时间反演电磁波的超分辨率特性及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时间反演(Time-reversed,即TR)电磁波不仅具有空时聚焦特性,在适当的环境下,还能展现出空间超分辨率的聚焦特性。研究时间反演电磁波超分辨率聚焦特性的关键因素,探索单元间距远小于半个工作波长的亚波长天线阵列的设计方法,并把设计的亚波长阵列嵌入到无线多输入多输出通信系统进行测试,评估其通信性能,可为无线、紧凑型、多天线终端系统提供设计指导。
     第一章概述了本文的研究背景,对时间反演电磁波的空间、时间聚焦原理、时间反演电磁波的超分辨率特性等进行介绍,回顾时间反演电磁波超分辨率特性的研究历程及当前国内外研究动态,并陈述本文的组织结构及研究重点。
     第二章通过构建相关仿真模型,结合时间反演技术分别对无金属丝无外腔、无金属丝有外腔、有金属丝无外腔三种情形下的亚波长阵列进行仿真,对比各种环境下所展示出的分辨率特性,揭示能够展示超分辨率特性的关键因素。
     第三章对时间反演电磁波超宽带-超分辨率(ultra-wideband and super-resolution,即UWB-SR)特性进行研究。初始模型由同轴探针阵列与其周围非均匀分布的金属丝构成。当金属丝选取恰当的分布与长度时,该模型能够对时间反演电磁波展示出UWB-SR特性。接着对微结构阵列的单元进行改进,在平面偶极子阵列周围摆放适量非均匀分布的金属条,该阵列对时间反演电磁波依然能够展示出UWB-SR特性,这为探索其他类型的UWB-SR阵列提供了借鉴。
     第四章给出了几种平面亚波长天线阵列。测试结果表明,亚波长阵列结合时间反演电磁波能够展示出1/20波长超分辨率的聚焦特性。阵列中的单元由平面印刷电路板制作而成,结构简单易于加工。因此,为在体积受限的无线终端建立具有多路独立信道的无线通信提供了先进的设计方案。
     第五章以TR-UWB多输入多输出(multiple-input-multiple-output,即TR-UWB-MIMO)通信方式为例,构建TR-UWB-MIMO高速无线通信系统,验证亚波长阵列对通信质量的提高。系统中,亚波长阵列由3个面对面的天线单元构成,单元间距1/20波长。每一个天线单元可以独立接收一路数据,其数据传输速率达到了500M比特/秒,3路总共的通信速率可达到1.5G比特/秒。接着,给出了一种聚焦效果更加优良的改进型时间反演技术,能够提高目标天线处的空间分辨率特性,实现对附近窃听天线的信息抑制。
     第六章对本论文的研究工作进行总结,指出了待解决的问题并展望了下一步的研究方向。
Time-reversed (TR) electromagnetic wave not only has the property of spatial and temporal focusing in common circumstance, but also has spatial super-resolution focusing characteristics in some special circumstances. Therefore, the investigation of key factors of super-resolution focusing of TR electromagnetic wave, together with the research of design for sub-wavelength array with element distance far less than half wavelength, the integration of sub-wavelength array into wireless MIMO system and the evaluation of its communication performance, would provide guidance for the design of compact wireless terminal system with multiple antennas.
     In Chapter 1, the research background of this dissertation is presented. The property of spatial and temporal focusing characteristics and super-resolution characteristics of time-reversed electromagnetic wave are introduced. And then the development and recent advancements of the super-resolution characteristics of time-reversed electromagnetic wave are reviewed. Finally, the arrangement and focus of this dissertation are described.
     In Chapter 2, a TR sub-wavelength array prototype has been set up and simulations are carried out for three different circumstances respectively: sub-wavelength array without metal wires and metal cavity, array with metal cavity but without metal wires, and array with metal wires but without metal cavity. The focusing characteristics under these three different circumstances are compared, and then the key factors of super-resolution focusing are revealed.
