离子速度成像方法研究多原子分子光解动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了多原子分子的光解动力学,利用时间切片离子速度成像技术研究了异氰酸(INCO)分子在三重态及单重态势能面的解离动力学,二氧化碳分子157nm波长下的光解动力学以及乙醛(CH3CHO)分子在紫外区的光解动力学。通过对反应产物的离子影像进行平动能分布和角分布的分析,我们获得了对这些微观反应机理的认识。
     HNCO经NH(a1△)+CO(X1Σ+)通道的光解动力学研究
     我们研究了异氰酸(HNCO)分子在201nm光解波长下NH(a1△)+CO(X1Σ+)通道的绝热动力学。对解离生成的两个碎片1NH与CO都进行了影像探测。解离产物的各向异性参数β显示了负值,由此表明HNCO经201nm光解是快速直接解离的过程。从解离产物的动能分布推出了两个碎片的各种态态相关动力学信息。解离碎片CO的振动能与1NH产物的转动能展现了负相关性,1NH碎片的振动能则是随着CO转动能的增大先增大后减小,两个碎片显示了不同的变化规律。两碎片的振动能展现了负相关性,另外解离产物1NH(v=0)的转动能与碎片CO(v=1)的转动能之间也是负相关的。从1NH的影像所得到的总平动能分布看CO(v=0)的转动能出现了明显的双峰分布,由此推测这一双峰现象来自于两种不同的解离路径,我们认为是由HNCO的两种同分异构体产生:反式结构trans-HNCO和顺式结构cis-HNCO。
     HNCO经NH(X3Σ)+CO(X1Σ+)通道的光解动力学研究
     通过离子速度成像技术,我们对异氰酸(HNCO)分子经230nm光解生成NH(X3∑-)+CO(X1∑+)通道的非绝热动力学行为进行了研究,利用REMPI技术对CO碎片的不同振转态进行了影像探测。对解离碎片的能量进行分析我们发现对于所有探测的CO碎片其所对应的解离产物3NH都是振动反转的,峰值为v=1。对产物角分布以及信号强度进行分析我们认为振动基态与第一振动激发态的3NH碎片应由不同的解离路径所产生。对于第一振动激发态的3NH碎片,我们推测其解离路径为S1→S0→T1→3NH(v=1)+CO,因中间态具有较长的寿命,产生的碎片角分布是各向同性的。振动基态的3NH碎片的解离路径则与之不同,我们推测它是由S,电子态上的HNCO分子直接耦合到T1电子态然后解离形成。由于中间态寿命相对较短,因而生成了各向异性分布的解离产物。
     二氧化碳157nm光解动力学研究
     我们运用时间切片离子速度成像方法研究了二氧化碳经157nm光解CO(1Σ+)+O(1D)通道的解离动力学,结合REMPI技术对CO和O(1D)两个解离产物都进行了影像探测。对O(1D)影像探测的结果显示对应的CO产物布局在振动基态与第一激发态。CO影像探测的结果表明解离碎片的角分布随着CO转动能的变化是逐渐变化的,低转动部分对应的碎片具有相对较高的各向异性角分布,但是随着转动量子数的增大则各向异性参数逐渐降低,可以用一经典的碰撞模型来解释这一现象。在高转动区域各向异性参数则呈现了一种反常的变化规律,由此推测在这一区域里很有可能存在势能面之间的耦合现象。
     乙醛分子的光解动力学研究
     我们利用时间切片离子速度成像技术在275-321nm波长范围内深入研究了乙醛自由基解离通道CH3+HCO的光解动力学。甲基碎片通过共振增强多光子电离的方法进行了探测。对甲基的伞形振动基态和激发态(v2=0和1)进行了影像探测。对于乙醛通过S1电子态系间窜越到T1电子态的解离,其产物具有很高的动能释放和相对较低的内能激发,碎片的振动能和转动能随激发能量的增加而增加。解离产物CH3和HCO的振动态展示了明显的态态相关动力学特性。乙醛T1电子态的势垒高度经测量高于基电子态3.881±0.006eV。
This thesis mainly introduces studies on photodissociation dynamics of polyatomic molecules with the time-sliced ion imaging technique. The first one is the photodissociation dynamics of HNCO involved both on the singlet and triplet potential energy surfaces. The second topic is the photodissociation dynamics of CO2molecules at157nm. The last one is the indepth studies on photodissociation dynamics of CH3CHO at wavelengths in UV region. We obtained the insight of the reaction dynamics based on the translational energy distributions and angular distributions of the recorded products ion images.
     Photodissociation dynamics studies of HNCO for NH(a1△)+CO(X1Σ+) channel
     The NH(a1△)+CO(X1Σ+) product channel for the photodissociation of HNCO at201nm was investigated using the sliced velocity map ion imaging technique with the detection of both CO(X1Σ+) and NH(a1△) products via (2+1) resonance enhanced multiphoton ionization (REMPI). The negative anisotropy parameter measured for the products indicates a direct dissociation process for the N-C bond cleavage in the S1state. Correlation between the NH(a1△) and CO rovibrational state distributions were determined from these images. The vibrational excitation of the correlated CO product is anti-correlated to the1NH(v=0|j) rotational excitation. But the vibrational energy of the correlated NH fragment increases as the rotational state of CO product increases initially and decreases afterwards. Two fragments show different variation. The vibrational energy of both fragments is anti-correlated and the rotational energy of1NH(v=O) fragment is also anti-correlated to the CO(v=1) rotational excitation. From the image of'NH fragment, a bimodal rotational distribution of CO(v=0) has been observed clearly. We speculated that it derived from two different dissociation pathways in the S1state and gave a possible explanation-as being related to the two different stable isomers (trans-and cis-HNCO).
