic acid: comparison to Pt(111), Pt(100), and polycrystalline Pt electrodes, Langmuir, 2009, 25, 12, 7140-7147.
    [62] Zhao YC, Yang XL, Tian JN, Wang FY, Zhan L, Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media, International Journal of Hydrogen Energy, 2010, 35, 8, 3249-3257.
    [63] Golikand AN, Asgari M, Lohrasbi E, Study of oxygen reduction reaction kinetics on multi-walled carbon nano-tubes supported Pt-Pd catalysts under various conditions, International Journal of Hydrogen Energy, In Press, Corrected Proof, DOI: 10.1016, Available online 23 June 2010.
    [64] Bang JH, Han K, Skrabalak SE, Kim H, Suslick KS, Porous carbon supports prepared by ultrasonic spray pyrolysis for direct methanol fuel cell electrodes, The Journal of Physical Chemistry C, 2007, 111, 29, 10959-10964.
    [65] Yang Z, Chen XH, Nie HG, Zhang K, Li W, Yi B, et al., Direct synthesis of ultralong carbon nanotube bundles by spray pyrolysis and investigation of growth mechanism, Nanotechnology, 2008, 19, 8, 1-8.
    [66] Iida N, Naito H, Ito H, Nakayama K, Lenggoro IW, Okuyama K, Spray pyrolysis synthesis and evaluation of fine bimetallic Au-Pd particles, Nippon seramikkusu kyokai gakujutsu ronbunshi, 2004, 112, 7, 405-408.
    [67] Morales-Acosta D, Ledesma-Garcia J, Godinez LA, Rodriguez HG, Alvarez-Contreras L, Arriaga LG, Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation, Journal of Power Sources, 2010, 195, 2, 461-465.
    [68] Seo SJ, Joh HI, Kim HT, Moon SH, Properties of Pt/C catalyst modified by chemical vapor deposition of Cr as a cathode of phosphoric acid fuel cell,Electrochimica Acta, 2006, 52, 4, 1676-1682.
    [69] Liu YM, Sung Y, Chen TT, Wang HT, Ger MD, Low temperature growth of carbon nanotubes by thermal chemical vapor deposition using non-isothermal deposited Ni-P-Pd as co-catalyst, Materials Chemistry and Physics, 2007, 106, 2-3, 399-405.
    [70]张智敏,任建国,王自为,无机合成化学及技术, 2002.
    [71] Boyd DA, Greengard L, Brongersma M, El-Naggar MY, Goodwin DG, Plasmon-assisted chemical vapor deposition, Nano Letters, 2006, 6, 11, 2592-2597.
    [72] Dandapat A, Jana D, De G, Synthesis of thick mesoporousγ-alumina films, loading of Pt nanoparticles, and use of the composite film as a reusable catalyst, Acs Applied Materials & Interfaces, 2009, 1, 4, 833-840.
    [73] Hunka DE, Herman DC, Lormand KD, Jaramillo DM, Land DP, Decomposition of 1,1-dichloroethene on Pd(111), Langmuir, 2005, 21, 18, 8333-8337.
    [74] Son SU, Jang YJ, Park J, Na HB, Park HM, Yun HJ, et al., Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions, Journal of the American Chemical Society, 2004, 126, 16, 5026-5027.
    [75] Sarkar A, Murugan AV, Manthiram A, Synthesis and characterization of nanostructured Pd?Mo electrocatalysts for oxygen reduction reaction in fuel cells, The Journal of Physical Chemistry C, 2008, 112, 31, 12037-12043.
    [76]黄俊杰,杨辉,唐亚文,周益明,陆天虹, Pt碳基簇合物途径制备的Pt/C催化剂对甲醇的电催化氧化,南京师大学报, 2003, 26, 2, 40-43.
    [77] Farrauto RJ, Lampert JK, Hobson MC, Waterman EM, Thermal decomposition and reformation of PdO catalysts; support effects, Applied Catalysis B: Environmental, 1995, 6, 3, 263-270.
    [78] Profeti LPR., Simoes FC, Olivi P, Kokoh KB, Coutanceau C, Leger JM, et al., Application of Pt+RuO2 catalysts prepared by thermal decomposition of polymeric precursors to DMFC, Journal of Power Sources, 2006, 158, 2, 1195-1201.
    [79] Liu W, Huang JJ, Electro-oxidation of formic acid on carbon supported Pt-Os catalyst, Journal of Power Sources, 2009, 189, 2, 1012-1015.
    [80] Goguet A, Aouine M, Cadete SAFJ., De MA, Schweich D, Candy JP, Preparation of a Pt/SiO2 Catalyst: interaction between platinum tetrammine hydroxide and the silica surface, Journal of Catalysis, 2002, 209, 1, 135-144.
    [81] Shen PK, Yin S, Li ZH, Chen C, Preparation and performance of nanosized tungsten carbides for electrocatalysis, Electrochimica Acta, 2010, 55, 27, 7969-7974.
    [82] Guo Z, Chen YT, Li LSi, Wang XM, Haller GL, Yang YH, Carbon nanotube-supported Pt-based bimetallic catalysts prepared by a microwave-assisted polyol reduction method and their catalytic applications in the selective hydrogenation, Journal of Catalysis, 2010, 276, 2, 314-326.
    [83] Chen Y, Tang YW, Liu CP, Xing W, Lu TH, Room temperature preparation of carbon supported Pt-Ru catalysts, Journal of Power Sources, 2006, 161, 1, 470-473.
    [84] Zhang HJ, Huang JS, Hou HQ, You TY, Electrochemical detection of hydrazine based on electrospun palladium nanoparticle/carbon nanofibers, Electroanalysis, 2009, 21, 16, 1869-1874.
    [85] Zhu JJ, Liu SW, Palchik O, Koltypin Y, Gedanken A, Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods, Langmuir, 2000, 16, 16, 6396-6399.
    [86] Bagotzky VS, Vassilyev YB, Mechanism of electro-oxidation of methanol on the platinum electrode, Electrochimica Acta, 1967, 12, 9, 1323-1343.
    [87] Hamnett A, Mechanism and electrocatalysis in the direct methanol fuel cell, Catalysis Today, 1997, 38, 4, 445-457.
    [88] Muller JT, Urban PM, Holderich WF, Impedance studies on direct methanol fuel cell anodes, Journal of Power Sources, 1999, 84, 2, 157-160.
    [89] Markovic NM, Gasteiger HA, Ross PN, Jiang XD, Villegas I, Weaver MJ, Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces, Electrochimica Acta, 1995, 40, 1, 91-98.