     Chapter 3 takes research of the ultra-wideband and super-resolution (UWB-SR) characteristic of TR electromagnetic wave. The initial prototype consists of coaxial probes and a cluster of non-uniform distribution thin metal wires around the probes. With proper length and location of the metal wires, this prototype could achieve UWB-SR characteristic for TR electromagnetic wave. Improvement is then made on the elements of the microstructured array. Metal strips are placed in a non-uniform arrangement around a planar dipole array, and the array can also demonstrate UWB-SR characteristic for TR electromagnetic wave. This provides references for exploring other types of UWB-SR arrays.
     In Chapter 4, several sub-wavelength arrays are presented. Test results show that all these arrays could demonstrate the 1/20 wavelength super-resolution focusing characteristic with TR electromagnetic wave. As the elements in the arrays are fabricated with printed circuit board, the array structure is easy for fabrication. Therefore, it provides an advanced design solution to build up wireless communication with multiple independent channels for space-limited wireless terminals.
     Chapter 5 takes TR-UWB multiple-input-multiple-output (TR-UWB-MIMO) as an example, and constructs one TR-UWB-MIMO wireless communication system with a high data-rate to verify the communication quality improvement with sub-wavelength array. In this system, the sub-wavelength array consists of 3 face-to-face elements at the distance of 1/20 wavelength between each other. Each element of this array could process data independently at the rate of 500Mb/s, so the overall data-rate of the array could amount to 1.5 Gb/S. Moreover,one advanced TR technique with better focusing performance is proposed. This improved TR technique could increase the spatial resolution of target antenna, and restrain signal received by nearby monitoring antenna
     Chapter 6 summarizes the research work in this dissertation. Unsolved problems and future research areas are given.
引文
[1] G. Lerosey, J. de Rosny, A. Tourin, et al. Focusing beyong the diffraction limit with far-field time reversal. Science, 2007, 315 (2): 1119-1122
    [2] M. Fink, C. Prada, F. Wu, et al. Self-focusing in inhomogeneous media with‘time reversal’acoustic mirror. Proceedings. IEEE 1989 Ultrasonics Symposium, Montreal, 1989, 2 (10): 681-686.
    [3] D.-R. Jackson, D. R. Dowling. Phase conjugation in underwater acoustics. J. Acoust. Soc. Am., 1991, 89 (1): 171-181
    [4] M. Fink. Time reversal of ultrasonic fields-part I basic principles. IEEE Trans. Ultras. Ferr. Freq. Contr., 1992, 39 (5): 555-566
    [5] F. Wu, J.-L. Thomas, M. Fink. Time reversal of ultrasonic fields-part II experimental results. IEEE Trans. Ultras. Ferr. Freq. Contr., 1992, 39 (5): 567-578
    [6] D. Cassereau, M. Fink. Time reversal of ultrasonic fields-part III : theory of the colsed time- reversal cavity. IEEE Trans. Ultras. Ferr. Freq. Contr., 1992, 39 (9): 579-592
    [7] J.-L. Thomas, M. Fink. Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Trans. Ultras. Ferr. Freq. Contr., 1996, 43 (6): 1122-1129
    [8] Y. Chen, E. Gunawan, K.-S. Wang, et al. Pulse design for time reversal method as applied to ultrawideband microwave breast cancer detection a two-dimensional analysis. IEEE Trans. Antennas Propagat., 2007, 55(1): 194-204
    [9] D.-S. Serge, P. Zdenek. Imaging of human tooth using ultrasound based chirp-nonlinear time reversal acoustics. Ultrasonics, 2011, accepted.