     Photodissociation dynamics studies of HNCO for NH (X3Σ-)+CO (X1Σ+) channel
     We studied the photodissociation of HNCO for the NH (X3Σ-)+CO (X1Σ+) product channel at230nm by the velocity map ion imaging technique with the detection of CO fragments via (2+1) REMPI. By analyzing the total translational energy of fragments we found that the vibrational energy of3NH fragment is inverted and peak at v=1. The different angular distribution and signal strength indicated that the3NH vibrational ground state and the first excited state should come from different dissociation pathways. For the3NH first excited state, the dissociation path should be S1-→S0→T1→3NH (v=1)+CO, the life of intermediate state is long, so the angular distribution of fragment is isotropic. However, the3NH vibrational ground state should come from S1-→S0→T1→3NH (v=0)+CO. The life of intermediate state is relatively short, so the angular distribution of product is anisotropic.
     Photodissociation dynamics studies of CO2at157nm
     Photodissociation dynamics of CO2for the CO(1Σ+)+O(1D) channel at157nm has been investigated using time-sliced velocity map imaging technique. Both CO and O(1D) fragments were probed by (2+1) REMPI. The results of O(1D) image indicated that CO products were distributed in the vibrational ground state and the first excited state. The results of CO image indicated that the angular distribution of fragments changed as CO rotational energy changed. The lower rotationally excited CO fragments have higher anisotropy parameters than the highly rotationally excited CO products. An impact modal could be employed to illuminate this phenomenon. The anisotropy of highly rotationally excited CO fragments shows an anomalous variation. We speculated that it derived from the coupling between potential energy surfaces. Photodissociation dynamics studies of acetaldehyde
     The photodissociation dynamics of acetaldehyde in the radical channel CH3+HCO has been reinvestigated via time-sliced velocity map imaging method in the photolysis wavelength range of275-321nm. The CH3fragments have been probed via (2+1) resonance-enhanced multiphoton ionization (REMPI). Images are measured for the CH3formed in the ground and excited states (V2=0and1) of the umbrella vibrational mode. For acetaldehyde dissociation on T1state after intersystem crossing from S1state, the products are formed with high translational energy release and low internal excitation. The rotational and vibrational energy of both fragments increases with increasing photodissociation energy. The triplet barrier height is estimated at3.881±0.006eV above the ground state of acetaldehyde.
引文
1. R. Schinke, Photodissociation Dynamics (Cambridge University Press New York,1995).
    2. H. Okabe, "Photochemistry of small molecules", Wiley, New York,1978.
    3. http://en.wikipedia.org/wiki/Solar_radiation#cite_note-8
    4. M. N. R. Ashfold and J. E. Baggott, Molecular Photodissociation Dynamics (The Royal Society of Chemistry,1987).
    5. R. P. Wayne, Principles and Applications of Photochemistry, Oxford University press,1988.
    6. J. V. V. Kasper and G. C. Pimemtel, Appl. Phys. Lett.,5,231 (1964).
    7. G. Herzberg, Molecular Spectra and Molecular Structure III:Spectra of Polyatomic Molecules. (Van Nostrand, New York,1967).
    8. K. Weide, V. Staemmler, and R. Schinke, J. Chem. Phys.,93,861 (1990).
    9. G. Theodorakopoulos, and I. D. Petsalakis, Chem. Phys. Lett.,178,475 (1991).
    10. R. G. W. Norrish and G. Porter, Proc. R. Soc. London. Ser.,1950.
    11. R.A. Marcus, J. Chem. Phys.,24,966 (1956).
    12. G.C. Schatz and A. Kuppermann, J. Chem. Phys.,65,4642 (1976).
    13. G.C. Schatz and A. Kuppermann, J. Chem. Phys.,65,4668 (1976).
    14. R. N. Zare and D. R. Herschbach, Proc. IEEE.,51,173 (1963).
    15. B. Friedrich and D. R. Herschbach, Nature.,353,412 (1991).
    16. J. C. Polanyi and W. H. Wong, J. Chem. Phys.,51,1439 (1969).
    17. J. C. Polanyi and K. B. Woodall, J. Chem. Phys.,56,1563 (1972).
    18. D. M. Neumark, A. M. Wodtke, G. N. Robinson, C. C. Hayden, and Y. T. Lee, J. Chem. Phys.,82,3045 (1985).
    19. R. H. Page, Y. R. Shen, and Y. T. Lee, J. Chem. Phys.,88,4621 (1988).
    20. W.H. Miller, N.C. Handy and J.E. Adams, J. Chem. Phys.,72,99 (1980).
    21. W.H. Miller, S.D. Schwartz and J.W. Tromp, J. Chem. Phys.,79,4889 (1983).
    22. R. N. Zare, Mol Photochem.,4,1 (1972).
    23. C. H. Greene, R. N. Zare, Annu. Rev. Phys. Chem.,33,199 (1982).
    24. M. N. R. Ashfold and J. E. Baggott, in Molecular Photodissociation Dynamics (Royal Society of Chemistry, London,1987).