    [90] Qi W, Sun GQ, Jiang LH, Zhu MY, Wang GX, Qin X, et al., Ethanol electrooxidation on carbon supported PtSn catalyst: In situ TRFTIR study, Spectroscopy and Spectral Analysis, 2008, 28, 1, 47-50.
    [91] Jiang L, Colmenares L, Jusys Z, Sun GQ, Behm RJ, Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt: Sn ratio, Electrochimica Acta, 2007, 53, 2, 377-389.
    [92] Hitmi H, Belgsir EM, Leger JM, Lamy C, Lezna RO, A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium, Electrochimica Acta, 1994, 39, 3, 407-415.
    [93]陆天虹,唐亚文,张玲玲,高颖,直接甲酸燃料电池的优越性,电池工业, 2007, 11, 6, 412-414.
    [94] Ha S, Larsen R, Zhu Y, Masel RI, Direct formic acid fuel cells with 600 mA cm–2 at 0.4 V and 22°C, Fuel Cells, 2004, 4, 4, 337-343.
    [95] Rhee YW, Ha SY, Masel RI, Crossover of formic acid through Nafion membranes, Journal of Power Sources, 2003, 117, 1-2, 35-38.
    [96] Rice C, Ha S, Masel R I, Waszczuk P, Wieckowski A, Barnard T, Direct formic acid fuel cells, Journal of Power Sources, 2002, 111, 1, 83-89.
    [97] Chang SC, Leung LWH., Weaver MJ, Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy: electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces, The Journal of Physical Chemistry, 1990, 94, 15, 6013-6021.
    [98] Yeager E, Electrocatalysts for O2 reduction, Electrochimica Acta, 1984, 29, 11, 1527-1537.
    [99]毛宗强等,燃料电池,化学工业出版社, 2005..
    [1] Antolini E, Cardellini F, Formation of carbon supported PtRu alloys: an XRD analysis, Journal of Alloys and Compounds, 2001, 315, 1-2, 118-122.
    [2] Colmati F, Antolini E, Gonzalez ER, Ethanol oxidation on a carbon-supported Pt75Sn25 electrocatalyst prepared by reduction with formic acid: effect of thermal treatment, Applied Catalysis B-Environmental, 2007, 73, 1-2, 106-115.
    [3] Guo YL, Zheng YZ, Huang MH, Enhanced activity of PtSn/C anodic electrocatalyst prepared by formic acid reduction for direct ethanol fuel cells, Electrochimica Acta, 2008, 53, 7, 3102-3108.
    [4] Colmati F, Antolini E, Gonzalez ER, Preparation, structural characterization and activity for ethanol oxidation of carbon supported ternary Pt-Sn-Rh catalysts, Journal of Alloys and Compounds, 2008, 456, 1-2, 264-270.
    [5] Radmilovic V, Gasteiger HA, Ross PN, Structure and chemical composition of a supported pt-ru electrocatalyst for methanol oxidation, Journal of Catalysis, 1995, 154, 1, 98-106.
    [6] Xu CX, Zhang Y, Wang LQ, Xu LQ, Bian XF, Ma HY, et al., Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction, Chemistry of Materials, 2009, 21, 14, 3110-3116.
    [7] Zhang L, Lee KC, Zhang JJ, Effect of synthetic reducing agents on morphology and ORR activity of carbon-supported nano-Pd-Co alloy electrocatalysts, Electrochimica Acta, 2007, 52, 28, 7964-7971.
    [8] Dandapat A, Jana D, De G, Synthesis of thick mesoporousγ-alumina films, loading of Pt nanoparticles, and use of the composite film as a reusable catalyst, Acs Applied Materials & Interfaces, 2009, 1, 4, 833-840.
    [9] Neri G, Rizzo G, Arico AS, Crisafulli C, De LL, Donato A, et al., One-pot synthesis of naturanol from alpha-pinene oxide on bifunctional Pt-Sn/SiO2 heterogeneous catalysts Part I: the catalytic system, Applied Catalysis a-General, 2007, 325, 1, 15-24.
    [10] Zhang Y, Tong YJ, Lu LL, Osawa M, Ye S, DME dissociation reaction on platinum electrode surface: a quantitative kinetic analysis by in situ IR spectroscopy, Journal of the Electrochemical Society, 2010, 157, 1, F10-F15.
    [11] Li QX, Zhou XJ, Li JG, Xu QJ, Electrodeposition preparation of a Pt-Ru alloy film and its electrochemical surface-enhanced ir absorption spectroscopy, Acta Physico-Chimica Sinica, 2010, 26, 6, 1488-1492.
    [12] Chen YX, Ye S, Heinen M, Jusys Z, Osawa M, Behm RJ, Application of in-situ attenuated total reflection-fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: formic acid oxidation on a Pt film electrode at elevated temperatures, Journal of Physical Chemistry B, 2006, 110, 19, 9534-9544.
    [13] Liang Y, Zhou Y, Ma J, Zhao JY, Chen Y, Tang YW, et al., Preparation of highly dispersed and ultrafine Pd/C catalyst and its electrocatalytic performance for hydrazine electrooxidation, Applied Catalysis B: Environmental, 103, 3-4, 388-396.
    [14] Heibel M, Kumar G, Wyse C, Bukovec P, Bocarsly A., Use of sol?gel chemistry for the preparation of cyanogels as ceramic and alloy precursors, Chemistry of Materials, 1996, 8, 7, 1504-1511.
    [15] Shen PK, Xu CW, Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts, Electrochemistry Communications, 2006, 8, 1, 184-188.
    [16] Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM, Electrospray ionization-principles and practice, Mass Spectrometry Reviews, 1990, 9, 1, 37-70.
    [17] Gaskell SJ, Electrospray: principles and practice, Journal of Mass Spectrometry, 1997, 32, 7, 677-688.
    [18] Fenn JB, Ion formation from charged droplets: roles of geometry, energy and time, Journal of the American Society for Mass Spectrometry, 1993, 4, 7, 524-535.
    [19] Kebarle P, Tang L, From ions in solution to ions in the gas phase-the mechanism of electrospray mass spectrometry, Analytical Chemistry, 1993, 65, 22, 972-986.
    [20] B.N.帕拉马尼克, A.K.甘古利, M.L.格罗斯,电喷雾质谱应用技术,化学工业出版社, 2005.
    [21] http://www.umass.edu/karbon13/research.htm, 2011.
    [22] Chen Y, Tang YW, Liu CP, Xing W, Lu TH, Room temperature preparation of carbon supported Pt-Ru catalysts, Journal of Power Sources, 2006, 161, 1, 470-473.