    [10] H. Li, F. Hou, P. Li, et al. Influences of switching field rise time on microwave-assisted magnetization reversal. IEEE Transactions on Magnetics, 2011, 47 (2):355-358
    [11] H.-Y. Zhang, Y.-P. Cao, X.-L. Sun, et al. A time reversal damage imaging method for structure health monitoring using Lamb waves. Chinese Physics B, 2010, 19 (11): 114301
    [12] J. Gateau, L. Marsac, M. Pernot, et al. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature. IEEE Transactions on Biomedical Engineering, 2010, 57 (1):134-144
    [13] P. Kosmas, C. -M. Rappaport. FDTD-based time reversal for microwave breast cancer detection-localization in three dimensions. IEEE Trans. Microw. Theory Tech., 2006, 54 (4) : 1921-1927
    [14] S. D. Santos, Z. Prevorovsky. Imaging of human tooth using ultrasound based chirp-Coded nonlinear time reversal acoustics. Ultrasonics, 2011, 45 (2): 1011-1015
    [15] R. Gangadharan, C. - L. Murthy, S. Gopalakrishnan, et al. Time reversal technique for health monitoring of metallic structure using Lamb waves. Ultrasonics, 2009, 49 (8): 696-705
    [16] P. Kosmas, C. M. Rappaport. Time reversal with the FDTD method for microwave breast cancer detection. IEEE Trans. Micro. Theory Tech., 2005, 53 (7): 2317–2323
    [17] G. Zhang, J.-M. Hovem, H. Dong, et al. Coherent underwater communication using passive time reversal over multipath channels. Applied Acoustics, 2011, 72 (7): 412-419
    [18] D. -Q. Nguyen, W. -S. Gan, K. Hong, et al. Time-reversal approach to the stereophonic acoustic echo cancellation problem. IEEE Transactions on Audio, Speech and Language Processing, 2011, 19 (2): 385-395
    [19] B. Poddar, A. Kumar, M. Mitra, et al. Time reversibility of a Lamb wave for damage detection in a metallic plate. Smart Materials and Structures, 2011, 20 (2): 025001
    [20] M. Gabriel, T. Mickael, M. Fink. Time reversal of speckle noise. Phys. Rev. Lett., 2011, 106 (5): 054301
    [21] F. Liu, G. Zhang, S. Morton, et al. An effective imaging condition for reverse-time migration using wavefield decomposition. Geophysics, 2011, 76 (1): S29-S39
    [22] C.-X. Li, W. Xu, J.-L. Li, et al. Time-Reversal Detection of Multidimensional Signals in Underwater Acoustics. IEEE Journal of Oceanic Engineering, 2011, 2, accepted
    [23] E.-H. Saenger, G.-K. Kocur, R. Jud, et al. Application of time reverse modeling on ultrasonic non-destructive testing of concrete. Applied Mathematical Modeling, 2011, 35 (2): 807-816
    [24] D. Matthieu, J.-G. Minonzio, De R. Julien, et al. Experimental study of the invariants of the time-reversal operator for a dielectric cylinder using separate transmit and receive arrays. IEEE Trans. Antennas and Propagat., 2010, 58 (4): 1349-1356
    [25] W. Zhang, A. Hoorfar, L. Li. Through-the-wall target localization with time reversal music method. Progress in Electromagnetics Research, 2010, 106: 75-89
    [26] D.-H. Liu, G. Kang, L. Li, et al. Electromagnetic time-reversal imaging of a target in a cluttered environment. IEEE Trans. Antennas Propagat., 2005, 53 (9): 3058–3066
    [27] J. Li, X. Pan, H. Zhao. Buried target detection based on time reversal focusing with a probe source. Applied Acoustics, 2009, 70 (3): 473-478
    [28] C. Oestges, A. -D. Kim, G. Papanicolaou, et al. Characterization of space-time focusing in time-reversed random fields. IEEE Trans. Antennas Propagat., 2005, 53 (1): 283-293
    [29] D. Liu, J. Krolik, L. Carin. Electromagnetic target detection in uncertain media: time-reversal and minimum-variance algorithms. IEEE Trans. Geoscience and Remote Sensing, 2007, 55 (4): 934-944
