南海北部陆坡区深水水道沉积体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
被动陆缘陆坡深水区因蕴藏大量的油气及天然气水合物资源而受到石油行业的关注。峡谷水道作为重力流沉积物从陆缘向陆坡盆区搬运的主要通道,是现今海洋科学研究的热点,是“由源到汇”研究的重要内容。峡谷水道可以作为粗粒沉积物的最终沉积场所,已被钻探证实可作为良好的油气储集体。本文选择陆坡水道为研究目标具有科学和实际意义。
     本文借助1979年至2007年采集的2D(部分)、3D地震数据,参考部分钻井资料,以层序地层分析为基础,以多种地球物理属性为手段,以南海北部深水陆坡区为研究区,进行层序地层分析,并对陆坡水道的发育进行研究。层序特征分析发现琼东南南部陆坡具有不同于北部陆坡的物源供给模式,断陷期以北部华南地块和西南方向中南半岛为主要物源,也有部分来自西沙隆起的物源;拗陷期西南方向的中南半岛为主要物源区。
     通过大量2D地震资料研究,本文首次系统地研究了发育在南海北部陆坡的大型水道,该水道起源于莺歌海盆地东部、横跨琼东南盆地、西沙海槽,终结于南海西北次海盆西部,我们把该水道命名为“琼东南中央水道”。琼东南中央水道长约570km,宽4-8km不等,发育在上新统地层中,该水道的产生与中新世以来红河对莺歌海盆地充足的物源供给,中新世末的海平面下降以及5Ma左右红河断裂带的反转诱发的滑塌有关。
     基于新采集的3D地震资料和地球物理技术,本文首次在琼东南盆地南部陆坡深水区识别出深水水道,该期水道发育在更新统地层中,形态各异,有类似曲流河的曲流水道,也有典型的低弯曲侧向迁移水道。振幅特征显示该期水道主要以弱振幅细粒泥质充填为主,部分位置有强振充填反射,可能为粗粒充填。根据地震剖面和相干时间切片时空分析,认为该水道主要有3期侵蚀和3期充填过程。从展布特征来看,该期水道的形成与更新世(中)末次盛冰期海平面的下降,地震诱发中南半岛中部小型山脉河流的复苏对南海西部的供给有关。
The oil industry is interested in the deepwater slope area of passive margin because of its contained large scale of oil & gas and gas hydrate resources.Submarine canyons and deepwater submarine channels act as the primary conduits for sediment transported by gravity (turbidity) currents into the deep slope and basin area, and also can be the repositories for coarse-grained sediment, which is the important study content of“Source to sink”. Canyon and channel can be good reservoir of hydrocarbon have been proved by the well drilling on passive continental margin basins. So study of deepwater slope channel (canyon) has scientific and actual siginificance.
     Based on the 2D, 3D seismic data (acquired from 1979 to 2007) and well data, used 3D geophysical interpretation technologies (such as coherence time slice, RMS and 3D visualization) and sequence stratigrapy analysis, analysed the slope sequence and study the development of channel on the slope area of northern South China Sea. The south part of Qiongdongnan slope area has different provenance supply model compared to the north area. The provenance supply in rifting period was mainly from the southern Xisha Uplift and the SW mid-south peninsula and northern South China Block; whereas the provenance supply in post-rifting period was mainly from the mid-south peninsula.
     Trough the study of large scale of 2D seismic data, this dissertation discussed the extent and formation mechanism of the Qiongdongnan deep sea channel wholly first time. The Qiongdongnan deep sea channel is a large incised channel which extends from the east boundary of the Yinggehai Basin,through the whole Qiongdongnan and the Xisha trough, and terminates in the western part of the Northwest Subbasin of South China Sea. It is more than 570 km long, 4~8 km wide and developed in Pliocene strata. The channel formed as a complex result of global sea level drop during early Pliocene, large scale of sediment supply of the Yinggehai Basin, and the inversion event of the Red River strike-slip fault at 5.0 Ma induced slumps.
     Based on 3D seismic data and coherence time slice, RMS and 3D visualization, a series of deepwater channels were recognized on the slope that probably developed in the late Quaternary period. These channels trend SW-NE to W-E and show bifurcations, levees, meander loops and avulsions. Most of the detected channels are characterized by low-amplitude reflections and is likely to be dominated by mudstones with interbedded thin sandstones. These channels are formed by turbidity currents originated from the SW direction and were probably accompanied by a relative sea level drop, which related with the feed to west South China Sea by little scale of mountain river of the mid-south peninsula induced by earthquakes at that period.