    25. P. L. Houston, J. Phys. Chem.,91,5388 (1987).
    26. G. A. Chamberlain and J. P. Simons, Chem. Phys. Lett.,32,355 (1975).
    27. C. H. Greene and R. N. Zare, J. Chem. Phys.,78,6741 (1983).
    28. R. N. Zare and P. J. Dagdigian, Science.,185,739 (1974).
    29. C. Fotakis, M. Martin, R. J. Donovan, J. Chem. Soc. Faraday Trans. Ⅱ,78,1363 (1982).
    30. H. Joswig, M. A. O'Halloran, R. N. Zare and M. S. Child, Faraday Discuss. Chem. Soc.,82, 79 (1986).
    31. J. L. Kinsey, Annu. Rev. Phys. Chem.,28,349 (1977).
    32. N. Shafer and R. Bersohn, J. Chem. Phys.,94,4817 (1991).
    33. J. C.Polanyi and D. C. Tardy, J. Chem. Phys.,51,5717(1969).
    34. P. M. Johnson, M. R. Berman and D. Zakheim, J. Chem. Phys.,62,2500 (1975).
    35. D. W. Chandler, J. W. Thoman Jr., M. H. M. Janssen and D.H. Parker,, Chem. Phys. Lett., 156,151 (1989).
    36. M. N. R. Ashfold and J. D. Howe, Annu. Rev. Phys. Chem.,45,57 (1994).
    37. M. Dubs, U. Bruhlmann and J. R. Huber, J. Chem. Phys.,84,3106 (1986).
    38. K. H. Welge and R. Schmiedl, "Photoselective Chemistry", Wiley, New York,1981.
    39. R. J. Gordon and G. E. Hall, Adv. Chem. Phys.,96,1 (1996).
    40. H. L. Kim, M. A. Wickramaaratchi, X. N. Zheng and G. E. Hall, J. Chem. Phys.101,2033 (1994).
    41. M. Kawasaki, S. J. Lee and R. Bersohn, J. Chem. Phys.,66,2647 (1977).
    42. J. J. Lin, W. Hwang, S. Harlich, Y. T. Lee and X. M. Yang, Rev. Sci. Instrum.,69,1642 (1998).
    43. L. Schnieder, K. Seekamp-Rahn, J. Borkowski, E. Wrede, K. H. Welge, F. J. Aoiz, L. Baniares, M. J. D'Mello, V. J. Herrero, V. Saez Rabanos and R. E. Wyatt, Science.,269,207 (1995).
    44. F. J. Aoiz, L. Banares, J. F. Castillo, V. J. Herrero, B. Martinez-Haya, P. Honvault, J. M. Launay, X. Liu, J. J. Lin, S. A. Harich, C. C. Wang, and X. Yang, J. Chem. Phys.,116,10692 (2002).
    45. D. Chandler and P. L. Houston, J. Chem. Phys.,87,1445 (1987).
    46. A. T. J. B. Eppink and D. H. Parker, Rev. Sci. instrum.,68,3477 (1997).
    47. C. R. Gebhardt, T. P. Rakitzis, P. C. Samartzis, V. Ladopoulos and T. N. Kitsopoulos,72, 3848 (2001).
    48. J. J. Lin, J. Zhou, W. Shiu and K. Liu, Rev. Sci. instrum.,74,2495 (2003).
    1. D. Chandler and P. L. Houston, J. Chem. Phys.,87,1445 (1987).
    2. A. T. J. B. Eppink and D. H. Parker, Rev. Sci. instrum.,68,3477 (1997).
    3. W. C. Wiley and I. H. McLaren, Rev. Sci. Instrum.,26,1150 (1955).
    4. B.-Y. Chang, R. C. Hoetzlein, J. A. Mueller, J. D. Geiser, and P. L. Houston, Rev. Sci. Instrum.,69,1665(1998).
    5. B. J. Whitaker, Image Reconstruction:The Abel Transform. (Oxford University Press, New York,2000).
    6. M. J. J. Vrakking, Rev. Sci. Instrum.72,4084 (2001).
    7. V. Dribinski, A. Ossadtchi, V. A. Mandelshtam and H. Reisler, Rev. Sci. Instrum.,73,2634 (2002).
    8. G. A. Garcia, L. Nahon and I. Powis, Rev. Sci. Instrum.,75,4989 (2004).
    9. G. M. Roberts, J. L. Nixon, J. Lecointre, E. Wrede and J. R. R. Verlet, Rev. Sci. Instrum.,80, 053104(2009).
    10. C. R. Gebhardt, T. P. Rakitzis, P. C. Samartzis, V. Ladopoulos and T. N. Kitsopoulos, Rev. Sci. Instrum.,72,3848 (2001).
    11. J. J. Lin, J. G. Zhou, W. C. Shiu and K. Liu, Rev. Sci. Instrum.,74,2495 (2003).
    12. D. Townsend, M. P. Minitti and A. G. Suits, Rev. Sci. Instrum.,74,2530 (2003).
    13. L. Dinu, A. T. J. B. Eppink, F. Rosca-Pruna, H. L. Offerhaus, W. J. van der Zande and M. J. J. Vrakking, Rev. Sci. Instrum.,73,4206 (2002).