    [30] N. Dominguez, V. Gibiat, Y. Esquerre. Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection. Wave Motion, 2005, 42 (1): 31-52
    [31] E. Barbieri, M. Meo. Time reversal DORT method applied to nonlinear elastic wave scattering. Wave Motion, 2010, 47 (7): 452-467
    [32] E. Barbieri, M. Meo. Discriminating linear from nonlinear elastic damage using a nonlinear time reversal DORT method. International Journal of Solids and Structures, 2010, 47 (20): 2639-2552
    [33] Y. Jin and J. M. F. Moura. Time-reversal detection using antenna array. IEEE Trans. Signal Processing, 2009, 57 (4): 1396-1414
    [34] X. Pan, W. Xu, J. Gong. Combination of time reversal and synthetic aperture beamforming for active detection of small bottom objects in waveguide environments. Applied Acoustics, 2009, 70 (11): 1406-1411
    [35]李珣,朱善安.基于时间反演方法的三维磁感应磁声成像电导率重建.中国生物医学工程学报, 2009, 1 (6): 48-52
    [36]李建龙,祝恒年,赵航芳,等.基于时反算子分解的时反高分辨率定位技术研究.声学学报, 2009,34 (1):60-66
    [37] A. Song, A.-E. Newhall, J.-F. Lynch, et al. Passive time reversal acoustic communications through shallow-water internal waves. IEEE Journal of Oceanic Engineering, 2010, 35 (4): 756-765
    [38] T. Arai. Masking speech with its time-reversed signal. Acoustical Science and Technology, 2010, 31 (2): 188-190
    [39]于洋,张效民,相敬林,等.基于分布式时间反演处理技术的水下节点网络物理层方案研究.鱼雷技术, 2010, 18 (3): 181-185
    [40]孙赫颖.时间反演在浅海波导环境中的应用研究.广东造船, 2009, 4: 29-32
    [41] F. Foroozan. Time-reversal ground-penetrating radar: Range estimation with cramerrao lower bounds. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48 (10):3698-3708
    [42] M. Davy, J. de Rosny, J. -C. Joly, et al. Focusing and amplification of electromagnetic waves by time reversal in an leaky reverberation chamber. Comptes Rendus Physique, 2010, 11 (1): 37-43
    [43] H. Zhai, S. Sha, V. Shenoy, et al. An electronic circuit system for time-reversal of ultra-wideband short impulses based on frequency-domain approach. IEEE Transactions on Micro. Theory Tech., 2010, 58(1): 74-86
    [44] F. Ang, Q. Yin. Low complex decision-feedback equalization for time-reversal quasi-orthogonal space-time block codes. IEICE Transactions on communications, 2011, E94-B(1): 166-174
    [45] A. Bruno, A. Burt, M.-S. Phillip, et al. Performance analysis of a single-user MISO ultra-wideband time reversal system with DFE. Telecommunication Systems, 2010, 46 (4): 1-10
    [46] A. Khaleghi. Measurement and analysis of ultra-wideband time reversal for indoor propagation channels. Wireless Personal Communications, 2010, 54 (2): 307-320
    [47] I.-H. Naqui, G.-E. Zein, G. Lerosey, et al. Experimental validation of time reversal ultra wide-band communication system for high data rates. IET Microwaves, Antennas and Propagation, 2010, 4 (5): 643-650
    [48] I.-H. Naqui, A. Khaleghi, G. Ei Zein. Time reversal UWB communication system: A novel modulation scheme with experimental validation. Eurasip Journal on Wireless Communications and Networking, 2010, 2010: 398401
    [49] K. Popovsiki, T. A. Wysocki, B. J. Wysocki, et al. A closed-form derivation of self and multi-user interference for time-reversed UWB communications. Computers and Electrical Engineering, 2010, 36(4): 775-788
    [50] H. Saghir, M. Heddebaut, F. Elbahhar, et al. Train to wayside wireless communication in tunnel using ultra-wide-band and time reversal. Transportation Research Part C: Emerging Technologies, 2009, 17 (1): 81-97I.
