新型稀土时间分辨荧光探针的合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于稀土荧光探针长寿命荧光特性而发展起来的高灵敏度时间分辨荧光生化分析技术已经在临床检测和生物技术领域得到了广泛的应用。在本博士学位论文的研究中,分别设计、合成和表征了一种新型的羟基自由基特异性响应铽配合物荧光探针和一种新型的汞离子特异性响应铽配合物荧光探针,建立了基于所合成的稀土配合物探针在时间分辨荧光分析与时间分辨荧光成像分析中的应用方法。另外,设计并探索合成了一种以多羧酸联三吡啶铕配合物为发光基团的锌离子特异性荧光探针。
     设计合成了一种可用于羟基自由基特异性识别与时间分辨荧光测定的新型Tb3+配合物荧光探针N,N,N',N'-[2,6-二(3’-氨甲基-1’-吡唑基)-4-(4’-氨基苯氧基)甲基吡啶]四乙酸-Tb3+(BMPTA-Tb3+)。BMPTA-Tb3+几乎不发荧光,与羟基自由基特异性反应以后荧光量子产率增加49倍,且具有超长的荧光寿命(2.76ms)。该探针具有在生理条件下稳定性好、用于羟基自由基测定选择性和灵敏度高等优点,利用该探针成功实现了活体细胞中羟基自由基的时间分辨荧光成像测定。
     设计合成了一种可用于汞(Ⅱ)离子特异性识别与时间分辨荧光测定的新型Tb3+配合物荧光探针N,N,N',N'-{2,6-二(3’-氨甲基-1’-吡唑基)-4-[N,N-二(3’,6’-二硫代辛基)-氨甲基]-吡啶}四乙酸-Tb3+(BBAPTA-Tb3+)。该探针本身的荧光非常弱,与Hg2+离子反应形成双核配合物Hg2+-BBAPTA-Tb3+后荧光量子产率增加5倍。利用该探针实现了水溶液中汞(Ⅱ)离子的高灵敏度时间分辨荧光测定。
     设计了以N,N-二(2-皮考啉基)胺及4'-溴甲基-2,2':6',2”-联三吡啶-6,6"-二甲胺四乙酸四乙酯为偶联反应原料的Zn2+离子响应铕配合物荧光探针的合成路线。合成出了新化合物4’-溴甲基-2,2':6',2''-联三吡啶-6,6”-二甲胺四乙酸四乙酯,并通过核磁等方法对合成的中间产物和目标产物进行了表征,为进一步研制以联三吡啶多羧酸铕配合物为发光基团的功能性荧光探针提供了一种有用试剂。
Time-resolved luminescence bioassay technique based on long-lived luminescence of lanthanide probes is an ultrasenstive bioanalytical method, and has been widely used in clinical diagnostics and biotechnology. In this doctoral dissertation, two novel Tb3+complex-based luminescent probes specific for hydroxyl radical (·OH) and mercury(II) ions (Hg2+) were designed, synthesized and characterized, respectively, and their application methods for highly sensitive time-resolved luminescence assay and bioimaging were established. In addition, a luminescent probe for zinc(II) ions (Zn2+) using2,2':6',2"-terpyridine polyacid-Eu3+complex as the luminescence moiety were designed and primarily synthesized.
     A unique Tb3+complex-based luminescent probe, N,N,N',N'-[2,6-bis(3'-aminomethyl-1'-pyrazolyl)-4-(p-aminophenoxy)methylene-pyridine] tetrakis(acetate)-Tb3+(BMPTA-Tb3+), was designed and synthesized for highly selective and sensitive time-resolved luminescence detection of·OH. The probe itself is almost non-luminescent, but can selectively react with·OH to cause a49-fold increase in luminescence quantum yield with a long luminescence lifetime (2.76ms). The luminescence response of the probe to·OH is highly selective and sensitive in the physiological pH range. Based on this probe, a time-resolved luminescence imaging method for detecting·OH in living cells was successfully established.
     A unique Tb3+complex-based luminescent probe, N,N',N',N'-{[2,6-bis(3'-aminomethyl-1'-pyrazolyl)-4-[N,N-bis(3",6"-dithiaoctyl)-aminomethyl]-pyridine]} tetrakis(acetic acid)-Tb3+(BBAPTA-Tb3+), was designed and synthesized for highly selective and sensitive time-resolved luminescence detection of Hg2+. The luminescence of the probe is weak, but can be effectively enhanced upon reaction with Hg2+by the formation of heterobimetallic complex Hg2+-BBAPTA-Tb3+, with a5-fold increase in luminescence quantum yield. Based on this probe, a highly sensitive time-resolved luminescence detection method of Hg2+in aqueous solutions was developed.
     A synthesis procedure of a Eu3+complex-based luminescent probe for Zn2+using N,N-bis(2-picolyl)amine and tetraethyl (4-bromomethyl-2,2':6',2"-terpyridine-6,6"-diyl) bis(methylenenitrilo) tetrakis(acetate) as the coupling reaction materials was designed, and the new compound tetraethyl (4-bromomethyl-2,2':6',2"-terpyridine-6,"-diyl) bis(methylenenitrilo) tetrakis(acetate) was synthesized. All the synthesis intermediates and final compound were characterized. The synthesis of this compound provides an essential reagent for the further development of functional probes using2,2':6',2"-terpyridine polyacid-Eu3+complex as the luminescence moiety.
引文
[1]许金钩,王尊本.荧光分析法[M].北京:科学出版社,2006.
    [2]夏之宁.光分析化学[M].重庆:重庆大学出版社,2004.
    [3]张华山,王红,赵媛媛.分子探针与检测试剂[M].北京:科学出版社,2002.