    14. K. Tonokura and T. Suzuki, Chem. Phys. Lett.,224,1 (1994).
    15. K. T. Lorenz, D. W. Chandler, J. W. Barr, W. Chen, G. L. Barnes and J. I. Cline, Science., 293,2063 (2001).
    16. M. N. R. Ashfold, N. H. Nahler, A. J. Orr-Ewing, O. P. J. Vieuxmaire, R. L. Toomes, T. N. Kitsopoulos, I. A. Garcia, D. A. Chestakov, S.-M. Wu and D. H. Parker, Phys. Chem. Chem. Phys.,8,26, (2006).
    1. Y. T. Lee, Rev. Sci. Instrum.,40,1402 (1969).
    2. Z. Karny and R. N. Zare, J. Am. Chem. Soc.,68,3360 (1978).
    3. J. J. Lin, J. G. Zhou, W. C. Shiu and K. Liu, Rev. Sci. Instrum.,74,2495 (2003).
    4. D. Townsend, M. P. Minitti and A. G. Suits, Rev. Sci. Instrum.,74,2530 (2003).
    5. J. E. Dahl and A. D. Delmore, Rev. Sci. Instrum.,61,607 (1990).
    6. L. Dinu, A. T. J. B. Eppink, F. Rosca-Pruna, H. L. Offerhaus, W. J. van der Zande and M. J. J. Vrakking, Rev. Sci. Instrum.,73,4206 (2002).