引文
Abreu V, Sullivan M, Pirmez C et al. Lateral accretion packages (LAPs): Animportant reservoir element in deep water sinuous channels: Marine andPetroleum Geology, 2003, 20: 631-648
    Aharon P and chappell J. Oxygen isotopes, sea level changes and the temperature history of a coral reef environment in New Guinea over the last 10 5 years. Palaeogeography, Palaeolima- tology, Palaeoecology, 1986, 56: 337-379 Alam M, Alam M M, Curray J R M et al. An overview of the sedimentary geology ofthe Bengal Basin in relation to the regional tectonic framework and basin-filhistory.Sedi.Geol., 2003, 155:179-208
    Allen J R L. Principles of physical sedimentology[M]. London: Allen and Unwin,1985: 272. An Z S, Kutzbach J E, Prell W L et al. Evolution of Asian monsoons andphasedupliftof theHimalaya-Tibetan plateau since Late Miocene times. Nature,2001,411:62-66
    Baas J H and Best J L. Can sedimentological flows with small amounts of clayparticles form massive sandstone beds? AAPG Convention Abstracts withProgram, 2001: A9 Babonneau N, Savoye B, Cremer M et al. Morphplogy and architecture of the presentcanyon and channel system of the Zaire deep-sea fan. Marine and PetroleumGology, 2002, 19:445-467
    Beaubouef R T, Rossen C, Zelt F B et al. Deep-water sandstones, Brushy CanyonFormation, West Texas: Field guide. AAPG Hedberg Field Research Conference,1999
    Ben K. The influence of flow parameters on turbidite slope channel architecture.Marine and Petroleum Geology,2003, 20 (6-8): 901-910
    Berger W F, Yasuda M K, Bickert T et al. Quaternary time scale for Ontong Java Plateau: Milankovitch template for Ocean Drilling Program Site 806.Geology, 1994,22: 463-467
    Bouma A H. Sedimentology of some Flysch deposits: A graphic approach to faciesinterpretation: Amsterdam, Elsevier, 1962: 168
    Bouma A H and Hollister C D. Deep ocean sedimentation, in G. V. Middleton. and A.H. Bouma, eds, Turbidites and deepwater sedimentation, SEPM Pacific Section Short Course, 1973: 79-118 Bouma A H, Coleman J M, and Myer A W. Initial reports of the Deep Sea DrillingProject Leg 96: U.S. Government Printing Office, Washington, D.C., 1986:824
    Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: imlication for the Tertiary tectonics of Southeast Adsian. Journal of Geophysical Researchs, 1993, 98(B4): 6299-6328Burbank D W, Deny L A and France-Lanord C. Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature, 1993, 364: 48-50
    Carlos P and Jasim I. Reconstruction of turbidity currents in Amazon Channel.Marine and Petroleum Geology,2003, 20 (6-8): 823-849
    Chen P H, Chen ZY, Zhang Q M. Sequence stratigraphy and continental margindevelopment of the northwestern Shelf of the South China Sea. Am. Assoc. Pet. Geol. Bull. 1993,77,842-862
    Clark J D, and Pickering K T. Submarine channels: processes and architecture[M].London: Vallis Press, 1996:231 Clark P U, Alley R B, Pollard D. Northern Hemisphere Ice-Sheet Influences onGlobal Climate Change. Science, 1999, 286: 1104-1111
    Clark M K, Schoenbohm L M, Royden L H et al. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 2004, 23: 2002TC001402 Clark M K et al. Late Cenozoic uplift of southeastern Tibet. Geology, 2005, 33: 525-528
    Clemens S C and Tiedemann R. Eccentricity forcing of Pliocene-Early Pleistocene climate revealed in a marine oxygen-isotope record. Nature, 1997, 385: 801-804
    Clift PD, Shimizu N, LayneGD et al. Tracing patterns of erosion and drainage in the Palecgene Himalaya through ion probe Pb isotope analysis of detrital K-feldspars in the Indus Molasse, India. Earth Planet.Sci.Lett, 2001,188:475-491 Clift P D and Gaedicke C. Accelerated mass flux to the Arabian Sea during the middleto late Miocene. Geology, 2002, 30:207-210
    Clift P D,Campbel I H, Pringle M S et al. Thermochronology of the modem Indus River bedload: New insight into the controls on the in.fine stratigraphic record. Tectonics, 2004, 23: 2003TC001559
    Clift P D, Blusztajn J and Nguyen D A.Large-scale drainage capture and surface uplift in Eastern Tibet before 24 Ma. Geophvsieal Research Letters, 2006, 33:2006G 7772
    Currie B S, Rowley D B and Tabor N J. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delalmination in the Himalayan orogen.Geology, 2005, 33:181-84Dailly P, Lowry P, Goh K et al. Exploration and development of Ceiba Field, Rio Muni Basin, Southern Equatorial Guinea. The Leading Edge, 2002, 10: 1140-1146 Deluca M. Deepwater discoveries keep West Africa at global forefront. Offshore,1999, 59: 23-33
    DeCeHes P G,Quade J, Kapp P et al. High and dry in central Tibet during the LateOligeoene. Earth Planet.Sci.Lett, 2007,253:389-401
    Deptuck M E, Steffens G S, Barton M et al. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea. Marine and Petroleum Geology, 2003, 20 (6-8): 649-676
    Deptuck M E, Sylvester Z, Pirmez C et al. Migration-aggradation history and 3D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon,western Niger Delta slope. Marine and Petroleum Geology, 2007, 24 (6-9): 406-433
    Droz L, Marsset T, Ondreas H et al. Architecture of an active mud-rich turbidite system: the Zaire Fan (Congo-Angola margin southeast Atlantic): results fromZaingo 1 and 2 cruises. American Association of Petroleum Geologists
    Bulletin,2003, 87:1145-1168.