    [4]Turro C, Fu P K L, Bradley M. Lanthanide ions as luminescent labels of proteins and nucleic acids [J]. Met. Ions Biol. Syst.,2003,40:323-354.
    [5]江祖成,蔡汝秀,张华山.稀土元素分析化学[M].北京:科学出版社,2000.
    [6]张思远.稀士离子的光谱学——光谱性质和光谱理论[M].北京:科学出版社,2008.
    [7]Gschneider K A, Eyring L R, Bradley M. Handbook on the Physics and Chemistry of Rare Earths [M]. Amsterdam: North-Holland Company,1978.
    [8]Weissman S A. Time required for the elimination of quinidine from the heat and other organs [J]. J. Chem. P-hys.,1942,10:214-217.
    [9]Richardson F S. Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems [J]. Chem. Rev.,1982,82(5):541-552.
    [10]Buono-Core G E, Li H, Marciniak B. Quenching of excited states by lanthanide ions and chelates in solution [J]. Coord. Chem. Rev.,1990,99:55-87.
    [11]Sabbatini N, Guardigli M, Lehn J M. Luminescent lanthanide complexes as photochemical supramolecular devices [J]. Coord. Chem. Rev.,1993,123:201-228.
    [12]Crosby G A, Whan R E, Alire R M. Intramol energy transfer in rare earth chelates-role of the triplet state [J]. J. Chem. Phys.,1961,34:743-748.
    [13]Kleinerman M. Energy migration in lanthanide chelates [J]. J. Chem. Phys.,1969,51:2370-2381.
    [14]Bhaumik M L, El-Sayed M A. Mechanism and rate of intramolecular energy transfer in rare-earth, Mechanisms of energy transfer in some rare-earth chelates [J]. Appl. Opt. Suppl.,1965,2:214-215.
    [15]Bhaumik M L, El-Sayed M A. Studies on triplet-triple energy transfer on rare-earth chelates [J]. J. Phys. Chem.,1965,69:275-280.
    [16]Bhaumik M L, El-Sayed M A. Energy transfer rate the intramolecular energy transfer process in rare-earth chelates [J]. J. Chem. Phys,1965,42:787-790.
    [17]Tanaka M, Funahashi S, Yamada S. Kinetics and mechanism of the ligand-substitution reaction of the copper(II)-(ethyleneglycol) bis(2-aminoethyl ether)-Ν,Ν,Ν,Ν-tetraacetate complex with 4-(2-pyridylazo) resorcinol with special reference to the effect of alkaline earth metal ions [J]. Inorg. chem.,1971,2:255-265.
    [18]Soini E, Lovgren T. Time-resolved fluorescence of lanthanide probes and applications in biotechnology [J]. CRC Crit. Rev. Anal. Chem.,1987,18:105-154.
    [19]宋波.新型稀土荧光探针及单线态氧的时间分辨荧光分析[D].大连:中科院大连化学物理研究所,2006.
    [20]吴晶.纳米稀土荧光生物探针及时间分辨荧光生物成像分析法研究[D].大连:中科院大连化学物理研究所,2009.
    [21]宋翠红.长寿命荧光金属配合物的合成及其在时间分辨荧光生化分析中的应用[D].大连:中科院大连化学物理研究所,2010.
    [22]Matsumoto K, Yuan J. Lanthanide chelates as fluorescence labels for diagnostics and biotechnology [J]. Met. Ions Biol. Syst.,2003,40:191-232.
    [23]Mujumdar R B, Ernst L A, Mujumdar S R, et al. Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters [J]. Bioconjugate Chem.,1993,4(2):105-111.
    [24]Soini E, Hemmila I. Fluoroimmunoassay: Present status and key problems [J]. Clin. Chem.,1979,25:353-361.
    [25]Grosby G A. Luminescent organic complexes of the rare earth metals [J]. Mol. Cryst.,1966,1:37.
    [26]Sinha S P, Rao C N I, Farrao J R. Sprctroscopy in inorganic [M], New York:Academic Press,1971.
    [27]Horrocks W D, Albin M. Lanthanide ion luminescence in coordination chemistry and biochemistry [J]. Prog. Inorg. Chem.,1984,1:31.
    [28]Horrocks W D, Sudnick D R. Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules [J]. J. Am. Chem. Soc.,1979,101(2):334-340.
    [29]Goryushko A G, Davidenko N K. Stability of complexes of europium(III) with new fluorinated b-diketones [J]. Zh. Neorg. Khim.,1980,25:2666-2668.
    [30]Ci Y X, Yang X D, Chang W B. Fluorescence labeling with europium chelate of B-diketones and application in time-resolved fluoroimmunoassays (TR-FIA) [J]. J. Immunol. Methods,1995,179:233-241.
    [31]Yuan J, Matsumoto K. Fluorescence enhancement by electron-withdrawing groups on B-diketones in Eu(Ⅲ)-?-diketonato-topo ternary complexes [J]. Anal. Sci.,1996,12:695-699.
    [32]Yuan J, Matsumoto K. Synthesis of a new tetradentate B-diketone-europium chelate and its application for time-resolved fluorimetry of albumin [J]. J. Pharm. Biomed. Anal.,1997,15:1397-1403.
    [33]Yuan J, Matsumoto K, Kimura H. A new tetradentate B-diketone-europium chelate that can be covalently bound to proteins for time-resolved fluoroimmunoassay [J]. Anal. Chem.,1998,70:596-601.
    [34]Wu F B, Han S Q, Zhang C, et al. Synthesis of a highly fluorescent B-diketone-europium chelate and its utility in time-resolved fluoroimmunoassay of serum total thyroxine [J]. Anal. Chem.,2002,74: 5882-5889.