    1. R. A. Perry and D. L. Siebers, Nature.,324,657 (1986).
    2. J. A. Miller and C. T. Bowman, Int. J. Chem. Kinet.,23,289 (1991).
    3. R. N. Dixon and G. H. Kirby, Trans. Faraday. Soc.,64,2002 (1968).
    4. J. W. Rabalais, J. R. McDonald and S. P. McGlynn, J. Chem. Phys.,51,5103 (1969).
    5. J. W. Rabalais, J. R. McDonald and V. Scherr, S. P. Mc Glvnn, Chem.Rev.,71,73 (1971).
    6. H. Nakamura and D. G. Truhlar, J. Chem. Phys.,118,6816 (2003).
    7. M. Zyrianov, T. DrozGeorget, A. Sanov and H. Reisler, J. Chem. Phys.,105,8111 (1996).
    8. S. S. Brown, C. M. Cheatum, D. A. Fitzwater and F. F. Crim, J. Chem. Phys.,105,10911 (1996).
    9. M. Zyrianov, T. H. DrozGeorget and H. Reisler, J. Chem. Phys.,106,7454 (1997).
    10. J. J. Klossika, H. Flothmann, C. Beck, R. Schinke and K. Yamashita, Chem. Phys. Lett.,276, 325 (1997).
    11. J. E. Stevens, Q. Cui and K. Morokuma, J. Chem. Phys.,108,1452 (1998).
    12. D. Conroy, V. Aristov, L. Feng, A. Sanov and H. Reisler, Acc. Chem. Res.,34,625 (2001).
    13. W. K. Yi and R. Bersohn, Chem. Phys. Lett.206,365 (1993).
    14. M. Zyrianov, T. Droz-Georget and H. Reisler, J. Chem. Phys.,110,2059 (1999).
    15. A. L. Kaledin, Q. Cui, M. C. Heaven and K. Morokuma, J. Chem. Phys., 111,5004 (1999).
    16. T. Droz-Georget, M. Zyrianov, H. Reisler and D. W. Chandler, Chem. Phys. Lett.,276,316 (1997).
    17. T. DrozGeorget, M. Zyrianov, A. Sanov and H. Reisler, Ber. Bunsen-Ges. Phys. Chem.,101, 469 (1997).
    18. T. A. Spiglanin, R. A. Perry and D. W. Chandler, J. Phys. Chem.,90,6184 (1986).
    19. J. S. Zhang, M. Dulligan and C. Wittig, J. Phys. Chem.,99,7446 (1995).
    20. S. S. Brown, H. L. Berghout and F. F. Crim, J. Chem. Phys.,102,8440 (1995).
    21. S. S. Brown, H. L. Berghout and F. F. Crim, J. Phys. Chem.,100,7948 (1996).
    22. S. S. Brown, R. B. Metz, H. L. Berghout and F. F. Crim, J. Chem. Phys.,105,6293 (1996).
    23. H. L. Berghout, S. S. Brown, R. Delgado and F. F. Crim, J. Chem. Phys.,109,2257 (1998).
    24. S. S. Brown, H. L. Berghout and F. F. Crim, J. Chem. Phys.,105,8103 (1996).
    25. S. R. Yu, S. Su, Y. Dorenkamp, A. M. Wodtke, D. X. Dai, K. J. Yuan, X. M. Yang, J. Phys. Chem. A.,117,11673 (2013).
    26. H. Wang, S. L. Liu, J. Liu, F. Y. Wang, B. Jiang and X. M. Yang, Chin. J. Chem. Phys.20, 388 (2007).
    27. G. T. Fujimoto, M. E. Umstead and M. C. Lin, Chem. Phys.,65,197 (1982).
    28. T. A. Spiglanin, R. A. Perry and D. W. Chandler, J. Chem. Phys.,87,1568 (1987).
    29. T. A. Spiglanin and D. W. Chandler, J. Chem. Phys.,87,1577 (1987).
    30. B. Bohn and F. Stuhl, J. Phys. Chem.,97,4891 (1993).
    31. W. S. Drozdoski, A. P. Baronavski and J. R. Mcdonald, Chem. Phys. Lett.,64,421 (1979).
    32. J. J. Klossika, H. Flothmann, R. Schinke and M. Bittererova, Chem. Phys. Lett.314,182 (1999).
    33. J. J. Klossika and R. Schinke, J. Chem. Phys. 111,5882 (1999).
    34. A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum.,68,3477 (1997).
    35. J. J. Lin, J. G. Zhou, W. C. Shiu and K. Liu, Rev. Sci. Instrum.,74,2495 (2003).
    36. Z. Chen, Q. Shuai, A. T. J. B. Eppink, B. Jiang, D. X. Dai, X. M. Yang and D. H. Parker, Phys. Chem. Chem. Phys.,13,8531 (2011).
    37. C. S. Huang, C. M. Zhang and X. M. Yang, J. Chem. Phys.,132,154306 (2010).
    38. R. D. Johnson III and J. W. Hudgens, J. Chem. Phys.,92,6420 (1990).
    39. L. Dinu, A. T. J. B. Eppink, F. Rosca-Pruna, H. L. Offerhaus, W. J. van der Zande and M. J. J. Vrakking, Rev. Sci. Instrum.,73,4206 (2002).
    40. www.physics.nist.gov/PhysRefData/MolSpec/Diatomic/index.html.
    41. A. V. Demyanenko, V. Dribinski, H. Reisler, H. Meyer and C. X. W. Qian, J. Chem. Phys., 111,7383 (1999).
    1. C. Wittig, I. Nadler, H. Reisler, M. Noble, J. Catanzarite and G. Radhakrishnan, J. Chem. Phys.83,5581 (1985).
    2. J. C. Light, Discuss. Faraday Soc.44,14 (1967).
    3. C. E. Klots, J. Phys. Chem.75,1526 (1971).
    4. A. F. Tuck, J. Chem. Soc. Faraday Trans.25,689 (1977).
    5. G. W. Busch and K. R. Wilson, J. Chem. Phys.56,3626 (1972).
    6. R. Schinke and V. Engel, J. Chem. Phys.83,5068 (1985).
    7. R. Schinke, Chem. Phys. Lett.120,1742 (1986).
    8. R. Schinke, J. Phys. Chem.90,1742 (1986).
    9. I. Nadler, M. Noble, H. Reisler and C. Wittig, J. Chem. Phys.82,2608 (1985).
    10. I. Nadler, H. Reisler, M. Noble and C. Wittig, Chem. Phys. Lett.108,115 (1984).
    11. R. Vasudev, R. N. Zare and R. N. Dixon, J. Chem. Phys.80,4863 (1984).
    12. R. Vasudev, R. N. Zare and R. N. Dixon, Chem. Phys. Lett.96,399 (1983).
    13. C. B. Moore and J. C. Weisshaar, Annu. Rev. Phys. Chem.34,525 (1983).
    14. D. J. Bamford, S. V. Filseth, M. F. Foltz, J. W. Hepburn and C. B. Moore, J. Chem. Phys.82, 3032 (1985).
    15. P. Ho and A. V. Smith, Chem. Phys. Lett.90,407 (1982).
    16. D. J. Nesbitt, H. Petek, M. F. Foltz, S. V. Filseth, D. J. Bamford and C. B. Moore, J. Chem. Phys.83,223(1985).
    17. H. Bitto, I.-C. Chen and C. B. Moore, J. Chern. Phys.85,5101 (1986).
    18. R. N. Dixon and G. H. Kirby, Trans. Faraday Soc.64,2002 (1968).
    19. T. A. Spiglanin, R. A. Perry, and D. W. Chandler, J. Phys. Chem.90,6184 (1986).
    20. T. A. Spiglanin and D. W. Chandler, Chem. Phys. Lett.141,428 (1987).
    21. T. A. Spiglanin, R. A. Perry, and D. W. Chandler, J. Chem. Phys.87,1568 (1987).
    22. W. K. Yi and R. Bersohn, Chem. Phys. Lett.206,365 (1993).
    23. B. Ruscic and J. Berkowitz, J. Chem. Phys.100,4498 (1994).
    24. J. Zhang, M. Dulligan, and C. Wittig, J. Phys. Chem.99,7446 (1995).
    25. M. Kawasaki, Y. Sato, K. Suto, Y. Matsumi, and S. H. S. Wilson, Chem. Phys. Lett.251,67 (1996).
    26. M. Zyrianov, A. Sanov, Th. Droz-Georget, and H. Reisler, Soc. Chem. Faraday Discuss.102, 263 (1995).
    27. M. Zyrianov, Th. Droz-Georget, A. Sanov, and H. Reisler, J. Chem. Phys.105,8111 (1996).
    28.S.S.Brown,H.L.Berghout,and F.F.Crim,J.Chem.Phys.105,8103(1996).
    29.S.S.Brown,R.B.Metz,H.L.Berghout,and F.F. Crim, J. Phys. Chem. 100, 7948 (1996).