    Elmore R D, Pilkey O H, Cleary W J et al. Black Shell turbidite, Hatteras AbyssalPlain, western Atlantic Ocean: Geological Society America Bulletin, 1979, 90:1165-1176
    Fairbanks R G. A 17,000-year glacio-eustatic sea level record; influence of glacialmelting rates on the younger dryas event and deep-ocean circulation. Nature,1989,342,637-642
    Flood R D and Damuth J E. Quantitative characteristics of sinuous distributarychannels on the Amazon deep-sea fan. Geological Society of AmericaBulletin ,1987,98:728-738
    Garcia M H. Depositional turbidity currents laden with poorly sorted sediment:Journal Hydraulic Engineering, 1994, 120:1240-1263
    Garzione C N, Dettman D L, Quade J et al. High times on the Tibetan Plateau: Paleo-elevation of the Thakkhola graben, Nepal. Geology, 2000, 28:339-42
    Hampton M A. The role of subaqueous debris flows in generating turbidity currents:Journal Sedimentary Petrology, 1972, 42:775-793
    Hanebuth T J J. Sea-level changes on the Sunda Shelf during the last 50,000 years.Berichte- Reports.Institut fur Geowissenschaften, Kiel, 2000,12:1- 110
    Haq B U, Hardenbol J, Vail P R.Chronology of fluctuating sealevels since the Triassic.Science, 1987, 235: 1156-1167
    Haughton P D W, McCaffrey W D and Felix M. Origin and significance of 'LinkedDebrites': A key reservoir heterogeneity in sandy turbidite systems: AAPGConvention Abstracts with Program, 2001: A83
    Hayes E, Nissen S.The South China Sea margins: implications for rifting contrasts.Earth and Planetary Science Letter, doi: 10.1016/j.epsl.2005.06.017
    Heinio P, Davies R J. Knickpoint migration in submarine channels in response to foldgrowth, western Niger Delta. Marine and Petroleum Geology, 2007, 24 (6-9):434-449
    Heezen B C, Menzies R J, Schneider E D et al.Congo submarine canyon:AAPGBulletin, 1964,48:1126-1149
    Hernandez-Molina F J, Somoza L, Vazquez J T et al. Quaternary stratigraphicstacking patterns on the continental shelves of the southern Iberian Peninsula: their relationship with global climate and palaeoceano -graphic changes. Quaternary International, 2002, 92 (l):5-23
    Hernandez-Molina F J, Llave E, Stow D A V. Continental slope contourites. In:Rebesco, M. & Camerlenghi, A. (Eds.), Contourites. Elsevier, 2008, In press Howard W R. A warm future in the past. Nature, 1997, 388: 418-419
    Humphreys N V, Williams T A, Monson G D et al.Technology application as anenabler for rapid development of the Zafiro field, Equatorial Guinea: AAPGInternational Conference, Extended Abstracts with Program, 1999: 246
    Johnson M R W. Volume balance of erosional loss and sediment depositation relatedto Himalaya uplifts. J. Geol. Soc. London, 1994, 151:217 -220
    Jordan D W, Lowe D R, Slatt R M et al. Scales of geological heterogeneity ofPennsylvanian Jackfork Group, Ouachita Mountains, Arkansas: Applications toField Development and Exploration for Deep-Water Sandstones, ArkansasGeological Commission Field Guidebook 93-1, 1993:141
    Khain V E, Polakova I D. Oil and gas potential of deep and ultra-deep water zones ofContinental Margins. Lithology and Mineral Resources, 2004, 39: 610-621
    Khripounoff A, Vangriesheim A, Babonneau N et al.Direct observation of intenseturbidity current activity in the Zaire submarine valley at 400m water depth:Marine Geology, 2003, 194:151-158
    Kitamura A and Kawagoe T. Eustatic sea-level change at the Mid-Pleistocene climate transition: new evidence from the shallow-marine sediment record of Japan. Quaternary Science Reviews, 2006, 25 (3-4): 323-335
    Kneller B. Beyond the turbidite paradigm: physical models for deposition ofturbidites and their implications for reservoir prediction: in, A.J. Hartley, and D.J.Prosser eds., Characterization of deep-marine clastic systems, Geological SocietySpecial Publication 94, 1995:31-49
    Kneller B and Branney M J. Sustained high density turbidity currents and thedeposition of thick massive sands. Sedimentology, 1995, 42: 29-46