    [35]Bunzli J C G, Ihringer F. Photophysical properties of lanthanide dinuclear complexes with p-nitro-calix[8]arene [J]. Inorg. Chim. Acta,1996,246:195-205.
    [36]Sharma P K, Van Doom A R, Staring A G J. Luminescence of Tm(Ⅲ) ions in aqueous solution and organic matrices [J]. J. Lumin.1994,62:219-225.
    [37]Serra O A, Nassar E J, Calefi P S, et al. Luminescence of a new Tm3+ ?-diketonate compound [J]. J. Alloys Comp.1998,275-277:838-840.
    [38]De Mello Donega C, Alves Jr. S, De Sa G F. Synthesis, luminescence and quantum yields of Eu(Ⅲ) mixed complexes with 4,4,4-trifluoro-1-phenyl-l,3-butanedione and 1,10-phenanthroline-N-oxide [J]. J. Alloys Comp.1997,250:422-426.
    [39]Alves Jr.S, Almeida F V, De Sa G F, et al. Luminescence and quantum yields of Eu3+ mixed complexes with 1-phenyl-1,3-butanedione and 1,10-phenanthroline or 1,10-phenanthroline-N-oxide [J]. J. Lumin.1997,72-74:478-480.
    [40]Mesquita M E, De Sa G F, Malta O L. Spectroscopic studies of the Eu(III) and Gd(III) tris(3-aminopyridine-2-carboxylic acid) complexes [J]. J. Alloys Comp.,1997,250:417-421.
    [41]Qian D J, Nakahara H, Fukuda K, et al. Emission behavior of lanthanoid complexes in monolayer assemblies [J]. Langmuir,1995,11:4491-4494.
    [42]Inamura M, Hasegawa Y, Wada Y, et al. Novel dinuclear manganese(iii) complexes with tridentate and bridging tetradentate schiff base ligands:preparation, properties and catalase-like function [J]. Chem. Lett.1997,1067-1068.
    [43]Mikola H, Takkalo H, Hemmila I. Syntheses and properties of luminescent lanthanide chelate labels and labeled haptenic antigens for homogeneous immunoassays [J]. Bioconjugate Chem.1995,6:235-241.
    [44]Takkalo H, Mukkala V M, Merio L, et al. Development of luminescent terbium(III) chelates for protein labeling: effect of triplet-state energy level [J]. Helv. Chim. Acta,1997,80:372-387.
    [45]Latva M, Takalo H, Mukkala V M, et al. Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield [J]. J. Lumin.,1997,75:149-169.
    [46]De Sa G F, Nunes L H A, Wang Z M, et al. Synthesis, characterization, spectroscopic and photophysical studies of ternary complexes of Eu(III) with 3-aminopyrazine-2-carboxylic acid (HL) and heterobiaryl ligands (2,2'-bipyridine and 1,10-phenanthroline) [J]. J. Alloys Comp.1993,196: 17-23.
    [47]Weibel N, Charbonniere L J, Guardigli M, et al. Engineering of highly luminescent lanthanide tags suitable for protein labeling and time-resolved luminescence imaging [J]. J. Am. Chem. Soc.,2004,126:4888-4896.
    [48]Li M, Selvin P R. Luminescent polyaminocarboxylate chelates of terbium and europium: the effect of chelate structure. Luminescent polyaminocarboxylate chelates of terbium and europium:the effect of chelate structure [J]. J. Am. Chem. Soc.,1995,117:8132-8138.
    [49]Li M, Selvin P R. Amine-reactive forms of a luminescent diethylene triaminepentaacetic acid chelate of terbium and europium:attachment to DNA and energy transfer measurements [J]. Bioconjugate Chem.1997,8:127-132.
    [50]Chen J, Selvin P R. Synthesis of 7-amino-4-trifluoromethyl-2-(1H)-quinolinone and its use as an antenna molecule for luminescent europium polyaminocarboxylates chelates [J]. J. Photochem. Photobio. A,2000,135:27-32.
    [51]Evangelista R A, Pollak A, Allore B, et al. A new europium chelate for protein labeling and time-resolved fluorometric applications [J]. Clin. Biochem.,1988,21:173-178.
    [52]Petoud S, Biinzli J C G, Schenk K J, et al. Luminescent properties of lanthanide nitrato complexes with substituted bis(benzimidazolyl)pyridines [J]. Inorg. Chem.1997,36:1345-1353.
    [53]Oude Wolbers M P, Van Veggel F C J M, Snellink-Ruel B H M, et al. Photophysical studies of w-terphenyl-sensitized visible and near-infrared emission from organic 1:1 lanthanide ion complexes in methanol solutions [J]. J. Chem. Soc. Perkin Trans.1998,2:2141-2150.
    [54]De Jr.Horrocks W W, Bolender P, Smith W D, et al. Photosensitized near infrared luminescence of ytterbium(III) in proteins and complexes occurs via an internal redox process [J]. J. Am. Chem. Soc.,1997,119:5972-5973.
    [55]Diamandis E P, Morton R C. Time-resolved fluorescence using a europium chelate of 4,7-bia(chloroSulfophenyl)-1,1O-phenanthroline-2,9-dicarboxylicacid (BCPDA) [J]. J. Immunol. Methods,1988,112:43-52.
    [56]Horiguchi D, Katayama Y, Sasamoto K, et al. A new ligand for europium(III) that forms a stable fluorescent complex in aqueous solution [J]. Chem. Pharm. Bull.,1992,40(12):3334-3337.