    [23] Chen XH, Xie JS, Hu JQ, Feng XM, Li AQ, EDTA-directed self-assembly and enhanced catalytic properties of sphere-constructed platinum nanochains, Journal of Physics D-Applied Physics, 2010, 43, 11,
    [24] Liu H, Yuan J, Shangguan WF, Photochemical reduction and oxidation of water including sacrificial reagents and Pt/Tio2 catalyst, Energy & Fuels, 2006, 20, 6, 2289-2292.
    [25]王海燕, ICP-AES的工作原理与维护保养,试验设备与测试分析仪器, 2010, 28, 60-63.
    [26] Golikand AN, Lohrasbi E, Maragheh MG, Asgari M, Carbon nano-tube supported Pt-Pd as methanol-resistant oxygen reduction electrocatalyts for enhancing catalytic activity in DMFCs, Journal of Applied Electrochemistry, 2009, 39, 12, 2421-2431.
    [27] Li WZ, Xin Q, Yan YS, Nanostructured Pt-Fe/C cathode catalysts for direct methanol fuel cell: the effect of catalyst composition, International Journal of Hydrogen Energy, 2010, 35, 6, 2530-2538.
    [28] Zhu MY, Sun GQ, Yan SY, Li HQ, Xin Q, Preparation, StructuralCharacterization, and activity for ethanol oxidation of carbon-supported PtSnIn catalyst, Energy & Fuels, 2009, 23, 1, 403-407.
    [29] Huang QH, Yang H, Tang YW, Lu TH, Akins DL., Carbon-supported Pt-Co alloy nanoparticles for oxygen reduction reaction, Electrochemistry Communications, 2006, 8, 8, 1220-1224.
    [30] Tang YW, Zhang LL, Wang YN, Zhou YM, Gao Y, Liu CP, et al., Preparation of a carbon supported Pt catalyst using an improved organic sol method and its electrocatalytic activity for methanol oxidation, Journal of Power Sources, 2006, 162, 1, 124-131.
    [31] Jiang LH, Sun GQ, Sun SG, Liu JG, Tang SH, Li HQ, et al., Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation, Electrochimica Acta, 2005, 50, 27, 5384-5389.
    [32] Xue XZ, Ge JJ, Tian T, Liu CP, Xing W, Lu TH, Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process, Journal of Power Sources, 2007, 172, 2, 560-569.
    [33] Zhou WJ, Song SQ, Li WZ, Zhou ZH, Sun GQ, Xin Q, et al., Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance, Journal of Power Sources, 2005, 140, 1, 50-58.
    [34] Zhu MY, Sun GQ, Xin Q, Effect of alloying degree in PtSn catalyst on the catalytic behavior for ethanol electro-oxidation, Electrochimica Acta, 2009, 54, 5, 1511-1518.
    [35] Li XX, Qiu XP, Yuan HP, Chen LQ, Zhu WT, Size-effect on the activity of anodic catalysts in alcohol and CO electrooxidation, Journal of Power Sources, 2008, 184, 2, 353-360.
    [1] Antolini E, Catalysts for direct ethanol fuel cells, Journal of Power Sources, 2007, 170, 1, 1-12.
    [2] Jiang L, Colmenares L, Jusys Z, Sun GQ, Behm RJ, Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio, Electrochimica Acta, 2007, 53, 2, 377-389.
    [3] Bagchi J, Bhattacharya SK, The effect of composition of Ni-supported Pt-Ru binary anode catalysts on ethanol oxidation for fuel cells, Journal of Power Sources, 2007, 163, 2, 661-670.
    [4] Antolini E, Gonzalez ER, A simple model to assess the contribution of alloyed and non-alloyed platinum and tin to the ethanol oxidation reaction on Pt-Sn/C catalysts: application to direct ethanol fuel cell performance, Electrochimica Acta, 2010, 55, 22, 6485-6490.
    [5] Pang HL, Lu JP, Chen JH, Huang CT, Liu B, Zhang XH, Preparation of SnO2-CNTs supported Pt catalysts and their electrocatalytic properties for ethanol oxidation, Electrochimica Acta, 2009, 54, 9, 2610-2615.
    [6] Song HQ, Qiu XP, Li FS, Promotion of carbon nanotube-supported Pt catalyst for methanol and ethanol electro-oxidation by ZrO2 in acidic media, Applied Catalysis A: General, 2009, 364, 1-2, 1-7.
    [7] Zhou WJg, Zhou ZH, Song SQ, Li WZ, Sun GQ, Tsiakaras P, et al., Pt basedanode catalysts for direct ethanol fuel cells, Applied Catalysis B: Environmental, 2003, 46, 2, 273-285.
    [8] Liu B, Chen JH, Xiao CH, Cui KZ, Yang L, Pang HL, et al., Preparation of Pt/MgO/CNT hybrid catalysts and their electrocatalytic properties for ethanol electrooxidation, Energy & Fuels, 2007, 21, 3, 1365-1369.
    [9] Lan A, Mukasyan AS, Complex SrRuO3-Pt and LaRuO3-Pt catalysts for direct alcohol fuel cells, Industrial & Engineering Chemistry Research, 2008, 47, 23, 8989-8994.
    [10] Wang H, Jusys Z, Behm RJ, Ethanol electrooxidation on a carbon-supported Pt catalyst:? reaction kinetics and product yields, The Journal of Physical Chemistry B, 2004, 108, 50, 19413-19424.
    [11] Lopes T, Antolini E, Gonzalez ER, Carbon supported Pt-Pd alloy as an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol fuel cells, International Journal of Hydrogen Energy, 2008, 33, 20, 5563-5570.
    [12] Li GC, Pickup PG, Decoration of carbon-supported Pt catalysts with Sn to promote electro-oxidation of ethanol, Journal of Power Sources, 2007, 173, 1, 121-129.
    [13] Li GC, Pickup PG, The promoting effect of Pb on carbon supported Pt and Pt/Ru catalysts for electro-oxidation of ethanol, Electrochimica Acta, 2006, 52, 3, 1033-1037.
    [14] Guo DJ, Qiu XP, Chen LQ, Zhu WT, Multi-walled carbon nanotubes modified by sulfated TiO2-A promising support for Pt catalyst in a direct ethanol fuel cell, Carbon, 2009, 47, 7, 1680-1685.
    [15] Tang YW, Cao S, Chen Y, Lu TH, Zhou YM, Lu LD, et al., Effect of Fe state on electrocatalytic activity of Pd-Fe/C catalyst for oxygen reduction, Applied Surface Science, 2010, 256, 13, 4196-4200.