    Kneller B and Buckee C. The structure and fluid mechanics of turbidity currents: areview of some recent studies and their geological applications: Sedimentology,2000, 47 (Supplement l):62-94 Kneller B. The influence of flow parameters on turbidite slope channel architecture.Marine and Petroleum Geology, 2003, 20:901-910
    Kolla V. A review of sinuous channel avulsion patterns in some major deep-sea fansand factors controlling them. Marine and Petroleum Geology, 2007,24: 450-469
    Kolla V, Posamentier H W, Wood L J. Deep-water and fluvial sinuous channels-Characteristics, similarities and dissimilarities, and modes of formation. Marineand Petroleum Geology, 2007, 24 (6-9): 388-405
    Leloup P H, Harrison T M, Ryerson F J et al. Structural, petrological and thermalevolution of a Tertiary ducthe strike-slip shear zone, Diancang shan (Yunnan,PRC). J.Geophys.Res., 1993, 98:6715-6743
    Liu, Z F, Colin C, Trentesaux A et al. Erosional history of the eastern Tibetan Plateausince 190 kyr ago: clay mineralogical and geochemical investigations from thesouthwestern South China Sea. Marine Geology, 2004, 209: 1-18
    Llave E, Hernandez-Molina F J, Somoza L et al. Seismic stacking pattern of the Faro-Albufeira contourite system (Gulf of Cadiz): a Quaternary record ofpaleoceanographic and tectonic influences. Marine Geophysical Researches, 2001, 22 (5-6): 487-508
    Loutre M F and Berger A.The Eemian: an analogue for the present interglacial? XV InternationalCongress, International Union for Quaternary Research, Durban, South Africa, 1999:110 Lowe D R. Sediment gravity flows II: Depositional models with special reference tothe deposits of highdensity turbidity currents: Journal Sedimentary Petrology,1982,52: 279-297
    Lowrie A. Model for fine-scale mocements associated with climate and sea level changes along Lousiana shelfbreak growth faults. Gulf Coast Association Geological Societies transactions, 1986, 36: 497-508
    May J A and Warme J E. Bounding surfaces, lithologic variability, and sandstoneconnectivity within submarine-canyon outcrops, Eocene of San Diego, California,in P. Weimer, R. M. Slatt, J. L. Coleman, N.Rosen, C. H. Nelson, A. H. Bouma,M. Styzen, and D. T. Lawrence, eds., Global deep-water reservoirs:Gulf CoastSection-SEPM Foundation 20th Annual Bob F. Perkins Research Conference,2000: 556-577
    Marr J, Harff P, Shanmugam G et al. Experiments on subaqueous sandy debris flows:the role of clay and water content in flow dynamics and depositional structures:Geological Society America Bulletin, 1997, 113:1377-1386
    Maxwell A L. Holocene monsoon changes inferred from lake sediment pollen andcarbonate records, Northeastern Cambodia. Quat. Res., 2001, 56: 390-400
    Mayall M and Stewart I. The architecture of turbidite slope channels, in P. Weimer, R.M. Slatt, J. L. Coleman, N. Rosen, C. H. Nelson, A. H. Bouma, M. Styzen, and D.T. Lawrence, eds., Global deep-water reservoirs: Gulf Coast Section-SEPMFoundation 20th Annual Bob F. Perkins Research Conference, 2000:578-586
    Mayall M and O'Byrne C. Reservoir prediction and development challenges inturbidite slope channels: OTC conference proceedings, contribution, 2002, No.14029
    Mayall M, Jones Ed and Casey M. Turbidite channel reservoirs-key elements infacies prediction and effective development. Marine and Petroleum Geology,2006, 23 (8): 821-841
    Menard H W. Deep-sea channels, topography, and sedimentation. AAPG Bulletin,1995, 39 (2): 236-255
    Miall A D. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis andPetroleum Geology. Springer, Hedberg, 1996:582
    Miall A D. Architecture and sequence stratigraphy of Pleistocene fluvial systems in the Malay Basin, based on seismic time-slice analysis. AAPG Bulletin, 2002, 86 (7): 1201-1216
    Middleton G V and Hampton M A. Sediment gravity flows: mechanics of flow anddeposition, in G.V.Middleton, and A.H. Bouma, eds., Turbidites and deep-watersedimentation, Pacific Section SEPM publication, 1973:1-38