    [57]Horiguchi D, Sasamoto K, Terasawa H, et al. A novel time-solved fluoroimmunoassay using a macrocyclic europium ligand as a probe [J]. Chem. Pharm. Bull.,1994,42(4):972-977.
    [58]Brunet E, Juanes O, Sedano R, et al. Synthesis of novel macrocyclic lanthanide chelates derived from bis pyrozolylprindine [J]. Org. Lett.,2002,2:213-216.
    [59]Pietraszkiewicz M, Karpiuk J, Rout A K. Lanthanide complexes of macrocyclic and macrobicyclic N-Oxides; light-converting supramolecular devices [J]. Pure Appl. Chem.,1993,65:563-566.
    [60]Sabbatini N, Guardigli M, Manet I, et al. Lanthanide complexes of encapsulating ligands:Luminescent devices at the molecular level [J]. Pure Appl. Chem.,1995,67:135-140.
    [61]Parker D, Kanthi S P, Williams J A G. Luminescent sensors for pH, pO2,halide and hydroxide ions using phenanthridine as a photosensitiser in macrocyclic europium and terbium complexes [J]. J. Chem. Soc, Perkin Trans.,1998,2:2129-2140.
    [62]Beeby A, Dickins R S, Faulikner S, et al. Luminescence from ytterbium(III) and its complexes in solution [J]. Chem. Commun.,1997,15:1401-1402.
    [63]Beeby A, Faulikner S. Luminescence from neodymium(III) in solution [J]. Chem. Phys. Lett.,1997,266:116-122.
    [64]Sabbatini N, Guardigli M, Lehn J M. Luminescent lanthanide complexes as photochemical supramolecular devices [J]. Coord. Chem. Rev.1993,123:201-228.
    [65]Blasse G, Dirksen G J, Sabbatini N, et al. Photophysics of Ce3+ cryptates [J]. Inorg. Chim. Acta.,1987,133:167-173.
    [66]Biinzli J C G, Moret E, Foiret V, et al. Structural and photophysical properties of europium(III) mixed complexes with ?-diketonates and o-phenanthroline [J]. J. Alloys Comp.,1994,207-208:107-111.
    [67]Biinzli J C G, Froidevaux P, Harrowfield J M. Complexes of lanthanoid salts with macrocyclic ligands. 41. Photophysical properties of lanthanide dinuclear complexes with p-tert-butylcalix[8]arene [J]. Inorg. Chem.1993,32:3306-3311.
    [68]Ludwig R, Matsumoto H, Takeshita M, et al. Study on monolayers of metal complexes of calixarenes and their luminescence properties [J]. Supramol. Chem.,1995,4:319.
    [69]Zheng Y X, Motevalli M, Tan R H C, et al. Synthesis and luminescence of rare earth 3,4,5,6-tetrafluoro-2-nitrophenoxide complexes[J]. Polyhedron,2008,27:1503-1506.
    [70]Hasegawa Y, Yasuda T, Nakamura K, et al. Photosensitized near-infrared luminescence of Yb(III) complexes containing phenanthroline derivatives[J]. Jpn. J. Appl. Phys.,2008,47,1192-1195.
    [71]Zhang J, Petoud S. Azulene Moiety. Based ligand for the efficient sensitization of four near-infrared luminescent lanthanide cations:Nd3+, Er3-, Tm3-, and Yb3- [J]. Chem. Eur. J.,2008,14:1264-1272.
    [72]Van Deun R, Nockemann P, Parac-Vogt T N, et al. Near-infrared photoluminescence of lanthanide complexes containing the hemicyanine chromophore [J]. Polyhedron,2007,26:5441-5447.
    [73]Takalo H, Mukkala V M, Mikola H, et al. Synthesis of europium(Ⅲ) chelates suitable for labeling of bioactive molecules [J]. Bioconjugate Chem.,1994,5:278.
    [74]Mukkala M, Helenius M, Hemmila I, et al. Development of luminescent europium(Ⅲ) and terbium(Ⅲ) chelates of 2,2':6',2"-terpyridine derivatives for protein labeling [J]. Helv. Chim. Acta,1993,76:1361-1378.
    [75]Karsilayan H, Hemmila I, Takalo H, et al. Influence of coupling method on the luminescence properties, coupling efficiency, and binding affinity of antibodies labeled with europium(Ⅲ) chelates [J]. Bioconjugate Chem.,1997,8:71-75.
    [76]Bretonniere Y, Cann M J, Parker D, et al. Ratiometric probes for hydrogencarbonate analysis in intracellular or extracellular environments using europium luminescence [J]. Chem. Commun.,2002,17:1930-1931.
    [77]Yu J H, Parker D, Robert P, et al. A europium complex that selectively stains nucleoli of cells [J]. J. Am. Chem. Soc.,2006,128,2294-2299.
    [78]Yang C, Fu L M, Wang Y, et al. A highly luminescent europium complex showing visible-light-sensitized red emission:direct observation of the singlet pathway [J]. Angew. Chem. Int. Ed.,2004,43:5010-5013.
    [79]Werts M H V, Duin M A, Hofstraat J W, et al. Bathochromicity of Michler's ketone upon coordination with lanthanide(Ⅲ) b-diketonates enables efficient sensitisation of Eu3+ for luminescence under visible light excitation [J]. Chem. Commun.,1999,9:799-800.
    [80]Wolfbeis S, Durkop A, Wu M, et al. A europium-ion-based luminescent sensing probe for hydrogen peroxide [J]. Angew. Chem. Int. Ed.,2002,41:4495-4498.
    [81]Beeby I M, Clarkson R S, Dickins S, et al. Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators:an improved luminescence method for establishing solution hydration states [J]. J. Chem. Soc., Perkin Trans,1999,2:493-504.