    [16] Chen Y, Zhou YM, Tang YW, Lu TH, Electrocatalytic properties of carbon-supported Pt-Ru catalysts with the high alloying degree for formic acid electrooxidation, Journal of Power Sources, 2010, 195, 13, 4129-4134.
    [17] Janssen MMP, Moolhuysen J, Binary systems of platinum and a second metal as oxidation catalysts for methanol fuel cells, Electrochimica Acta, 1976, 21, 11, 869-878.
    [18] Calvillo L, Lazaro MJ, Garcia-Bordeje E, Moliner R, Cabot PL, Esparbe I, etal., Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells, Journal of Power Sources, 2007, 169, 1, 59-64.
    [19] Jha N, Leela MRA, Shaijumon MM, Rajalakshmi N, Ramaprabhu S, Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell, International Journal of Hydrogen Energy, 2008, 33, 1, 427-433.
    [20] Jafri RI, Ramaprabhu S, Multi walled carbon nanotubes based micro direct ethanol fuel cell using printed circuit board technology, International Journal of Hydrogen Energy, 2010, 35, 3, 1339-1346.
    [21] Bonnemann H, Brijoux W, Brinkmann R, Jouben T, Korall B, Dinjus E, Formation of colloidal transition metals in organic phases and their application in catalysis, Angewandte Chemie International Edition in English, 1991, 30, 10, 1312-1314.
    [22] Tang YW, Zhang LL, Wang YN, Zhou YM, Gao Y, Liu CP, et al., Preparation of a carbon supported Pt catalyst using an improved organic sol method and its electrocatalytic activity for methanol oxidation, Journal of Power Sources, 2006, 162, 1, 124-131.
    [23] Morimoto Y, Yeager E, Journal of Electroanalytical Chemistry, 1998, 441, 1-2, 77-81.
    [24] Ahn SH, Kwon OJ, Kim S, Choi I, Kim JJ, Electrochemical preparation of Pt-based ternary alloy catalyst for direct methanol fuel cell anode, International Journal of Hydrogen Energy, 2010, 35, 24, 13309-13316.
    [25] Massong H, Tillmann S, Langkau T, Baltruschat H, On the influence of tin and bismuth UPD on Pt(111) and Pt(332) on the oxidation of CO, Electrochimica Acta, 1998, 44, 8-9, 1379-1388.
    [26] Seo S, Joh H, Kim H, Moon S, Properties of Pt/C catalyst modified by chemical vapor deposition of Cr as a cathode of phosphoric acid fuel cell, Electrochim Acta 2006, 52, 4, 1676-1682.
    [27] Xue XZ, Liu CP, Xing W, Lu TH, Physical and electrochemical characterizations of PtRu/C catalysts by spray pyrolysis for electrocatalytic oxidation of methanol Journal of Electroanalytical Chemistry, 2006, 153, 5, 79-84.
    [28] Watanabe M, Uchina M, Motoo S, Journal of Electroanalytical Chemistry, 1987, 229, 3, 395-406.
    [29] Alerasool S, Gonzalez RD, Preparation and characterization of supportedP-Ru bimetallic clusters: strong precursor-support interactions, Journal of Catalysis, 1990, 124, 1, 204-216.
    [30] Tang YW, Yang H, Xin W, Lu TH, Preparation of Pt/C catalyst with solid phase reaction method, Chinese Chemical Letters, 2002, 5, 13, 478-479.
    [31] Xue XZ, Lu TH, Liu CP, Xu WL, Su Y, Lv YZ, et al., Novel preparation method of Pt-Ru/C catalyst using imidazolium ionic liquid as solvent, Electrochimica Acta, 2005, 50, 16-17, 3470-3478.
    [32] Wang ZB, Yin GP, Zhang J, Sun YC, Shi PF, Investigation of ethanol electrooxidation on a Pt-Ru-Ni/C catalyst for a direct ethanol fuel cell, Journal of Power Sources, 2006, 160, 1, 37-43.
    [33] Hamnett A, Mechanism and electrocatalysis in the direct methanol fuel cell, Catalysis Today, 1997, 38, 4, 445-457.
    [34] Prado-Burguete C, Linares-Solano A, Rodriguez-Reinoso F, De LCSM, The effect of oxygen surface groups of the support on platinum dispersion in Pt/carbon catalysts, Journal of Catalysis, 1989, 115, 1, 98-106.
    [35] Roy SC, Harding AW, Russell AE, Thomas KM, Spectroelectrochemical study of the role played by carbon functionality in fuel cell electrodes, Journal of the Electrochemical Society, 1997, 144, 7, 2323-2328.
    [36] Shukla AK, Ravikumar MK, Roy A, Barman SR, Sarma DD, Arico AS, Antonucci V, Pino L, Giordano N, Electro-oxidation of methanol in sulfuric acid electrolyte on platinized-carbon electrodes with several functional-group characteristics, Journal of Electrochemistry Society, 1994, 141, 1517-1522.
    [37] Frelink T, Visscher W, van Veen JAR, Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol. J Electroanal Chem, 1995, 382, 1-2, 65-72.
    [38] Princz E, Labadi I, Lanthanide complexes of ethylenediaminotetramethylene- phosphonic acid, Journal of thermal analysis and calorimetry, 2002, 69, 2, 427-439.
    [39] Zheng M, Zhou Y, Chen Y, Tang YW, Lu TH, Electrochemical behavior of dopamine in the presence of phosphonate and the determination of dopamine at phosphonate modified zirconia films electrode with highly antifouling capability, Electrochimica Acta, 2010, 55, 16, 4789-4798.
    [40] Chen Y, Tang YW, Liu CP, Xing W, Lu TH, Room temperature preparation of carbon supported Pt-Ru catalysts, Journal of Power Sources, 2006, 161, 1, 470-473.
    [41] Di MV, Kilyen M, Jakusch T, Forg P, Dombi G, Kiss T, Complexation Properties of ethylenediaminetetramethylenephosphonic acid (EDTMP) with AlIII and VIVO, European Journal of Inorganic Chemistry, 2004, 2004, 12, 2524-2532.
    [42] Kim H, Lee JY, Song KS, Seo YH, Park SY, Kim KH, et al., Simultaneous Separation and Determination of Isosorbide Dinitrate and Isosorbide 5-Mononitrate in Human Plasma by LC-CMS-CMS, Chromatographia, 2010, 71, 7, 595-602.
    [43] Nowack B, Stone AT, Manganese-catalyzed degradation of phosphonic acids, Environmental Chemistry Letters, 2003, 1, 1, 24-31.
    [44] Fiurasek P, Reven L, Phosphonic and sulfonic acid-functionalized gold nanoparticles: A solid-state NMR study, Langmuir, 2007, 23, 5, 2857-2866.