    Mohrig D, Whipple K X, Hondzo M et al. Hydroplaning of subaqueous debrisflows:Geological Society America Bulletin, 1998, 110: 387-394
    Mohrig D and Marr J G. Constraining the efficiency of turbidity-current generationfrom submarine slides, slumps and debris flows using laboratory experiments.Marine and Petroleum Geology, 2003, 20(6-8):883-899
    Morris W R and Normark W R. Scaling, sedimentologic and geometric criteria forcomparing modern and ancient sandy turbidite elements, in P. Weimer, R. M.Slatt, J. L. Coleman, N. Rosen, C. H. Nelson, A.H. Bouma, M. Styzen, and D. T.Lawrence, eds., Global deep-water reservoirs: Gulf Coast Section-SEPMFoundation 20th Annual Bob F. Perkins Research Conference, 2000: 606-628
    Molnar P and England P. Late Cenozoic uplift of mountain ranges and global climatechange:chicken or egg? Nature, 1990: 346:29-34
    Mudelsee M and Stategger K. Exploring the structure of the mid-Pleistocenerevolution with advanced methods of time series analysis. Geologische Rundschau, 1997, 86 (2): 499-511
    Mulder T and Syvitski J P M. Turbidity currents generated at river mouths duringexceptional discharges tothe world oceans. Journal of Geology, 1995, 103: 285-299
    Mulder T, Migeon S, Savoye B et al.Twentieth century floods recorded in the deepMediterranean sediments: Geological Society America, 2001, 113: 1011-1014
    Mulder T, Syvitski J P M, Migeon S et al. Marine hyperphycnal flows: initiation,behavior and related deposits, a review. Marine and Petroleum Geology, 2003, 20(6-8):861-882
    Mutti E and Normark W R. Comparing examples of modern and ancient turbidite systems: problems and concepts, in J. K. Leggett, and G. G. Zuffa, eds., Marine clastic sedimentology: London, Graham and Trotman, 1987: 1-38 Mutti E and Normark W R. An integrated approach to the study of turbidite systems, in P. Weimer, and M. H. Link, eds., Seismic facies and sedimentary processes of submarine fans and turbidite systems: New York, Springer-Verlag, 1991: 75-106
    Mutti E, Tinterri R, Remacha E et al.An introduction to the analysis of ancientturbidite basins from an outcrop perspective: AAPG Continuing EducationCourse Note Series #39, 1999: 61
    Mutti E, Ricci Lucchi F and Roveri M. Revisiting turbidites of the Marnoso-ArenaceaFormation and their basin-margin equivalents: problems with classic models,Excursion guidebook, Turbidite workshop, Parma, Italy, 2002:27-30
    Mulch A and Chamberlain C P. The rise and growth of Tibet. Nature, 2006, 439:670-671
    Nakajima T. Hyperpycnites deposited 700 km away from river mouths in the centralJapan Sea, Journal of Sedimentary Research, 2006, 76: 59-72
    Navarre J-C, Claude D, Liberelle E et al. Deepwater turbidite system analysis, WestAfrica: Sedimentary model and implications for reservoir model construction.The Leading Edge, 2002, 11: 1132-1139
    Normark W R. Fan valleys, channels, and depositional lobes on modern submarinefans: characters for recognition of sandy turbidite environments. AmericanAssociation of Petroleum Geologists Bulletin, 1978, 62:912-931
    Paillard D. The timing of Pleistocene glaciations from a simple multiple-state climatemodel. Nature, 1998, 391: 378-381
    Paulo J. Reservoir geophysics in deep and ultradeep water in the Campos Basin.TheLeading Edge, 1999, 18(7): 819-822
    Peakall J, McCaffrey W D, Kneller B C et al. A process model for the evolution of submarine fan channels: Implications for sedimentary architecture, in A.H.Bouma and C.G. Stone, eds., Fine-grained turbidite systems: AAPG Memoir 72; SEPM Special Publication 68, 2000:73-88
    Peakall J, McCaffrey W D, Kneller B. A process model for the evolution, morphology and architecture of sinuous submarine channels. Journal of Sedimentary Research, 2000, 70: 434-448
    Pettingill H S and Weimer P. World wide deep water exploration and production: Past,present, and future. The Leading Edge, 2002, 21: 371-376