    [82]Song B, Wang G L, Yuan J L. A new europium chelate-based phosphorescence probes specific for singlet oxygen [J]. Chem. Commun.,2005,28:3553-3555.
    [83]Song B, Wang G L, Tan M Q, et al. A europium(III) complex as an efficient singlet oxygen luminescence probe [J]. J. Am. Chem. Soc.,2006,128,13442-13450.
    [84]Tan M Q, Song B, Wang G L, et al. A new terbium(Ⅲ) chelate as an efficient singlet oxygen fluorescence probe [J]. Free Radical Biol. Med.,2006,40:1644-1653.
    [85]Song C H, Ye Z Q, Wang G L, et al. A lanthanide-complex-based ratiometric luminescence probe specific for peroxynitrite [J]. Chem. Eur. J.,2010,22:6464-6472.
    [86]Chen Y G, Guo W H, Ye Z Q, et al. A europium chelate as an efficient time-gated luminescence probe fornitic oxide [J]. Chem. Commun.,2011,47:6266-6268.
    [87]Ye Z Q, Wang G L, Chen J X, et al. Development of a novel terbium chelate-based luminescent chemosensor for time-resolved luminescence detection of intracellular Zn2+ ions [J]. Biosens. Bioelectron.,2010,26:1043-1048.
    [88]Ye Z Q, Chen J X, Wang G L, et al. Development of a terbium complex-based luminescent probe for imaging endogenous hydrogen peroxide generation in plant tissues [J]. Anal. Chem.,2011,83:4163-4169.
    [89]Seveus L, Vaisala M, Syrjanen S, et al. Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization [J]. Cytometry,1992,13:329-338.
    [90]De Haas R R, Verwoerd N P, Van Der Corput M P, et al. The use of peroxidase-mediated deposition of biotin-tyramide in combination with time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization [J]. J. Histochem. Cytochem.,1996, 44:1091-1099.
    [91]Bjartell A, Laine S, Pettersson K, et al. Time-resolved fluorescence in imrnunocytochemical detection of prostate-specific antigen inprostatic tissue sections [J]. Histochem. J.,1999,31:45-52.
    [92]Marriott G, Hekiecker M, Diamndis D P, et al. Time-resolved delayed luminescence image microscopy using an europium ion chelate complex [J]. Biophys. J.,1994,67:957-965.
    [93]Harma H, Soukka T, Lovgren T, et al. Europium nanoparticles and timeresolved fluorescence for ultrasensitive detection of prostate-specific antigen [J]. Clin. Chem.,2001,47:561-568.
    [94]Rulli M, Kuusisto A, Salo J, et al. Time-resolved fluorescence imaging in islet cell autoantibody quantitation [J]. J. Immunol. Methods,1997,208:169-179.
    [95]Hanaoka K, Kikuchi K, Kobayashi S, et al. Time-resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system [J]. J. Am. Chem. Soc.2007,129:13502-13509.
    [96]Connally R, Veal D, Piper J. Time-resolved fluorescence microscopy using an improved europium chelate BHHST for the in situ detection of Cryptosporidium and Giardia [J]. Microsc. Res. Tech.,2004,64:312-322.
    [97]Connally R, Veal D, Piper J. High resolution detection of fluorescently labeled microorganisms in environmental samples using timeresolved fluorescence microscopy [J]. FEMS MicrobioI. Ecol.,2002,41:239-245.
    [98]Wu J, Wang G L, Jin D Y, et al. Luminescent europium nanoparticles with a wide excitation range from UV to visible light for biolabeling and time-gated luminescence bioimaging [J]. Chem. Commun.,2008:365-367.
    [99]Wu J, Ye Z Q, Wang G L, et al. Visible-light-sensitized highly luminescent europium nanoparticles: preparation and application for time-gated luminescence bioimaging [J]. J. Mater. Chem.,2009,19:1258-1264.
    [100]Phimphivong S, Kolchens S, Edmiston P L, et al. Time-resolved, total internal reflection fluorescence microscopy of cultured cells using a Tb chelate label [J]. Anal. Chim. Acta.,1995,307:403-417.
    [101]Phimphivong S, Saavedra S S. Terbium chelate membrane label for time-resolved, total internal reflection fluorescence microscopy of substrate-adherent cells [J]. Bioconjugate Chem.,1998,9:350-357.
    [102]干镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社,2006.
    [103]方允中,郑荣梁.自由基生物学的理论与应用[M].北京:科学出版社,2002.
    [104]方允中,李文杰.自由基与酶——基础理论及其在生物学和医学中的应用[M].北京:科学出版社,1989.
    [105]郑荣梁,黄中洋.自由基生物学[M].北京:高等教育出版社,2007.
    [106]Samuelsson B. Leukotrienes:mediators of immediate hypersensitively reactions and inflammation [J]. Science,1983,220:568-575.
    [107]Marnett L J. Lipid peroxidation-dependent mutagenesis:chemistry and biology [C]//Free radical in chemistry, biology and medicine. Yoshikama T, OICA,London,7-15.
    [108]陈培榕,李景虹,邓勃.现代仪器分析试验与技术[M].北京:清华大学出版社,2006.
    [109]Qu X, Kirschenbaum L J, Borish E T. Hydroxyterephthalate as a fluorescent probe for hydroxyl radicals:Application to hair melanin [J]. Photochem. Photobiol.,2000,71:307-313.
    [110]Makrigiorgos G M, Bump E, Huang C, et al. A fluorimetric method for the detection of copper-mediated hydroxyl free radicals in the immediate proximity of DNA [J]. Free Radic. Biol. Med.,1995,18:669-678.