    30.S.S.Brown,H.L.Berghout,and F.F.Crim,J.Chem. Phys. 102, 8440 (1995).
    31.R.A.Brownsword, T. Laurent, R. K. Vatsa, H.-R. Volpp, and J. Wolfrum, Chem. Phys. Lett.249,162(1996).
    32.R. A. Brownsword, T. Laurent, R. K. Vatsa, H.-R. Volpp, and J. Wolfrum, Chem. Phys. Lett.258,164(1996).
    33.R. A. Brownsword, M. Hillenkamp, T. Laurent, R. K. Vatsa, and H.-R. Volpp, J. Chem.Phys. 106,4436(1997).
    34.Th. Droz-Georget, M. Zyrianov, A. Sanov, and H. Reisler, Ber. Bunsen-Ges. Phys. Chem.101,469(1997).
    35.A. Sanov, Th. Droz-Georget, M Zyrianov, and H. Reisler, J. Chem. Phys. 106, 7013 (1997).
    36.M. Zyrianov, Th. Droz-Georget, and H. Reisler, J. Chem. Phys. 106, 7454 (1997).
    37.S. S. Brown, R. B. Metz, H. L. Berghout, and F. F. Crim, J. Phys. Chem. 105, 6293 (1996).
    38.Th. Droz-Georget, M. Zyrianov, H. Reisler, and D. W. Chandler, Chem. Phys. Lett. 276, 316(1997).
    39.O. Kajimoto, O. Koudo, K. Okada, J. Fujikane, and T. Fueno, Bull. Chem. Soc. J. 58, 3469(1985).
    40.J. D. Mertens, A. Y. Chang, R. K. Hanson, and C. T. Bowman, Int. J. Chem. Kinet. 29, 1049(1989).
    41.A. M. Mebel, A. Luna, M. C. Lin, and K. Morokuma, J. Chem. Phys. 105, 6439 (1996).
    42.J. E. Stevens, Q. Cui, and K. Morokuma, J. Chem. Phys. 108, 1452 (1998).
    43.J. Klossika, H. Floethmann, C. Beck, R. Schinke, and K. Yamashita, Chem. Phys. Lett. 276,325 (1997).
    44.M. Zyrianov, T. Droz-Georget and H. Reisler, J. Chem. Phys., 110, 2059 (1999).
    45.J. J. Lin, J. G. Zhou, W. C. Shiu and K. Liu, Rev. Sci. Instrum., 74, 2495 (2003).
    46.Z. Chen, Q. Shuai, A. T. J. B. Eppink, B. Jiang, D. X. Dai, X. M. Yang and D. H. Parker,Phys. Chem. Chem. Phys., 13, 8531 (2011).
    47.L. Dinu, A. T. J. B. Eppink, F. Rosca-Pruna, H. L. Offerhaus, W. J. van der Zande and M. J.J. Vrakking, Rev. Sci. Instrum., 73, 4206 (2002).
    48.K. Morokuma, (private communication, 1998).
    1. Worldwide CO2 concentrations can be found at www.cmdl.noaa.gov/gmd/ ccgg/trends/global. htm 1.
    2. T. G. Slanger and G. Black, J. Chem. Phys.68,1844 (1978).
    3. T. G. Slanger and G. Black, J. Chem. Phys.54,1889 (1971).
    4. Y. F. Zhu and R. J. Gordon, J. Chem. Phys.92,2897 (1990).
    5. T. Lyman, Astrophys. J.27,87 (1908).
    6. S. W. Leifson, Astrophys. J.63,73 (1926).
    7. W. C. Price and D. M. Simpson, Proc. R. Soc. London, Ser. A 169,501 (1939).
    8. E. C. Y. Inn, K. Watanabe, and M. Zelikoff, J. Chem. Phys.21,1648 (1953).
    9. R. S. Mulliken, Can. J. Chem.36,10 (1958).
    10. H. Basch and H. B. Gray, Inorg. Chem.6,365 (1967).
    11. G. Herzberg, Molecular Spectra and Molecular Structure III Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand New York,1966), pp.500-504.
    12. R. N. Dixon, Proc. R. Soc. London, Ser. A 275,431 (1963).
    13. J.W. Rabalais, J. M. McDonald, V. Scherr, and S. P. McGlynn, Chem. Rev.71,73 (1971).
    14. M. R. Taherian and T. G. Slanger, J. Chem. Phys.81,3796 (1984).
    15. C. E. Strauss, G. C. McBane, P. L. Houston, I. Burak, and J. W. Hepburn, J. Chem. Phys.90, 5364(1989).
    16. N. Sivakumar, G. E. Hall, P. L. Houston, I. Burak, and J. W. Hepburn, J. Chem. Phys.88, 3692(1988).
    17. K. A. Trentelman, S. H. Kable, D. B. Moss, and P. L. Houston, J. Chem. Phys.91,7498 (1989).
    18. P. L. Houston, Acc. Chem. Res.22,309 (1989).
    19. N. Sivakumar, I. Burak, W.-Y. Cheung, P. L. Houston, and J. W. Hepburn, J. Chem. Phys. 89,3609(1985).
    20. H. Okabe, Photochemistry of Small Molecules (Wiley, New York,1978).
    21. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure:Ⅳ. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York,1979).