    Piper D J W and Normark W R. Turbidite depositional patterns and flowcharacteristics, Navy submarine fan, California Borderland: Sedimentology,1983,30:681-694
    Piper D J W, Flood R D, Cisowski S et al. Synthesis of stratigraphic correlations ofthe Amazon Fan, in R.D. Flood, D. J. W. Piper, A. Klaus, and L. C.Peterson eds.,Proceedings of the Ocean Drilling Program: Scientific Results, 1997,155: 595-609
    Pirmez C, Beaubouef R T, Friedmann S J et al. Equilibrium profile and baselevel insubmarinechannels: Examples from Late Pleistocene systems and implicationsfor the archtecture of deepwater reservoirs, in P. Weimer, R.M. Slatt, J. ColemanJr, N.C. Rosen, H. Nelson, A. H. Bouma, M. Styzen, and D.T. Lawrence, eds.,Deepwater Reservoirs of the World, 20th Annual GCSSEPM Foundation Bob F.Perkins Research Conference, 2000:782-805
    Pisias N G and Moore T C Jr. The evolution of Pleistocene climate: a time seriesapproach. Earth and Planetary Science Letters, 1981, 52: 450-458
    Popescu I, Lericolais G, Panin N et al.Late Quaternary channel avulsions on theDanube deep-sea fan. Marine Geology, 2001,179 (1-2): 25-37
    Posamentier H W and Kolla V. Seismic geomorphology and stratigraphy ofdepositional elements in deep-water settings: Journal of Sedimentary Research,2003, 73: 367-388
    Posamentier H W. Seismic geomorphology and stratigraphy of deep-waterchannelized turbidites, Marine and Petroleum Geology, 2003, 20: 677-690
    Posamentier H W. Depositional elements associated with a basin floor channel-leveesystem: case study from the Gulf of Mexico. Marine and Petroleum Geology,2003, 20: 677-690
    Pratson L F, Imran J, Parker G et al. Debris flows vs. turbidity currents: a modelingcomparison of their dynamics and deposits, in A.H. Bouma, and C.G. Stone, eds.,Fine -grained turbidite systems. AAPG Memoir 72; SEPM Special Publication68,2000: 57-71
    Postma G, Nemec W and Kleinspehn K L. Large floating clasts in turbidites: amechanism for their emplacement: Sedimentary Geology, 1988, 58: 47-61
    Raymo M E. Global climate change; a three million year perspective. In: Kukla, G.J.and Went, E. (Eds.) Start of a Glacial. NATO ASI Ser. I: Berlin. Springer-Verlag,1992, 3: 207-223
    Raymo M E. The timing of major climate terminations. Paleoceanogr, 1997, 12:577-585
    Raymo M E, Ruddiman W F. Tectonic forcing of the late Cenozoic Climate. Nature,1992:117-122
    Reading H G and Richards M. Turbidite systems in deep-water basin marginsclassified by grain size and feeder system. AAPG Bulletin, 1994, 78: 213-235
    Reineck H-E and Singh I B. Depositional Sedimentary Environments. Springer,Heidelberg, 1990:649
    Richards M and Bowman M. Submarine fans and related depositional systems II:variability in reservoir architecture and wireline log character: Marine andPetroleum Geology, 1998, 15: 821-839
    Ross W C, Halliwell B A, May J A et al. Slope adjustment: A new model for thedevelopment of submarine fans and aprons: Geology, 1994,22: 511-514
    Rowley D B, Pierrehumbert R T and Currie B S. A new approach to stableisotopebased paleoalfimetry:implications"for paleoaltimetry andpalenhypsometry ofthe High Himalaya since the La te Miocene.EarthPlanet.Sci.Lett, 2001,188:253-268
    Rowley D B an d Currie B S. Palaeo-altimetry of the late Eocene to Miocene LunpolaBasin,central Tibet.Nature, 2006, 439:677-681
    Ruddiman W F, Raymo M E, Mclntyre A. Matuyama 41,000-year cycles: NorthAtlantic Ocean and northern Hemisphere ice sheets. Earth and Planetary ScienceLetters, 1986, 80: 117-129
    Ruddiman W F, Raymo M E, Martinson D G et al. Pleistocene evolution: northernHemisphere ice sheets and North Atlantic Ocean. Paleoceanography, 1989, 4:353-412
    Rutherford S and D'Hondt S. Early onset and tropical forcing of 100,000-yearPleistocene glacial cycles. Nature, 2000, 408: 72-75