    [51] Scott, A. Vukovic, P. Sewell. Krylov acceleration techniques for time-reversal design applications. IEEE Trans. Microwave Theory Tech., 2010, 58 (4): 917-922
    [52] Y. Jin, J. -M. -F. Moura, N. O’donoughue. Time-reversal in multipleinput multipleoutput radar. IEEE J. Selected Topics in Signal Processing, 2010, 4 (1): 210-225
    [53] N. Guo, B. M. Sadler, R. -C. Qiu. Reduced-complexity UWB time-reversal techniques and experimental results. IEEE Trans. Wireless Commun., 2007, 6 (12): 4221-4226
    [54] S. Xiao, J. Chen, B.-Z. Wang, et al. A numerical study on time-reversal electromagnetic wave for indoor ultra-wideband signal transmission. Progress in Electromagnetics Research, 2007, 77: 329-342
    [55] X. Liu, B.-Z. Wang, L.-W. Li. Tradeoff of transmitted power in time reversed impulse radio ultra-wideband communications. IEEE Antenna Wireless Propag. Lett., 2009, 8: 1426-1429
    [56] X. Liu, B.-Z. Wang, S. Xiao, et al. Post-time-reversed MIMO ultrawideband transmission scheme. IEEE Trans. Antennas Propag., 2010, 58 (5): 1731-1738
    [57] D. Wang, B.-Z. Wang, G. -D. Ge, et al. The feasibility of envelope-based time reversal. Journal of Electromagnetic Waves and Applications, 2011, 25 (1): 63-74
    [58] P. Kyritsi, G. Papanicolaou, P. Eggers, et al. MISO time reversal and delay-spread compression for FWA channels at 5GHz. IEEE Antennas Wireless Propag. Letters, 2004, 3: 96-99
    [59] T. Strohmer, M. Emami, J. Hansen, et al. Application of time-reversal with MMSE equalizer to UWB communications. IEEE 2004 Global Telecommunications Conference, 2004, 5: 3123-3127
    [60] R.-C. Qiu, C. Zhou, N. Guo, et al. Time reversal with MISO for ultrawideband communications: experimental results. IEEE Antennas Wireless Propag. Letters, 2006, 5: 269-273
    [61] J.-V. Candy, D.-H. Chambers, B. -L. Guidry, et al. Multi-channel time-reversal receivers for multi and 1-bit implementations. US Patent, 7463690, 2008-12
    [62] X. -Z. Xiong, J. -H. Hu, X. Ling. An efficient uplink transmission technique for IDMA based on time-reversal. International Journal of Electronics and Communications, 2010, 64 (2): 125-132
    [63] H.-T. Nguyen, J.-B. Anderson, G.-F. Pedersen. The potential of time reversal techniques in multiple element antenna systems. IEEE Commun. Lett., 2005, 9(1): 40-42
    [64]葛广顶,王秉中,黄海燕,等.时间反演电磁波超分辨率特性.物理学报, 2009, 58 (12): 8249-8253
    [65]丁帅,王秉中,葛广顶,等.时间反演镜对时间反演电磁波聚焦特性影响因素的研究.物理学报,已录用
    [66] G.-D. Ge, B.-Z. Wang, D. Wang, et al. Ultra-wideband communication based on super-resolution characteristics of microstructured array with far-field time-reversal. 2011 International Conference on Information and Industrial Electronics, Chengdu: Proc. ICIIE, 2011, VI. 264-268
    [67] G.-D. Ge, D. Wang, B.-Z. Wang. Subwavelength array of planar triangle monopoles with cross slots based on far-field time reversal. Progress In Electromagnetics Research, 2011, 114 (3): 429-441
    [68] G.-D. Ge, B.-Z. Wang, D. Zhao, et al. Design on super-resolution characteristics of planar microstructured antenna array. 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu: ICMMT, 2010, 1-4.
