基于声矢量传感器的空间谱估计算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声矢量传感器可以同时拾取声场中共点的声压与振速信息,它的出现为解决水下目标的探测、定位及识别等诸多问题提供了一种新的方法和手段,受到研究学者的日益关注。与标量阵算法相比,单声矢量传感器就具有目标测向能力,而声矢量阵算法的信源检测和参数估计性能也更高。随着MUSIC、ESPRIT等子空间类DOA估计方法相继被移植到矢量信号处理领域中,基于声压、振速信息联合处理的声矢量传感器空间谱估计技术已经得到学者们的广泛认可。在此背景下,本文结合常规阵列信号处理技术,进一步利用声矢量传感器输出的声场信息,对单/双声矢量传感器的高分辨方位估计、声矢量阵的信源数目估计、声矢量阵的高分辨方位估计及阵型校正等几方面内容进行深入、系统的理论和实验研究。
     基于单声矢量传感器的测向问题一直是学者们的研究热点,本文首先讨论了基于单矢量传感器的Bartlett、Capon和MUSIC等几种算法的估计性能,在建立数学模型的基础上重点研究了单矢量传感器MUSIC算法的方位估计统计特性及性能边界问题,详细分析了通道幅相特性对MUSIC算法性能的影响,并针对幅度误差的影响提出了一种基于通道功率归一化的校正算法,理论分析、仿真实验以及湖试数据处理结果均验证了本文算法的有效性。同时针对小尺度声矢量阵的相干源分辨问题,提出一种基于空间平滑思想的二元声矢量阵MUSIC算法,该算法依靠两个声矢量传感器可实现对相干信号源的分辨。
     信源数目的精确估计是保证高分辨方位估计算法实现的前提条件,本文在讨论AIC、MDL、GDE和CCT等几种经典算法性能的基础上,通过将声压、振速或解析振速信息进行联合处理,结合正则相关技术提出了三种基于声矢量阵的信源数目估计算法—VCCT算法。仿真结果表明:与CCT算法相比,VCCT算法显著提高了可估计的信源数目上限,而且在信源空间位置变化的情况下,VCCT算法的信源数目估计性能具有稳健性。
     与标量阵算法相比,声矢量阵高分辨方位估计算法所需运算量较大,基阵的使用要求也更高。针对上述问题,本文结合空间拟合思想提出了一种新的高分辨方位估计算法—VSSF算法。该算法在估计性能上接近于声矢量阵MUSIC算法并优于ESPRIT算法,但运算量约为MUSIC算法的一半。为了提高算法的分辨能力,本文将VSSF算法推广为波束域处理的BVSSF算法,分析表明:该算法比VSSF算法的信源估计数目有所减少,但具有更高的分辨力。针对宽带信号情况,本文同时给出了两种宽带高分辨方位估计算法—WIVSSF算法和WFVSSF算法。分析表明:WIVSSF算法具有非相干源能力,WFVSSF算法具有非相干源与相干源分辨能力。针对阵元位置存在误差时VSSF算法性能恶化问题,本文提出一种新的声矢量阵阵型校正算法,该算法利用单矢量传感器MUSIC算法估计disjoint辅助源的方位,并以此构造完备方程组求解误差矩阵。仿真结果表明:一定条件下本文算法仅依靠2个disjoint辅助源就可以实现阵元位置误差的有效估计,与在同等条件下文献算法相比其估计精度要高于后者一个数量级。
The Acoustic Vector Sensor (AVS) can measure both pressure and particle velocity ofacoustic field at a point in space,which provides a new technique for underwater targetdetection, location and identification. In recent year, AVS signal processing has been drawnmuch attention. Compared with conventional Pressure Sensor Array (PSA) signal processingalgorithm, the Single Acoustic Vector Sensor (SAVS) can achieve Direction-of-Arrive (DOA)estimation for object, the better performance can be obtained from aspects of sourcesdetecting and parameter estimating based on the Acoustic Vector Sensor Array (AVSA) signalprocessing algorithm also be better. With the MUSIC, ESPRIT algorithms explanted to theAVSA signal processing, the spatial spectrum estimation technique based on the pressure-velocity combined processing using AVSA has been accepted widely. Combining theconventional array processing technique, the thesis makes use of the information exportingfrom AVS to research mainly three parts. They focus on the problems such as high resolutionDOA estimation using the single/duality AVS, sources number estimation, high resolutionDOA estimation and array calibration using the AVSA.