    [111]Setsukinai K, Urano'Y, Kakinuma K, et al. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species [J]. J Biol. Chem.,2003,278:3170-3175.
    [112]Soh N, Makihara K, Sakoda E, et al. A ratiometric fluorescent probe for imaging hydroxyl radicals in living cells [J]. Chem. Commun.,2004:496-497.
    [113]Tolosa L, Nowaczyk K, Lakowicz J. An introduction to laser spectroscopy,2nd ed [M].,Kluwer,New York,2002.
    [114]Peng X J, Song F L, Lu E, et al. Heptamethine cyanine dyes with large stokes shift and strong fluorescence:a paradigm for excited-state intramolecular charge transfer [J]. J.Am.Chem.Soc.,2005,127:4170-4171.
    [115]Page S E, Wilke K T, Pierre V C. Sensitive and selective time-gated luminescence detection of hydroxyl radical in water [J]. Chem. Commun.,2010,46:2423-2425.
    [116]Wolfe M F, Schwarzbach S, Sulaiman A. Effects of mercury on wildlife: a comprehensive review [J]. Environ. Toxicol. Chem.,1998,17:146-160.
    [117]Tchounwou P B, Ayense W K, Ninashvili N, et al. Enviromental exposure to mercury and its toxicopatholgic implications for public health [J]. Environ. Toxicol.,2003,18:149-175.
    [118]Renzoni A, Zino F, Franchi E. Mercury levels along the food chain and risk for exposed populations [J]. Environ. Res.,1998,77:68-72.
    [119]Boening D W. Ecological effects, transport, and fate of mercury: a general review [J]. Chemosphere,2000,40:1335-1351.
    [120]Richardson S D, Temes T A. Water analysis:emerging contaminants and current issues [J]. Anal. Chem.,2005,77:3807-3838.
    [121]Kageyama K, Onoyama K, Kano Y, et al. Effects of methylmercuric chloride and sulfhydryl inhibitors on phospholipids synthetic activity of lymphocytes [J]. J. Appl. Toxicol.,1986,6:49-53.
    [122]Clarkson T W, Magos L, Myers G J. The toxicology of mercury-current exposures and clinical manifestations [J]. N.Engl.J.Med.,2003,349:1731-1737.
    [123]Llobet J M, Falco G, Casas C, et al. Concentrations of arsenic, cadmium, mercury and lead in common foods and estimated daily intake by children, adolescents, adult and seniors of Catalonia, Spain [J]. J. Agric. Food Chem.,2003,51:838-842.
    [124]Li Y F, Chen C Y, Li B, et al. Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS [J]. J. Anal. Atom. Spec.,2006,21:94-96.
    [125]Unterreitmaier J E, Schuster M. Fluorimetric detection of heavy metals with Ν-methyl-Ν-9-(methylanthracene)-Ν-benzoy Ithiourea [J]. Anal. Chim. Acta.,1995,309:339-344.
    [126]Lombardo M, Vassura I, Fabbri D, et al. A strikingly fast route to methylmercury acetylides as a new opportunity for monomethylmercury detection [J]. J. Organomet. Chem.,2005,690:588-593.
    [127]Liu L, Lam Y W, Wong W Y. Complexation of 4,4'-di(tert-butyl)-5-ethynyl-2,2'-bithiazole with mercury(II) ion: Synthesis, structures and analytical applications [J]. J. Organomet. Chem.,2006,691:1092-1100.
    [128]Liu L, Wong W Y, Lam Y W, et al. Exploring a series of monoethynylfluorenes as alkynylating reagents for mercuric ion: Synthesis, spectroscopy, photophysics and potential use in mercury speciation [J]. Inorg. Chim. Acta.,2007,360:109-121.
    [129]Walker G S, Ridd M J, Brunskii G J. A comparison of inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry for determination of mercury in Great Barrier Reef sediments [J]. Rapid Comm. in Mass Spectrometry,1996,10:96-99.
    [130]Westoo G. Methylmercury compounds in fish, identification and determination [J]. Acta. Chem. Scand.,1966,20:2131-2137.
    [131]Medina I, Rubi E, Mejuto M C, et al. Speciation of organomercurials in marine samples using capillary electrophoresis [J]. Talanta,1993,40:1631-1636.
    [132]Hardy S, Jones P. Capillary electrophoresis determination of methylmercury in fish and crab meat after extraction as the dithizone sulphonate complex [J]. J. Chromatogr. A,1997,791:333-338.
    [133]Jones P, Hardy S. Development of a capillary electrophoretic method for the separation and determination of trace inorganic and organomercury species utilizing the formation of highly absorbing water soluble dithizone sulphonate complexes [J]. J. Chromatogr. A,1997,765:345-352.
    [134]Saito S, Sasamura S, Hoshi S. Simultaneous detection of [metal(II)-tpen]2+ as kinetically inert cationic complexes using pre-capillary derivatization electrophoresis:an application to biological samples [J]. Analyst,2005,130:659-663.
    [135]Yoon S, Albers A E, Wong A P, et al. Screening mercury levels in fish with a selective fluorescent chemosensor [J]. J. Am. Chem.Soc.,2005,127:16030-16031.
    [136]Moon S Y, Youn N J, Park S M, et al. Diametrically disubstituted cyclam derivative having Hg2+ -selective fluoroionophoric behaviors [J]. J. Org. Chem.,2005,70:2394-2397.
    [137]Kewei H, Hong Y, Zhiguo Z, et al. Multisignal chemosensor for Cr3-and its application in bioimaging [J]. Org.Lett.,2008,10:2557-2560.