    [69] M. Fink. Time-reversal waves and super resolution. 4th AIP International Conference and the 1st Congress of the IPIA, 2008, 124 (1):1-29
    [70] O. Malyuskin, V. Fusco. Near field focusing using phase conjugating impedance loaded wire lens. IEEE Trans. Antennas Propagat., 2010, 58 (9): 2884-2893
    [71] O. Malyuskin, V. Fusco. Far field subwavelength source resolution using phase conjugating lens assisted with evanescent-to-propagating spectrum conversion. IEEE Trans. Antennas Propagat., 2010, 58 (2): 459-468
    [72] V. Fusco, N. Buchanan, O. Malyuskin. Active phase conjugating lens with subwavelength resolution capability. IEEE Trans. Antennas Propagat., 2010, 58 (3): 798-808
    [73] O. Malyuskin, V. Fusco. Phase conjugating lens for subwavelength spaced PSK same frequency far field signal recovery. Proc. 2010 URSI International Symposium on Electromagnetic Theory., Berlin, 2010, 264-267
    [74] J. de Rosny, M. Fink. Overcoming the diffraction limit in wave physics using a time- reversal mirror and a novel acoustic sink. Phy. Rev. Lett., 2002, 89 (12): 1-4
    [75] S.-G. Conti, P. Roux, W.-A. Kuperman. Near-field time-reversal amplification. J. Acoust. Soc. Amer., 2007, 121 (3): 3602-3606
    [76] R. Merlin. Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing. Science, 2007, 317 (2): 927-929
    [77] A. Grbic, L. Jiang, R. Merlin. Near-field plates: subdiffraction focusing with patterned surfaces. Science, 2008, 320 (4): 511-513
    [78] A. Grbic, R. Merlin. Near-field focusing plates and their design. IEEE Trans. Antennas Propagat., 2008, 56 (10): 3159-3165
    [79]祝生祥.传统光学显微镜与进场光学显微镜.光学仪器, 2000, 22 (6): 34- 41
    [80]张斗国,王沛,焦小瑾,等.表面等离子体亚波长光学前沿进展.物理学报,2005, 7:508-512
    [81] J.-B. Pendry. Negative refraction makes a perfect lensing. Phy. Rev. Lett., 2000, 85 (10): 3966-3969
    [82] J.-B. Pendry. Time reversal and negative refraction. Science, 2008, 322 (8): 71-73
    [83] C. Draeger, M. Fink. One-channel time reversal of elastic waves in a chaotic 2D-Silicon cavity. Phy. Rev. Lett., 1997, 79(7): 407-410
    [84] G. Lerosey, J. de Rosny, A. Tourin, et al. Time reversal of electromagnetic waves. Phys. Rev. Lett., 2004, 92 (19): 193904(1-3)
    [85] G. Lerosey, J. de Rosny, A. Tourin, et al. Time reversal of wideband microwaves. Appl. Phys. Lett., 2006, vol. 88 (4): 154101(1-4)
    [86] R. Carminati, R. Perrat, J. de Rosny, et al. Theory of the time reversal cavity for electromagnetic fields. Optics Lett., 2007, 32 (21): 3107-3109
    [87] J.-P. Fouque, J. Garnier, A. Nachbin, et al. Time reversal super resolution in randomly layered media. Wave Motion, 2006, 43 (8): 646-666
    [88] A.-C. Fannjiang, K. Solna. Superresolution and duality for time-reversal of waves in random media. Phys. Lett. A, 2005, 352: 22-29
    [89] R. Carminati, M. Nieto-Vesperinas, J. -J. Greffet. Reciprocity of evanescent electromagnetic waves. J. Opt. Soc. Am., 1998, 15 (3): 706-712
    [90] R. Carminati, J. -J. Saenz, J. -J. Greffet, et al. Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components. Phys. Rev. A., 2000, 62: 012712(1-7)
    [91] J. de Rosny, M. Fink. Focusing properties of near-field time reversal. Phys. Rev. A, 2007, 76 (6): 065801(1-4)
    [92] J.-P. Fouque, J. Garnier, A. Nachbin, et al. Time-reversal refocusing for point source in randomly layered media. Wave Motion, 2005, 42 (3): 238-260
    [93] D.-A Vigo, J.-P. Fouque, J. Garnier, et al. Robustness of time reversal for waves in time-dependent random media. Stochastic Processes and their Applications, 2004, 113 (2): 289-313
    [94] J. -P. Fouque, J. Garnier, A. Nachbin. Shock structure due to stochastic forcing and the time reversal of nonlinear waves. Physica D, 2004, 195 (3-4): 324-346
    [95] J.-P. Fouque, J. Garnier, J. C. Mu, et al. Time reversing solitary waves. Phys. Rev. Lett., 2004, 92(4): 094502
    [96] J.-P. Fouque, J. Garnier, A. Nachbin. Time reversal for dispersive waves in random media. SIAM J. Appl. Math, 2004, 64:1810–1838
    [97] J.-F. Clouet, J.-P. Fouque. A time-reversal method for an acoustical pulse propagating in randomly layered media. Wave Motion, 1997, 25: 361–368.