    [45] Zhang F, Zhou Y, Chen Y, Shi ZW, Tang YW, Lu TH, Facile controlled preparation of phosphonic acid-functionalized gold nanoparticles, Journal of Colloid and Interface Science, 2010, 351, 2, 421-426.
    [46] Whalen JT, Chang SC, Norman RE, Dichloro(ethylenediaminetetraacetic acid-N,N')platinum(II)-Water (1/6), Acta Crystallographica Section C, 1996, 52, 2, 297-300.
    [47] Kurochkina L. V., Pechurova N. I. , Snezhko N. I. , Spitsyn V. I., Interaction of manganese(III) with certain phosphorous-containing complexones, Russian Journal of Inorganic Chemistry, 1978, 23, 1481-1484.
    [48] Nowack B, Stone AT, Manganese-catalyzed degradation of phosphonic acids, Environmental Chemistry Letters, 2003, 1, 1, 24-31.
    [49] Klinger J, Lang M, Sacher F, Brauch HJ, Maier D, Worch E, Formation of Glyphosate and AMPA During Ozonation of Waters Containing Ethylenediaminetetra(methylenephosphonic acid), Ozone: Science & Engineering, 1998, 20, 99-110.
    [50] Adlim M, Abu Bakar M, Liew KY, Ismail J, Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity, Journal of Molecular Catalysis A: Chemical, 2004, 212, 1-2, 141-149.
    [51] Bigall NC, Ha T, Klose M, Simon P, Eng LM, Eychmu LA, Monodisperse Platinum nanospheres with adjustable diameters from 10 to 100 nm: synthesis and distinct optical properties, Nano Letters, 2008, 8, 12, 4588-4592.
    [52] Jena BK, Raj CR, Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen,Langmuir, 2007, 23, 7, 4064-4070.
    [53] Xu C, Zhang Y, Wang L, Xu L, Bian X, Ma H, et al., Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction, Chemistry of Materials, 2009, 21, 14, 3110-3116.
    [54] Xu JB, Zhao TS, Liang ZX, Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells, Journal of Power Sources, 2008, 185, 2, 857-861.
    [55] Chen Y, Zhang GJ, Ma J, Zhou YM, Tang YW, Lu Tianhong, Electro-oxidation of methanol at the different carbon materials supported Pt nano-particles, International Journal of Hydrogen Energy, 2010, 35, 19, 10109-10117.
    [56] Li HQ, Sun GQ, Gaot Y, Jiang Q, Jia Z, Xin Q, Effect of reaction atmosphere on the electrocatalytic activities of Pt/C and PtRu/C obtained in a polyol process, Journal of Physical Chemistry C, 2007, 111, 42, 15192-15200.
    [57] Wei SL, Wu DC, Shang XL, Fu RW, Studies on the structure and electrochemical performance of Pt/Carbon aerogel catalyst for direct methanol fuel cells, Energy & Fuels, 2009, 23, 1, 908-911.
    [58] Gu YJ, Wong WT, Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation, Langmuir, 2006, 22, 26, 11447-11452.
    [59] Takasu Y, Fujii Y, Yasuda K, Iwanaga Y, Matsuda Y, Electrocatalytic properties of ultrafine platinum particles for hydrogen electrode reaction in an aqueous solution of sulfuric acid, Electrochimica Acta, 1989, 34, 3-4, 453-458.
    [60] Parmigiani F, Kay E, Bagus PS, Anomalous oxidation of platinum clusters studied by X-ray photoelectron spectroscopy, Journal of Electron Spectroscopy and Related Phenomena, 1990, 50, 1, 39-46.
    [61] Pozio A, De FM, Cemmi A, Cardellini F, Giorgi L, Comparison of high surface Pt/C catalysts by cyclic voltammetry, Journal of Power Sources, 2002, 105, 1, 13-19.
    [62] Crabb EM, Marshall R, Thompsett D, Carbon monoxide electro-oxidation properties of carbon-supported PtSn catalysts prepared using surface organometallic chemistry. Journal of Electrochemistry Society 2000, 147, 12, 4440-4447.
    [63] Liu B, Creager St, Carbon xerogels as Pt catalyst supports for polymer electrolyte membrane fuel-cell applications, Journal of Power Sources, 2010, 195, 7, 1812-1820.
    [64] Maillard F, Schreier S, Hanzlik M, Savinova ER, Weinkauf S, Stimming U,Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation, Physical Chemistry Chemical Physics, 2005, 7, 2, 385-393.
    [65] Takasu Y, Iwazaki T, Sugimoto W, Murakami Y, Size effects of platinum particles on the electro-oxidation of methanol in an aqueous solution of HClO4, Electrochemistry Communications, 2000, 2, 9, 671-674.
    [66] Arenz M, Mayrhofer KJJ, Stamenkovic V, Blizanac BB, Tomoyuki T, Ross PN, et al., The Effect of the particle size on the kinetics of CO electrooxidation on high surface area pt catalysts, Journal of the American Chemical Society, 2005, 127, 18, 6819-6829.
    [67] Tang YW, Zhang LL, Wang YN, Zhou YM, Gao Y, Liu CP, et al., Preparation of a carbon supported Pt catalyst using an improved organic sol method and its electrocatalytic activity for methanol oxidation, Journal of Power Sources, 2006, 162, 1, 124-131.
    [1] Guo YL, Zheng YZ, Huang MH, Enhanced activity of PtSn/C anodic electrocatalyst prepared by formic acid reduction for direct ethanol fuel cells, Electrochimica Acta, 2008, 53, 7, 3102-3108.
    [2] Nawaz ZS, Tang XP, Zhang Q, Wang DZ, Fei W, SAPO-34 supported Pt-Sn-based novel catalyst for propane dehydrogenation to propylene, Catalysis Communications, 2009, 10, 14, 1925-1930.
    [3] Antolini E, Catalysts for direct ethanol fuel cells, Journal of Power Sources, 2007, 170, 1, 1-12.
    [4] Zhu MY, Sun GQ, Yan SY, Li HQ, Xin Q, Preparation, Structural characterization, and activity for ethanol oxidation of carbon-supported PtSnIn Catalyst,Energy & Fuels, 2009, 23, 1, 403-407.
    [5] Sen Gupta S, Singh S, Datta J, Promoting role of unalloyed Sn in PtSn binary catalysts for ethanol electro-oxidation, Materials Chemistry and Physics, 2009, 116, 1, 223-228.