    22. H. Zacharias, M. Gelhaupt, K. Meier, and K. H. Welge, J. Chem. Phys.74,218 (1981).
    23. M. Hunter, D. C. Robie, J. Bates, and H. Reisler (private communication).
    24. R. Schinke, Ann. Rev. Phys. Chem.39,39 (1988).
    25. D. Hausler, P. Andresen, and R. Schinke, J. Chem. Phys.87,3949 (1987).
    26. A. Ogai, C. X. W. Qian, and H. Reisler, J. Chem. Phys.93,1107 (1990).
    27. R. L. Waterland, M. I. Lester, and N. Halberstadt, J. Chem. Phys.92,4261 (1990).
    28. K. Sato, Y. Achiba, H. Nakamura, and K. Kimura, J. Chem. Phys.85,1418 (1986).
    29. J. C. Tully, J. Chem. Phys.61,61 (1974).
    30. A. Wagner (private communication).
    31. W. B. England, and W. C. Ermler, J. Chem. Phys.70,1711 (1979).
    32. N. W. Winter, C. F. Bender, and W. A. Goddard III, Chem. Phys. Lett.20 489 (1973).
    33. A. Stolow, and Y. T. Lee, J. Chem. Phys.98 2066 (1993).
    34. Y. Matsumi, N. Shafer, K. Tonokura, M. Kawasaki, Y. L. Huang, and R. J. Gordon, J. Chem. Phys.95 7311 (1991).
    35. R. L. Miller, S. H. Kable, P. L. Houston, and I. Burak, J. Chem. Phys.96332 (1992).
    36. J. B. Jeffries, C. Schulz, D. W. Mattison, M. A. Oehlschlaeger, W. G. Bessler, T. Lee, D. F. Davidson, and R. K. Hanson, Proc. Combust. Inst.30,1591 (2005).
    37. P. D. Feldman, E. B. Burgh, S. T. Durrance, and A. F. Davidsen, Astrophys. J.538,395 (2000).
    38. I.-C. Lu, J. J. Lin, S.-H. Lee, Y. T. Lee, and X. Yang, Chem. Phys. Lett.382,665 (2003).
    39. Z. Chen, F. Liu, B. Jiang, X. Yang, and D. H. Parker, J. Phys. Chem. Lett.1,1861 (2010).
    40. K. Yoshino, J. R. Esmond, Y. Sun, W. H. Parkinson, K. Ito, and T. Matsui, J. Quant. Spectrosc. Radiat. Transf.55,53 (1996).
    41. A. Spielfiedel, N. Feautrier, C. Cossart-Magos, G. Chambaud, P. Rosmus, H.-J. Werner, and P. Botschwina, J. Chem. Phys.97,8382 (1992).
    42. See supplementary material at http://dx.doi.org/10.1063/1.4732054 for a summary of the ab initio calculations, the calculated ab initio geometries, the characteristic features of the calculated electronic states, and their comparison with the available experimental and theoretical data.
    43. S. S. Xantheas and K. Ruedenberg, Int. J. Quantum Chem.49,409 (1994).
    44. P. J. Knowles, P. Rosmus, and H. J. Werner, Chem. Phys. Lett.146,230 (1988).
    45. A. Spielfiedel, N. Feautrier, G. Chambaud, P. Rosmus, and H. J. Werner, Chem. Phys. Lett., 183,16(1991).
    46. Z. Chen, Q. Shuai, A. T. J. B. Eppink, B. Jiang, D. X. Dai, X. M. Yang and D. H. Parker, Phys. Chem. Chem. Phys.,13,8531 (2011).