    [98] J.-P. Fouque, A. Nachbin. Time-reversed refocusing of surface water waves. SIAM Multiscale Model. Simul, 2003, 1: 609–629
    [99] J.-P. Fouque, O. Poliannikov. Time reversal detection in one-dimensional random media. Inverse Problems, 2006, 2 (5): 2903–922
    [100] J.-P. Fouque, K. Solna. Time-reversal aperture enhancement. SIAM Multiscale Model. Simul., 2003, 1 (2): 239–259
    [101] T. Miyatani. Multiple-antenna base station receiver. JP Patent. JP2009130516-A, 2009-09
    [102] N. Yosoku. Multi-antenna transmission device for combined adaptive modulation and coding-multiple input multiple output (MIMO) communication system. US Patent, 2008267108-A1, 2008-2
    [103]华为技术有限公司.多天线校正方法、多天线收发装置及基站系统.中国专利, CN200810029110.5, 2008-10
    [104]清华大学.移动终端四天线系统.中国专利,CN200710064293.X, 2007-10。
    [105]北京邮电大学.智能天线和多输入多输出天线协同工作方法.中国专利,CN200710098712.1, 2007
    [106]皇家飞利浦电子股份有限公司.具有多天线的无线通信装置及其方法.中国专利, CN200580030166.7, 2005
    [107]三星电子株式会社.在多天线宽带无线接入系统中支持各种多天线方案的方法.中国专利, CN200510120289.1, 2005
    [108] D. Cassereau, F. Wu, M. Fink. Limits of self-focusing using closed time reversal cavities and mirrors theory and experiment. Ultrason. Symp., 1990, 3(12): 1613-1618
    [109] S. -W. Qu, C. -L. Ruan, B. -Z. Wang, et al. Planar bow-tie antenna embedded in circular aperture within conductive frame. IEEE Antennas and Wireless Propaga. Lett.. 2006, 5(9): 399-401
    [110] J. Keignart, C. Abou-Rjeily, C. delaveaud, et al. UWB SIMO channel measurements and simulations. IEEE Trans. Microwave Theory Tech.. 2006, 54(4): 1812-1819
    [111] W. -Q. Malik, D. -J. Edwards. Measured MIMO capacity and diversity gain with spatial and polar arrays in ultra-wideband channels. IEEE Transactions on Communications. 2007, 55(12): 2361-2370
    [112] A. -M. Dariush, T. -T Vahid. Time reversal technique for ultra wideband (TR-UWB) communication systems and its performance analysis. 2008 International Symposium on Telecommunications, 2008, 219-223
    [113] G. Sinan, S. Zafer, K. Hisashi, et al. Ultra-wideband impulse radio systems with multiple pulse types. IEEE Journal on Selected Areas in Communications. 2006, 24(4): 892-898
    [114] T. Kaiser, F. Zhang, E. Dimitrov. An overview of ultra-wide-band systems with MIMO. Proceedings of the IEEE. 2009, 97(2): 285-312
    [115] C. Zhou, N. Guo, R.–C. Qiu. Time-reversed ultra-wideband (UWB) multiple input multiple output (MIMO) based on measured spatial channels. IEEE Trans. on Vehicular Technology, 2009, 58(6): 2884-2898
    [116]葛利嘉,朱林,袁晓芳,等.超宽带无线电基础.北京:电子科技出版社,2006,19-21
    [117] M.-G. Di Benedetto, L. -D. Nardis, M. Junk, et al. Uncoordinated, wireless, baseborn medium access for UWB communication networks. In press in Mobile Networks and Applications special issue on WLAN optimization at the MAC and netwoks levels, 2004, 2: 1-29
    [118] L. Yang, G.–B. Giannakis. Low-complexity training for rapid timing acquisition in ultra wideband communications. IEEE Global Telecommunications Conference, 2003, 12: 769-773
    [119] Z. Tian, G. -B. Giannakis. Data-aided ML timing acquisition in ultra-wideband radios. IEEE Conference on Ultra Wideband Systems and Technologies, 2003, 11: 142-146
    [120] L. Reggiani, G.–M. Maggio. A reduced-complexity acquisition algorithm for UWB impulse radio. IEEE Conference on Ultra Wideband Systems and Technologies, 2003, 11: 131-135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700