    [6] Neto AO, Linardi M, dos Anjos DM, Tremiliosi G, Spinace EV, Electro-oxidation of ethanol on PtSn/CeO2-C electrocatalyst, Journal of Applied Electrochemistry, 2009, 39, 7, 1153-1156.
    [7] Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, et al, Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol), Journal of Power Sources, 2009, 190, 2, 241-251.
    [8] Zhao HB, Kim J, Koel BE, Adsorption and reaction of acetaldehyde on Pt(111) and Sn/Pt(111) surface alloys, Surface Science, 2003, 538, 3, 147-159.
    [9] Delbecq F, Vigne F, Acetaldehyde on Pt(111) and Pt/Sn(111): A DFT study of the adsorption structures and of the vibrational spectra, Journal of Physical Chemistry B, 2005, 109, 21, 10797-10806.
    [10] Colmati F, Antolini E, Gonzalez ER, Effect of thermal treatment on phase composition and ethanol oxidation activity of a carbon supported Pt50Sn50 alloy catalyst, Journal of Solid State Electrochemistry, 2008, 12, 5, 591-599.
    [11] Merlo AB., Vetere V, Ruggera JF, Casella ML, Bimetallic PtSn catalyst for the selective hydrogenation of furfural to furfuryl alcohol in liquid-phase, Catalysis Communications, 2009, 10, 13, 1665-1669.
    [12] Zhou WJ, Song SQ, Li WZ, Zhou ZH, Sun GQ, Xin Q, et al., Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance, Journal of Power Sources, 2005, 140, 1, 50-58.
    [13]姜鲁华,周振华,周卫江,王素力,汪国雄,孙公权, et al.,直接乙醇燃料电池PtSnO2/C电催化剂的合成表征和性能,高等学校化学化学学报, 2004, 25, 8, 1511-1516.
    [14]赵新生,孙公权,姜鲁华,庆毛,勤辛,衣宝廉, et al.,碳纳米管担载PtSn阳极催化剂对乙醇的电催化氧化性能研究,高等学校化学化学学报, 2005, 26, 7, 1304-1308.
    [15] Radmilovic V, Gasteiger HA, Ross PN, Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation, Journal of Catalysis, 1995, 154, 1, 98-106.
    [16] Antolini E, Cardellini F, Formation of carbon supported PtRu alloys: an XRD analysis, Journal of Alloys and Compounds, 2001, 315, 1-2, 118-122.
    [17] Radmilovic V, Gasteiger HA, Ross PN, Structure and Chemical Composition of a Supported Pt-Ru Electrocatalyst for Methanol Oxidation, Journal of Catalysis, 1995, 154, 1, 98-106.
    [18] Colmenares L, Wang H, Jusys Z, Jiang L, Yan S, Sun GQ, et al., Ethanol oxidation on novel, carbon supported Pt alloy catalysts-Model studies under defined diffusion conditions, Electrochimica Acta, 2006, 52, 1, 221-233.
    [19] Zhu MY, Sun GQ, Xin Q, Effect of alloying degree in PtSn catalyst on the catalytic behavior for ethanol electro-oxidation, Electrochimica Acta, 2009, 54, 5, 1511-1518.
    [20] Hoang DL, Farrage SAF., Radnik J, Pohl MM, Schneider M, Lieske H, et al., A comparative study of zirconia and alumina supported Pt and Pt-Sn catalysts used for dehydrocyclization of n-octane, Applied Catalysis a-General, 2007, 333, 1, 67-77.
    [21] Masek K, Vaclavu M, Babor P, Matolin V, Sn-CeO2 thin films prepared by rf magnetron sputtering: XPS and SIMS study, Applied Surface Science, 2009, 255, 13-14, 6656-6660.
    [22]王琪,孙公权,姜鲁华,朱明远,汪国雄,辛勤, et al.,碳载PtSn催化剂上乙醇电氧化的原位时间分辨红外光谱研究,光谱学与光谱分析, 2008, 28, 1, 47-50.
    [1] Kobayashi T, Ueda A, Yamada Y, Shioyama H, A combinatorial study on catalytic synergism in supported metal catalysts for fuel cell technology, Applied Surface Science, 2004, 223, 1-3, 102-108.
    [2] Yamada Y, Ueda A, Shioyama H, Kobayashi T, High-throughput screening of PEMFC anode catalysts by IR thermography, Applied Surface Science, 2004, 223, 1-3, 220-223.
    [3] Liu JH, Jeon MK, Woo SI, High-throughput screening of binary catalysts for oxygen electroreduction, Applied Surface Science, 2006, 252, 7, 2580-2587.
    [4] Tsatskis I, Origin of the anomaly in diffuse scattering from disordered Pt-V alloys, Physics Letters A, 1998, 241, 1-2, 110-114.
    [5] Yang H, Alonso-Vante N, Leger JM, Lamy C, Tailoring, structure, and activity of carbon-supported nanosized Pt?Cr alloy electrocatalysts for oxygen reduction in pure and methanol-containing electrolytes, The Journal of Physical Chemistry B, 2004, 108, 6, 1938-1947.
    [6] Wolter SD, Brown B, Parker CB, Stoner BR, Glass JT, The effect of gold on platinum oxidation in homogeneous Au-Pt electrocatalysts, Applied Surface Science, 2010, 257, 5, 1431-1436.
    [7] Mukerjee S, Srinivasan S, Soriaga MP, McBreen J, Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction, Journal of the Electrochemical Society, 1995, 142, 5, 1409-1422.
    [8] Beard BC, Ross JPN, Characterization of a titanium-promoted supported platinum electrocatalyst, journal of the electrochemical society, 1986, 133, 9, 1839-1845.
    [9] Toda T, Igarashi H, Uchida H, Watanabe M, Watanabe Masahiro, Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co, Journal of the Electrochemical Society, 1999, 146, 10, 3750-3756.
    [10] Huang Q, Yang H, Tang Y, Lu T, Akins DL, Carbon-supported Pt-Co alloy nanoparticles for oxygen reduction reaction, Electrochemistry Communications, 2006, 8, 8, 1220-1224.
    [11] Yang H, Alonso-Vante N, Leger JM, Lamy C, Tailoring, structure, and activity of carbon-supported nanosized Pt-Cr alloy electrocatalysts for oxygen reduction in pure and methanol-containing electrolytes, J. Phys. Chem. B, 2004, 108, 6, 1938-1947.
    [12] Chandler Bert D, Schabel Alexander B, Pignolet Louis H, Preparation and characterization of supported bimetallic Pt-Au and Pt-Cu catalysts from bimetallic molecular precursors, Journal of Catalysis, 2000, 193, 2, 186-198.