    47. J. L. Li, C. M. Zhang, Q. Zhang, Y. Chen, C. S. Huang and X. M. Yang, J. Chem. Phys.,134, 114309(2011).
    48. D. W. Neyer, A. J. R. Heck and D. W. Chandler, J. Chem. Phys.,110,3411 (1999).
    49. A. V. Demyanenko, V. Dribinski, H. Reisler, H. Meyer and C. X. W. Qian, J. Chem. Phys., 111,7383 (1999).
    1. A. Horowitz, C. J. Kerchner, and J. G. Calvert, J. Phys. Chem.86,3094 (1982).
    2. A. Horowitz and J. G. Calvert, J. Phys. Chem.86,3105 (1982).
    3. T. Kono, M. Takayanagi, and I. Hanazaki, J. Phys. Chem.97,12793 (1993).
    4. A. C. Terentis, M. Stone, and S. H. Kable, J. Phys. Chem.98,10802 (1994).
    5. J. M. Price, J. A. Mack, G. Helden, X. Yang, and A. M. Wodtke, J. Phys. Chem.98,1791 (1994).
    6. S. H. Lee and I. C. Chen, J. Chem. Phys.105,4597 (1996).
    7. T. Gejo, H. Bitto, and J. R. Huber, Chem. Phys. Lett.261,443 (1996).
    8. H. Liu, E. C. Lim, C. Munoz-Caro, A. Nino, R. H. Judge, and D. C. Moule, J. Chem. Phys. 105,2547 (1996).
    9. S. H. Lee and I. C. Chen, Chem. Phys.220,175 (1997).
    10. G. H. Leu, C. L. Huang, S. H. Lee, Y. C. Lee, and I. C. Chen, J. Chem. Phys.109,9340 (1998).
    11. B. F. Gherman, R. A. Friesner, T. H. Wong, Z. Min, and R. Bersohn, J. Chem. Phys.114, 6128(2001).
    12. J. R. Huber, Chem. Phys. Lett.377,481 (2003).
    13. H. A. Cruse and T. P. Softley, J. Chem. Phys.122,124303 (2005).
    14. P. L. Houston and S. H. Kable, Proc. Natl. Acad. Sci. U.S.A.103,16079 (2006).
    15. T. Y. Kang, S. W. Kang, and H. L. Kim, Chem. Phys. Lett.434,6 (2007).
    16. L. Rubio-Lago, G. A. Amaral, A. Arregui, J. G. Izquierdo, F. Wang, D. Zaouris, T. N. Kitsopoulos, and L. Baniares, Phys. Chem. Chem. Phys.9,6123 (2007).
    17. B. R. Heazlewood, M. J. T. Jordan, S. H. Kable, T. M. Selby, D. L. Osborn, B. C. Shepler, B. J. Braams, and J. M. Bowman, Proc. Natl. Acad. Sci. U.S.A.105,12719 (2008).
    18. B. R. Heazlewood, S. J. Rowling, A. T. Maccarone, M. J. T. Jordan, and S. H. Kable, J. Chem. Phys.130,054310 (2009).
    19. S. H. Lee, J. Chem. Phys.131,174312 (2009).
    20. R. Sivaramakrishnan, J. V. Michael, and S. J. Klippenstein, J. Phys. Chem. A 114,755 (2010).
    21. G. A. Amaral, A. Arregui, L. Rubio-Lago, J. D. Rodriguez, and L. Banares, J. Chem. Phys. 133,064303(2010).
    22. L. Rubio-Lago, G. A. Amaral, A. Arregui, J. Gonzalez-Vazquez, and L. Banares, Phys. Chem. Chem. Phys.14,6067 (2012).
    23. J. S. Yadav and J. D. Goddard, J. Chem. Phys.84,2682 (1986).
    24. H. Tachikawa and N. Ohta, Chem. Phys. Lett.224,465 (1994).
    25. O. Setokuchi, S. Matuzawa, and Y. Shimizu, Chem. Phys. Lett.284,19 (1998).
    26. R. A. King, W. D. Allen, and H. F. Schaefer Ⅲ, J. Chem. Phys.112,5585 (2000).
    27. Y. Kurosaki and K. Yokohama, J. Phys. Chem. A 106,11415 (2002).
    28. Y. Kurosaki and K. Yokohama, Chem. Phys. Lett.371,568 (2003).
    29. M. N. D. S. Cordeiro, E. Martinez-Nunez, A. Fernandez-Ramos, and S. A. Vazquez, Chem. Phys. Lett.375,591 (2003).
    30. Y. Kurosaki, Chem. Phys. Lett.421,549 (2006).
    31. K. C. Thompson, D. L. Crittenden, S. H. Kable, and M. J. T. Jordan, J. Chem. Phys.124, 044302 (2006).
    32. B. S. Shepler, B. J. Braams, and J. M. Bowman, J. Phys. Chem. A 111,8282 (2007).
    33. Y. Kurosaki, THEOCHEM 850,9 (2008).
    34. B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Phys. Chem. A 112,9344 (2008).
    35. S. Chen and W. H. Fang, J. Chem. Phys.131,054306 (2009).
    36. L. B. Harding, Y. Georgievskii, and S. J. Klippenstein, J. Phys. Chem. A 114,765 (2010).
    37. B. N. Fu, Y. C. Han, and J. M. Bowman, Faraday Discuss.157,27 (2012).
    38. R. D. van Zee, M. F. Foltz, and C. B. Moore, J. Chem. Phys.99,1664 (1993).
    39. D. Townsend, S. A. Lahankar, S. K. Lee, S. D. Chambreau, A. G. Suits, X. Zhang, J. Rheinecker, L. B. Harding, and J. M. Bowman, Science 306,1158 (2004).
    40. E. Zamir and R. D. Levine, Chem. Phys.52,253 (1980).
    41. G. E. Busch and K. R. Wilson, J. Chem. Phys.56,3626 (1972).
    42. C. S. Huang, C. M. Zhang, and X. M. Yang, J. Chem. Phys.132,154306 (2010).
    43. C. M. Zhang, J. L. Li, Q. Zhang, Y. Chen, C. S. Huang, and X. M. Yang, Phys. Chem. Chem. Phys.14,2468 (2012).
    44. J. L. Li, C. M. Zhang, Q. Zhang, Y. Chen, C. S. Huang, and X. M. Yang, J. Chem. Phys.134, 114309(2011).
    45. Z. C. Chen, Q. Shuai, A. T. J. B. Eppink, B. Jiang, D. X. Dai, X. M. Yang,and D. H. Parker, Phys. Chem. Chem. Phys.13,8531 (2011).
    46. B. Y. Chang, R. C. Hoetzlein, J. A. Mueller, J. D. Geiser, and P. L. Houston, Rev. Sci. Instrum.69,1665 (1998).
    47. T. Gejo, M. Takayanagi, T. Kono, and I. Hanazaki, Chem. Phys. Lett.218,343 (1994).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700