    [138]Wang J, Qian X, Qian J, et al. Micelle-induced versatile performance of amphiphilic intramolecular charge-transfer fluorescent molecular sensors [J]. Chem. Eur. J.,2007,13:7543-7552.
    [139]Coskun A, Akkaya E. Signal ratio amplification via modulation of resonance energy transfer: proof of principle in an emission rationmetric Hg(Ⅱ) sensor [J]. J. Am. Chem.Soc.,2006,128:14474-14475.
    [140]Coskun A, Yilmaz M, Akkaya E. Bis(2-pyridyl)-subsituted boratriazaindacene as an NIR-emitting chemosensor for Hg(II) [J]. Org.Lett.,2007,9:607-609.
    [141]Tanaka M, Nakamura M, Ikeda T, et al. Synthesis and metal-ion binding properyies of monoazathiacrown ethers [J]. J. Org. Chem.,2001,66:7008-7012.
    [142]Thomas J M, Ting R, Perrin D M. High affinity DNAzyme-based ligands for transition metal cations-a prototype sensor for Hg2+ [J]. Oran.& Bio. Chem.,2004,2:307-312.
    [143]Liu J, Lu Y. Rational design of "turn-on"allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity [J]. Angew. Chem. Int. Edit.,2007,46:7587-7590.
    [144]Seraphine V W, Ayse O, Peng C, et al. Design of an emission ratiometric biosensor from MerR family proteins: a sensitive and selectivity sensor for Hg2+ [J]. J. Am. Chem.Soc.,2007,129:3474-3475.
    [145]Peng C, Chuan H. A general strategy to convert the MerR family proteins into highly sensitive and selectivity fluorescent biosensors for metal ions [J].J. Am. Chem.Soc.,2004,126:728-729.
    [146]Han S B, Zhu M, Yuan Z B, et al. A methylene blue-mediated enzyme electrode for the determination of trace mercury(Ⅱ), mercury(Ⅰ), methylmercury, and mercury-glutathione complex [J]. Biosens. Bioelectron,2001,16:9-16.
    [147]Nolan E M, Lippard S J. Tools and tactics for the optical detection of mercuric ion [J]. Chem. Rev.,2008,108,3443-3480.
    [148]Park S M, Kim M H, Choe J I, et al. Cyalams bearing diametrically disubstituted pyrenes as Cu2+T-and Hg2+ -selective fluoroionophores [J]. J. Org. Chem.,2007,72:3550-3553.
    [149]Song K C, Kim M H, Kim H J, et al. Hg2+ -and Cu2+-selective fluoroionophoric behaviors of a dioxocyclam derivative bearing anthrylacetamide moieties [J]. Tetrahedron Lett.2007,48:7464-7468.
    [150]Yang Y, Jiang J H, Shen G L, et al. An optical sensor for mercury ion based on the fluorescence quenching of tetra(p-dimethylaminophenyl)porphyrin [J]. Anal. Chim. Acta,2009,636:83-88.
    [151]Li G K, Liu M, Yang G Q, et al. An effective Hg2+-selective fluorescent chemosensor based on a calix[4]arene bearing four dansyl amides [J]. Chinese J.Chem.2008,26:1440-1446.
    [152]Pandey S, Azam A, Pandey S, et al. Novel dansyl-appended calix[4]arene frameworks: fluorescence properties and mercury sensing [J]. Org. Biomol. Chem.,2009,7:269-279.
    [153]Che Y, Yang X M, Zang L. Ultraselective fluorescent sensing of Hg2+ through metal coordination-induced molecular aggregation [J]. Chem. Commun.,2008,44:1413-1415.
    [154]Zhu X J, Fu S T, Wong W K, et al. New expanded porphyrin as near-infrared fluorescent sensor for mercuric Ion with high sensitivity and selectivity [J]. Angew. Chem. Int. Ed.,2006,45:3150-3154.
    [155]Juyoung Y, Norman E,Ohler A W C. A fluorescent chemosensor with signalling Hg(Ⅱ) and Cu(Ⅱ) in water [J]. Tetrahedron Lett.,1997,38:3845-3848.
    [156]Descalzo A B, Martinez-Manez R, Radeglia R, et al. Coupling selectivity with sensitivity in an integrated chemosensor framework: design of a Hg2+-responsive probe, operating above 500 nm [J]. J. Am. Chem. Soc.,2003,125:3418-3419.
    [157]Wang L, Wong W K, Wu L, et al. A highly selective fluorescent chemosensor for Hg2+ in aqueous solution [J]. Chem. Lett.,2005,34:934-935.
    [158]Wang L, Zhu X J, Wong W Y, et al. Dipyrrolylquinoxaline-bridged Schiff bases:a new class of fluorescent sensors for mercury(II) [J]. J. Chem. Soc.,Dalton Trans.,2005:3235-3240.
    [159]Yu Y, Lin L R, Yang K B, et al. p-Dimethylaminobenzaldehyde thiosemicarbazone:A simple novel selective and sensitive fluorescent sensor for mercury(II) in aqueous solution [J]. Talanta,2006,69:103-106.
    [160]Hennrich G, Walther W, Resch-genger U, et al. Cu(II)-and Hg (Ⅱ)-induced modulation of the fluorescence behavior of a redox-active sensor molecule[J]. Inorg. Chem.,2001,40:641-644.
    [161]Hennrich G, Sonnenschein H, Resch-genger U. Redox switchable fluorescent probe selective for either Hg(II) or Cd(II) and Zn(II) [J]. J. Am. Chem. Soc.,1999,121:5073-5074.
    [162]Lakowicz J R. Principles of Fluorescence Spectroscopy.2nd ed[M]. Springer, New York,2006.