    [13] Babu Panakkattu K, Lewera A, Chung JH, Hunger R, Jaegermann W, Alonso-Vante N, et al., Selenium becomes metallic in Ru?Se fuel cell catalysts:
    [14] Serov AA, Min M, Chai G, Han S, Kang S, Kwak C, Preparation, characterization, and high performance of RuSe/C for direct methanol fuel cells, Journal of Power Sources, 2008, 175, 1, 175-182.
    [15] Chen Y, Tang YW, Liu CP, Xing W, Lu TH, Room temperature preparation of carbon supported Pt-Ru catalysts, Journal of Power Sources, 2006, 161, 1, 470-473.
    [16] Daimon H, Kurobe Y, Size reduction of PtRu catalyst particle deposited on carbon support by addition of non-metallic elements, Catalysis Today, 2006, 111, 3-4, 182-187.
    [17] Zhang L, Lee KC, Zhang JJ, The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd-Co alloy electrocatalysts, Electrochimica Acta, 2007, 52, 9, 3088-3094.
    [18] Serov AA, Cho SY, Han S, Min M, Chai G, Nam KH, et al., Modification of palladium-based catalysts by chalcogenes for direct methanol fuel cells, Electrochemistry Communications, 2007, 9, 8, 2041-2044.
    [19] Lopes T, Antolini E, Gonzalez ER, Carbon supported Pt-Pd alloy as an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol fuel cells, International Journal of Hydrogen Energy, 2008, 33, 20, 5563-5570.
    [20] Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, et al., Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction, Science, 2009, 324, 5932, 1302-1305.
    [21] Tamizhmani G, Capuano GA, Life tests of carbon-supported pt-Cr-Cu electrocatalysts in solid-polymer fuel cells, Journal of the Electrochemical Society, 1994, 141, 9, L132-L134.
    [22] Shim J, Yoo DY, Lee JS, Characteristics for electrocatalytic properties and hydrogen-oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell, Electrochimica Acta, 2000, 45, 12, 1943-1951.
    [23] Savadogo O, Beck P, Five percent platinum-tungsten oxide-based electrocatalysts for phosphoric acid fuel cell cathodes, Journal of the Electrochemical Society, 1996, 143, 12, 3842-3846.
    [24] Lefevre M, Dodelet JP, Bertrand P, O2 reduction in PEM fuel cells: activity and active site structural information for catalysts obtained by the pyrolysis at high temperature of Fe precursors, The Journal of Physical Chemistry B, 2000, 104, 47, 11238-11247.
    [25] Jaouen F, Marcotte S, Dodelet JP, Lindbergh G, Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports, The Journal of Physical Chemistry B, 2003, 107, 6, 1376-1386.
    [26] Savastenko NA, Bruser V, Bruser M, Anklam K, Kutschera S, Steffen H, et al., Enhanced electrocatalytic activity of CoTMPP-based catalysts for PEMFCs by plasma treatment, Journal of Power Sources, 2007, 165, 1, 24-33.
    [27] Suzuki S, Ohbu Y, Mizukami T, Takamori Y, Morishima M, Daimon H, et al., Platinum-phosphorus nanoparticles on carbon supports for oxygen-reduction catalysts, Journal of the Electrochemical Society, 2009, 156, 1, B27-B31.
    [28] Zhang LL, Tang YW, Bao JC, Lu TH, Li C, A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell, Journal of Power Sources, 2006, 162, 1, 177-179.
    [29] Cheng LF, Zhang ZH, Niu WX, Xu GB, Zhu LD, Carbon-supported Pd nanocatalyst modified by non-metal phosphorus for the oxygen reduction reaction, Journal of Power Sources, 2008, 182, 1, 91-94.
    [30] Xue XZ, Ge JJ, Tian T, Liu CP, Xing W, Lu TH, Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process, Journal of Power Sources, 2007, 172, 2, 560-569.
    [31] Zhang LL, Lu TH, Bao JC, Tang YW, Li C, Preparation method of an ultrafine carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell, Electrochemistry Communications, 2006, 8, 10, 1625-1627.
    [32] Xue XZ, Ge JJ, Liu CP, Xing W, Lu TH, Novel chemical synthesis of Pt-Ru-P electrocatalysts by hypophosphite deposition for enhanced methanol oxidation and CO tolerance in direct methanol fuel cell, Electrochemistry Communications, 2006, 8, 8, 1280-1286.
    [33] Zhang R, Ma JH, Wang WY, Wang BC, Li RF, Zeolite-encapsulated M(Co, Fe, Mn)(SALEN) complexes modified glassy carbon electrodes and their application in oxygen reduction, Journal of Electroanalytical Chemistry, 2010, 643, 1-2, 31-38.
    [34] Antolini E, Cardellini F, Formation of carbon supported PtRu alloys: an XRD analysis, Journal of Alloys and Compounds, 2001, 315, 1-2, 118-122.
    [35] Chen Y, Zhang GJ, Ma J, Zhou YM, Tang YW, Lu TH, Electro-oxidation of methanol at the different carbon materials supported Pt nano-particles, International Journal of Hydrogen Energy, 2010, 35, 19, 10109-10117.
    [36] Prabhuram J, Wang X, Hui CL, Hsing IM, Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications, The Journal of Physical Chemistry B, 2003, 107, 40, 11057-11064.
    [1] Tang YW, Chen Y, Zhou P, Zhou YM, Lu LD, Bao JC, et al., Electro-catalytic performance of PdCo bimetallic hollow nano-spheres for the oxidation of formic acid, Journal of Solid State Electrochemistry, 2010, 14, 11, 2077-2082.
    [2] Sun ZP, Zhang XG, Liang YY, Li HL, A facile approach towards sulfonate functionalization of multi-walled carbon nanotubes as Pd catalyst support for ethylene glycol electro-oxidation, Journal of Power Sources, 2009, 191, 2, 366-370.
    [3] Cheng NC, Lv HF, Wang W, Mu SC, Pan M, Marken F, An ambient aqueous synthesis for highly dispersed and active Pd/C catalyst for formic acid electro-oxidation,Journal of Power Sources, 2010, 195, 21, 7246-7249.
    [4] Zhu Y, Kang YY, Zou ZQ, Zhou Q, Zheng JW, Xia BJ, et al., A facile preparation of carbon-supported Pd nanoparticles for electrocatalytic oxidation of formic acid, Electrochemistry Communications, 2008, 10, 5, 802-805.
    [5] Wang JJ, Yin GP, Chen YG, Li RY, Sun XL, Pd nanoparticles deposited on vertically aligned carbon nanotubes grown on carbon paper for formic acid oxidation, International Journal of Hydrogen Energy, 2009, 34, 19, 8270-8275.