    Sailer A H, Noah J T, Ruzuar A P et al.Linked lowstand delta to basin-floordeposition, offshore Indonesia: An analog for deepwater reservoir systems:AAPG Bulletin, 2004, 88: 21-46
    Santos R A, Lopes M R F, Cora C A G et al. Adaptive visualization of deepwaterturbidite systems in Campos Basin using 3-D seismic. The Leading Edge,2000,19(5): 512-517
    Schimanski A and Stattegger K. Deglacial and Holocene evolution of the Vietnamshelf: startigraphy, sediments and sea-level change. Marine Geology,2005, 214:365-387
    Schwab A M, Cronin B T, Ferreira H. Seismic expression of channel outcrops: Offsetstacked versus amalgamated channel systems. Marine and Petroleum Geology,2007, 24 (6-9): 504-514
    Schoenbohm L M, Burchfiel B C, Chen L et al. Miocene to present activity along theRed River fault, China, in the context of continental extrusion, upper-crustalrotation, and lower-crustal flow, Geol. Soc. Am. Bull, 2006, 118: 672- 688
    Shackleton N J and Opdyke N D.Oxygen isotope and paleomagnetic stratigraphy ofequatorial Pacific core V28-238: oxygen isotope temperature and ice volume ona 106 year time scale. Quaternary Research, 1973, 3: 39-55
    Shackleton N J, Berger A, Peltier W R. An Alternative astronomical calibration on theLower Pleistocene time scales based on ODP site 677. Tran. R. Soc. Edinburgh,Earth Science, 1990, 81: 251-261
    Shanmugam G. The Bouma Sequence and the turbidite mind set: Earth- ScienceReviews, 1997, 42: 201-229
    Shanmugam G. 50 years of the turbidite paradigm (1950's-1990's): deep-waterprocesses and facies models-a critical perspective: Marine and PetroleumGeology, 2000, 17:285-342
    Schwab A M, Cronin B T, Ferreira H. Seismic expression of channel outcrops: Offset stacked versus amalgamated channel systems. Marine and Petroleum Geology, 2007,24:504-514
    Shepard F P, Dill R F and Von Rad U. Physiography and sedimentary processes of LaJolla Submarine Fan and Fan-Valley, California: AAPG Bulletin, 1969, 53: 39-420
    Stelting C E, Bouma A H and Stone C G. Fine-Grained Turbidite Systems : Overview, in A. H. Bouma and C. G. Stone, eds., Fine-grained turbidite systems, AAPG Memoir 72/SEPM Special Publication, 2000, 68:1-8
    Stow D A V and Lovell J P B. Contourites: Their recognition in modern and ancientsediments: Earth-Science Reviews, 1979,14:251-291
    Stow D A V and Holbrook J A. North Atlantic contourites: an overview, in D.A.V. Stow, and D.J.W. Piper, eds, Fine grained sediments: Processes and facies; The Geological Society Special Publication 15, 1984:245-256
    Stow D A V, Mayall M. Deep-water sedimentary system: New models for the 21stcentury. Marine and Petroleum Geology, 2000, 17:125-135
    Tailing P J, Peakall J, McCaffrey W et al. How viscosity and density stratification changes submarine mass flow behavior: AAPG Convention Abstracts with Program, 2001: Al97
    Taylor B and Hayes D E. Origin and history of the South China Sea basin. In Hayes D E (ed): The Tectonic and Geologic Evolution of South East Asian Seas and Islands. Part2, geophysical Monograph, 127, AGU Washington DC, 1983: 23 -56
    Uchupi E and Austin J A Jr.The stratigraphy and structure of the aurentian Coneregion: Canadian Journal of Earth Sciences, 1979, 16: 1726-1752
    Uddin A and Lundberg N. Cenozoic history of the Himalayan-Bengal system: sand composition in the Bengal basin, Bangladesh. Geol.Soc.Am.Bull., 1998, 110: 497-511
    Uddin A and Lundberg N A. A Paleo-Brahmaputra? Subsurface lithofacies analysis of Miocene deltaic sediments in the Himalayan-Bengal system. Bangladesh. Sedi. Geol.,1999, 123:239-254
    Uddin A and Lundberg N. Miocene sedimentation and subsidence during continent-continent collision,Bengal basin,Bangladesh.Sedi.Geol., 2004, 164 : 131-146
    Vittori J, Morash A, Savoye B et al.The Quaternary Congo deep-sea fan: preliminaryresults on reservoir complexity in turbidite systems using 2D highresolution seismic and multibeam data. GCSSEPM Foundation 20th Annual Research Conference, Deepwater Reservoirs of the World, 2000:1045-1058.