    [163]Shiraishi Y, Sumiya S, Kohno Y, et al. A rhodamine-cyclen conjugate as a highly sensitive and selective fluorescent chmosensor for Hg(II) [J]. J. Org. Chem.,2008,73:8571-8574.
    [164]Zhang X, Shiraishi Y, Hirai T. A new rhodamine-based fluorescent chemosensor for transition metal cations synthesized by one-step facile condensation [J]. Tetrahedron Lett.,2007,48:5455-5459.
    [165]Soh J H, Swamy K M, Kim S K, et al. Rhodamine urea derivatives as fluorescent chemosensors for Hg2+ [J]. Tetrahedron Lett.,2007,48:5966-5969.
    [166]Huang W, Zhou P, Yan W B, et al. A bright water-compatible sugar-rhodamine fluorescence sensor for selective detection of Hg2+ in natural water and living cells [J]. J. Environ. Monitor, 2009,11:330-335.
    [167]Chen X Q, Nam S W, Jou M J, et al. Hg2+ selective fluorescent and colorimetric sensor:its crystal structure and application to the bio-imaging [J]. Org. Lett.,2008,10:5235-5238.
    [168]Huang W, Song C X, He C, et al. Recognition preference of rhodamine-thiospirolactams for mercury(II) in aqueous solution [J]. Inorg. Chem.,2009,48:5061-5072.
    [169]Tang B, Cui L J, Xu K H, et al. A sensitive and selective near-infrared fluorescent probe for mercuric ions and its biological imaging applications [J]. Chembiochem.,2008,9:1159-1164.
    [170]Yoon S, Miller E, He Q, et al. A bright and specific fluorescent sensor for mercury in water, cell, and tissue [J]. Angew. Chem. Int. Ed.,2007,46:6658-6661.
    [171]Chae M Y, Czarnik A W. Fluorimetic chemodosimetry. Mercury(II) and Silver(I) indication in water via enhanced fluorescence signaling [J]. J. Am. Chem. Soc.,1992,114:9704-9705.
    [172]Zhang H, Qian Z H, Xu L, et al. Switching the recognition characteristic by replacing one atom: design of rhodamine B thiohydrazide for recognition of mercury ion in water solution [J]. Org.Lett.,2006,8:859-861.
    [173]Zhang X L, Xiao Y, Qian X H. A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells [J]. Angew. Chem. Int. Ed.,2008,47:8025-8029.
    [174]Shang G Q, Gao X, Chen M X, et al. A novel Hg2+ selective ratiometricfluorescent chemodosimeter based on a intramolecular FRET mechanism [J]. J.Fluoresc,2008,18:1187-1192.
    [175]Dhir A, Bhalla V, Kumar M. Ratiometric sensing of Hg2+ based on thecalix[4]arene of partial cone conformation possessing a dansyl moiety [J]. Org. Lett.,2008,10:4891-4894.
    [176]Suresh M, Mishra S, Mishra S K, et al. Resonance energy transfer approach and a new ratiometric probe for Hg2+ in aqueous media and living organism [J]. Org. Lett.,2009,11:2740-2743.
    [177]Joshi B P, Park J, Lee W I, et al. Ratiometric and turn-on monitor-ing for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor [J]. Talanta,2009,78:903-909.
    [178]Wang J B, Qian X H, Cui J N. Detecting Hg2+ ions with an ICT fluorescent sensor molecule: Remarkable emission spectra shift and unique selectivity [J]. J. Org. Chem.,2006,71:4308-4311.
    [179]Nolan E M, Lippard S J. MS4, a seminaphthofluorescein-based chemosensor for the ratiometric detection of Hg(II) [J]. J. Mater. Chem.,2005,15:2778-2783.
    [180]Nolan E M, Lippard S J. Turn-on and ratiometric mercury sensing in water with a red-emitting probe [J]. J. Am. Chem. Soc.,2007,129:5910-5918.
    [181]Thibon A, Pierre V C. Principles of responsive lanthanide-based luminescent probes for cellular imaging [J]. Anal. Bioanal. Chem.,2009,394:107-120.
    [182]Goldstein S, Meyerstein D, Czapski G, et al. The Fenton reagents [J]. Free Radical Biol. Med.,1993,15:435-445
    [183]Aubry J M, Cazin B, Dupart F. Chemical sources of singlet oxygen.3. Peroxidation of water-soluble singlet oxygen carriers with the hydrogen peroxide-molybdate system [J]. J. Org. Chem.,1989,54(3):726-728.
    [184]Aubry J M, Cazin B. Chemical sources of singlet oxygen 2. Quantitative generation of singlet oxygen from hydrogen peroxide disproportionation catalyzed by molybdate ions [J]. Inorg. Chem.,1988,27(12):2013-2014.
    [185]Miyamoto S, Martinez G R, Martins A P B, et al. Direct evidence of singlet molecular oxygen [O2 (1 Ag)] production in the reaction of linoleic acid hydroperoxide with peroxynitrite. J. Am. Chem. Soc.,2003,125(15):4510-4517.
    [186]Hanaoka K, Kikuchi K, Kojima H, et al. Development of a zinc ion-selective luminescent lanthanide chemosensor for biological applications [J]. J. Am. Chem. Soc.,2004,126:12470-12476.
    [187]Tour O, Adams S R, Kerr R A, et al. Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator [J]. Nat. Chem. Biol.,2007,3:423-431.
    [188]Jiang H, O'Neil E J, Divittorio K M, et al. Synthesis of an artificial cell surface receptor that enables oligohistidine affinity tags to function as metal-dependent cell-penetrating peptides [J]. Org. Lett.,2005,7:3013-3016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700