    [6] Zhou WP, Lewera A, Larsen R, Masel RI, Bagus PS, Wieckowski A, Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid, The Journal of Physical Chemistry B, 2006, 110, 27, 13393-13398.
    [7] Zhou WJ, Lee JY, Particle size effects in Pd-catalyzed electrooxidation of formic acid, The Journal of Physical Chemistry C, 2008, 112, 10, 3789-3793.
    [8] Wang XM, Xia YY, Synthesis, characterization and catalytic activity of an ultrafine Pd/C catalyst for formic acid electrooxidation, Electrochimica Acta, 2009, 54, 28, 7525-7530.
    [9] Mitchell PCH., Ramirez-Cuesta AJ, Parker SF, Tomkinson J, Thompsett D, Hydrogen spillover on carbon-supported metal catalysts studied by inelastic neutron scattering. Surface vibrational states and hydrogen riding modes, Journal of Physical Chemistry B, 2003, 107, 28, 6838-6845.
    [10] Ruta M, Semagina N, Kiwi-Minsker L, Monodispersed Pd nanoparticles for acetylene selective hydrogenation: Particle size and support effects, Journal of Physical Chemistry C, 2008, 112, 35, 13635-13641.
    [11] Huang YJ, Zhou XC, Liao JH, Liu CP, Lu TH, Xing W, Preparation of Pd/C catalyst for formic acid oxidation using a novel colloid method, Electrochemistry Communications, 2008, 10, 4, 621-624.
    [12] Adams BD, Wu GS, Nigrio S, Chen AC, Facile Synthesis of Pd-Cd nanostructures with high capacity for hydrogen storage, Journal of the American Chemical Society, 2009, 131, 20, 6930-6931.
    [13] Zhang LL, Lu TH, Bao JC, Tang YW, Li C, Preparation method of an ultrafine carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell, Electrochemistry Communications, 2006, 8, 10, 1625-1627.
    [14] Li XW, Zhu Y, Zou ZQ, Zhao MY, Li ZL, Zhou Q, et al., Simplecomplexing-reduction synthesis of Pd-Pt/C alloy electrocatalysts for the oxygen reduction reaction, Journal of the Electrochemical Society, 2009, 156, 10, B1107-B1111.
    [15] Kwon Y, Baek S, Kwon B, Kim J, Han J, Evaluation of direct formic acid fuel cells with catalyst layers coated by electrospray, Korean Journal of Chemical Engineering, 2010, 27, 3, 836-842.
    [16] Kumar MK, Ramaprabhu S, Palladium dispersed multiwalled carbon nanotube based hydrogen sensor for fuel cell applications, International Journal of Hydrogen Energy, 2007, 32, 13, 2518-2526.
    [17] Meng H, Sun S, Masse JP, Dodelet JP, Electrosynthesis of Pd single-crystal nanothorns and their application in the oxidation of formic acid, Chemistry of Materials, 2008, 20, 22, 6998-7002.
    [18] Hammer N, Zarubova S, Kvande I, Ronning M, A Novel Internally Heated Au/TiO2 carbon-carbon composite structured reactor for low-temperature CO oxidation, Gold Bulletin, 2007, 40, 3, 234-239.
    [19] Li H, Sun G, Jiang Q, Zhu M, Sun S, Xin Q, Preparation and characterization of Pd/C catalyst obtained in NH3-mediated polyol process, Journal of Power Sources, 2007, 172, 2, 641-649.
    [20] Regan MR, Banerjee IA, Preparation of Au-Pd bimetallic nanoparticles in porous germania nanospheres: A study of their morphology and catalytic activity, Scripta materialia, 2006, 54, 5, 909-914.
    [21] Wang JY, Kang YY, Yang H, Cai WB, Boron-doped palladium nanoparticles on carbon black as a superior catalyst for formic acid electro-oxidation, The Journal of Physical Chemistry C, 2009, 113, 19, 8366-8372.
    [22] Zhou W, Lee JY, Particle size effects in Pd-catalyzed electrooxidation of formic acid, Journal of Physical Chemistry C, 2008, 112, 10, 3789-3793.
    [23] Mazumder V, Sun S, Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation, Journal of the American Chemical Society, 2009, 131, 13, 4588-4589.
    [24] Wang XM, Xia YY, Synthesis, characterization and catalytic activity of an ultrafine Pd/C catalyst for formic acid electrooxidation, Electrochimica Acta, 2009, 54, 28, 7525-7530.
    [25] Cheng N, Lv HF, Wang W, Mu SC, Pan M, Marken F, An ambient aqueoussynthesis for highly dispersed and active Pd/C catalyst for formic acid electro-oxidation, Journal of Power Sources, 2010, 195, 21, 7246-7249.
    [26] Zhang LL, Tang YW, Bao JC, Lu TH, Li C, A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell, Journal of Power Sources, 2006, 162, 1, 177-179.
    [27] Wang L, Sondi I, Matijevi E, Preparation of uniform needle-like aragonite particles by homogeneous precipitation, Journal of colloid and interface science, 1999, 218, 2, 545-553.
    [28] Chen PL, Chen I, Reactive cerium (IV) oxide powders by the homogeneous precipitation method, Journal of the American Ceramic Society, 1993, 76, 6, 1577-1583.
    [29] Ogawa M, Kaiho H, Homogeneous precipitation of uniform hydrotalcite particles, Langmuir, 2002, 18, 11, 4240-4242.
    [30] Xiao L, Zhuang L, Liu Y, Lu J, Abrun a HD, Activating Pd by morphology tailoring for oxygen reduction, Journal of the American Ceramic Society, 2009, 131, 2, 602-608.
    [31] Lee YW, Kim M, Han SW, Shaping Pd nanocatalysts through the control of reaction sequence, Chemical Communications, 2010, 46, 9, 1535-1537.
    [32] Larsen R, Ha S, Zakzeski J, Masel RI, Unusually active palladium-based catalysts for the electrooxidation of formic acid, Journal of Power Sources, 2006, 157, 1, 78-84.
    [33] Chen Y, Zhang GJ, Ma J, Zhou YM, Tang YW, Lu TH, Electro-oxidation of methanol at the different carbon materials supported Pt nano-particles, International Journal of Hydrogen Energy, 2010, 35, 19, 10109-10117.
    [34] Chen Y, Zhou YM, Tang YW, Lu TH, Electrocatalytic properties of carbon-supported Pt-Ru catalysts with the high alloying degree for formic acid electrooxidation, Journal of Power Sources, 2010, 195, 13, 4129-4134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700