    Walker R G. Deep-water sandstone facies and ancient submarine fans: Models forexploration for stratigraphic traps: AAPG Bulletin, 1978, 62: 932-966
    Wan S M, Li A C, Clift P D et al. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology,2007, 254: 561-582 Wang C S, Zhao X X, Liu Z F et al. Constraints on the early uplift history of theTibetan Plateau. Geology, 2008, 105(13): 4987-4992
    Wang P X. Response of Western Pacific marginal seas to glacial cycles:paleoceanographic and sedimentological features. Marine Geology, 1999, 156 (1-4): 5-39
    Weimer P, Slatt R M. Introduction to the Petroleum Geology of Deepwater Settings [M]. AAPG Studies in Geology 57, AAPG/Datapages Discovery Series 8, 2007. 111-112
    Wu S G, Takahashi N, Tokuyama H et al. Geomorphology, Sedimentary processes and development of the Zenisu deep-sea channel, northern Philippine Sea. Geo-Marine Letters, 2005, 25 (2): 230-240
    Wu S G, Yuan S Q, Zhang G C et al. Seismic characteristics of a reef carbonate reservoir and implications for hydrocarbon exploration in deep water of the qiongdongnan basin, northern South China Sea, Marine and Petroleum Geology (2008), doi: 10.1016/j. marpetge O.2008.04.008 Wynn R B, Cronin B T, Peakall J. Sinuous deep-water channels: Genesis, geometryand architecture. Marine and Petroleum Geology, 2007, 24 (6-9): 341-387 Xie X N, Muller R D, Li S t et al. Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 2006, 23(7): 745-765
    Xu R H. Vegetational changes in the past and the uplift of Qinghai-Xizang plateau. In: Geological and Ecological Studies of Qinghai-Xizang Plateau, Geology,Geological History and Origin of Qinghai-Xizang Plateau.Beijing:Science Press, 1981.I:139-144
    Yuan S Q,Lv F L,Wu S G et al.Seismic stratigraphy of the Qiongdongnan deep sea channel,Northwestern South China Sea.Chinese Journal of Oceanology and Limnology,2009,54(2)(in press)
    Yuan S Q,Wu S G,Thomas L et al.Fine-Grained Pleistocene deepwater turbidite channel system on the slope of Qiongdongnan Basin,northern South China Sea. Marine and Petroleum Geology,2009a(Accepted)
    Yuan S Q,Yao G S,Lv F L et al.Feartures of Late Cenozoic Deepwater Sedimentation in Southern Qiongdongnan Basin,Northwestern South China Sea. Journal of China University of Geosciences,2009b,20(1):172-179
    崔涛,解习农,任建业等.莺歌海盆地异常裂后沉降的动力学机制.地球科学-中国地质大学学报,2008,33(3):349-356
    董冬冬,吴时国,张功成等.南海北部深水盆地的裂陷过程及裂陷期延迟机制探讨.科学通报,2008,53(19):2342-2351
    郭令智,钟志洪,王良书等.莺歌海盆地周边区域构造演化.高校地质学报,2001,7(1):1-12
    何家雄,夏斌,孙东山等.琼东南盆地油气成藏组合、运聚规律与勘探方向分析.石油勘探与开发,2006,33(1):53-58
    姜涛.莺歌海-琼东南盆地区中中新世以来低位扇体形成条件和成藏模式[D].中国地质大学(武汉),2005,48-58
    姜涛,解习农,汤苏林等.浊流成因海底沉积波形成机理及其数值模拟.科学通报,2007.52(16):1945-1950
    林畅松,刘景彦,蔡世祥等.莺-琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景.科学通报,2001,46(1):69-72
    庞雄,陈长民,彭大钧等.南海珠江深水扇系统及油气,2007.科学出版社,北京,18-19
    邵磊,李学杰,耿建华等.南海北部深水底流沉积作用.中国科学D辑:地球科学,2007,37(6):771-777
    陶维祥,何仕斌,赵志刚,等.琼东南盆地深水区储层分布规律.石油实验地质,2006, 28(6):554-559
    王海荣,王英民,邱燕等.南海北部大陆边缘深水环境的沉积物波.自然科学进展,2007,17(9):1235-1243
    汪品先.大洋钻探与青藏高原.地球科学进展,1995,10(3):254-257
    魏魁生,崔旱云,叶淑芬等.琼东南盆地高精度层序地层学研究.地球科学-中国地质大学学报,2001,26(1):59-66
    魏明建,王成善.1998.第三纪青藏高原面高程与古植被变迁.现代地质,12:318-326
    吴福元,黄宝春,叶凯等.青藏高原造山带的垮塌与高原隆升.岩石学报, 2008,24(1)1-30
    吴时国,袁圣强.世界深水油气勘探进展与我国南海深水油气前景.天然气地球科学,2005,16(6):693-699
    吴时国,孙启良,吴拓宇等,2008.琼东南盆地深水区多边形断层的发现及其油气意义.石油学报,30(1):22-26
    吴时国,袁圣强,董冬冬等.南海北部深水区中新世生物礁发育特.海洋与湖沼,2009,40(2):117-121
    吴珍汉,吴中海,胡道功,叶培盛,周春景.2007.青藏高原渐新世晚期隆升的地质证据.地质学报,81:577-587
    姚伯初.南海北部陆缘的地壳结构及构造意义.海洋地质与第四纪地质,1998,18(2): 1-13
    姚伯初,万玲,吴能友,南海新生代构造演化及岩石圈三维结构特征,地质通报,2005,24.(1):1-8
    姚根顺,袁圣强,吴时国等.琼东南盆地深水区双物源沉积模式及勘探前景,石油勘探与开发,2008,35(6):685-691
    袁玉松,杨树春,胡圣标等.琼东南盆地构造沉降史及其主控因素,2008,51(2):376- 383
    周蒂,孙珍,陈汉宗.世界著名深水油气盆地的构造特征及对我国南海北部深水油气勘探的启示.地球科学进展,2007,22(6):561-572
    朱俊章,施和生,何敏等.珠江口盆地白云凹陷深水区Lw3-1-1井天然气地球化学特征及成因探讨.天然气地球科学,2008,19(2):229-233

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700