     The DOA estimation using SAVS is always an important topic in acoustic signalprocessing field. The paper first debates the performance of Bartlett, Capon and MUSICalgorithms based on the SAVS. In allusion to MUSIC algorithm, the paper investigates thestatistical character and performance boundary of DOA estimation particularly, analyses theinfluence on algorithm caused by intensity and phase error, meanwhile a novel approach usingchannels power unitary is proposed to eliminate the influence leading by intensity error. Thevalidity of the approach is validated through theoretic analysis, numeric simulation and lakeexperiment data processing. In allusion to small-size AVSA, the thesis also propose a MUSICalgorithm combined the principle of spatial smoothing for coherent sources resolution, whichis only depended on duality AVSA.
     The foreknowing of source number is the precondition for high resolution DOAestimation. After the paper introduces some classical source number estimation approach suchas AIC, MDL, GDE and CCT algorithm, three novel approaches for source number estimationare proposed (VCCT) combining pressure-velocity combined processing with CCT algorithm.The result of simulation indicates that, comparing with CCT algorithm using PSA, VCCTalgorithm using VASA evidently increases the upper limit of source number estimation.Further more, the performance of VCCT algorithm also has robustness when the source at different location in space.
     The high resolution DOA estimation using AVSA has more quantity in operation andmore complicated in application than PSA. In allusion to this problem, the paper proposed anew high resolution DOA estimation algorithm using AVSA based on the principle ofsubspace fitting (VSSF). The performance of proposed measure is closer to the MUSICalgorithm and better than ESPRIT algorithm. But the computation of operation is about halfof MUSIC algorithm’s. The VSSF algorithm is also explanted to the beam field and widebandfield. Meanwhile the paper produces the BVSSF algorithm, WIVSSF algorithm and WFVSSFalgorithm. The results of simulation indicates that, the BVSSF algorithm has the higherresolution in despite of reducing the upper limit of source number. The WIVSSF algorithmcan distinguish the incoherent sources and WIVSSF algorithm can distinguish the coherentsources.
     A novel approach for array calibration using the AVSA is proposed because theperformance of VSSF algorithm is depraved when array location exist error. The proposedapproach makes use of DOA estimation of disjoint source by MUSIC algorithm based onSAVS, and constitutes the equation groups to calculate the error matrix. Simulation resultindicates that, the approach, only depending on two disjoint sources, is proved to be valid forarray calibration, and its precision is more one order of magnitude than the literatureapproach.
引文
[1] Robert L.T., Amherst N.H. Tilt Compensation for Acoustic Transducing System. UniteStates Patent.4179682.Dec.18,1979
    [2] Thomas E.W., Nashua N.H. Underwater Direction Finding System.Unite StatesPatent.3987404.Oct.19,1976
    [3]陈湍石,声强测量及应用,噪声与振动控制,1987
    [4] E.G. Richarason, Technical aspects of sound,中译本
    [5] Boyer G.L., Instrumentation for measuring underwater acoustic intensity, J.Acoust. Soc.Am.,1960,(32):1519P
    [6] B.D.Kerler, Gradient hydrophone flow noise, J. Acoust. Soc. Am.,1972,(62)
    [7] C.L.LeBlanc, Handbook of Hydrophone Element Design Technology, MUSC TechnicalReport5813Naval Underwater System Center, New London, CT,1978
    [8] Fiber optic gradient hydrophone, J. Acoust. Soc. Am.,1985,(77):2190P
    [9] M.J.Berliner and J.F.Lindeberg, Eds, Acoustic particle Velocity Sensor: Design,Performance and Application, Woodbury, NY, AIP,1996
    [10] Brue M.Abraham.Low-cost Dipole Hydrophone for use in Towed Arrays AcousticParticle Velocity Sensors,Design Performance and Application.1995:189P
    [11] Robert L. Townsend,Amherst,N.H.,Tilt Compensation for Acoustic TransducingSystem,United States Patent,1979
    [12] G.L.D'Spain,W.S.Hodgkiss,G.L.Edmonds.Energetics of the Deep Ocean's InfrasonicSound Field D'Spain.J.A.S.A.1991,89(3):1002-1004
    [13] G.L.D'Spain.Simultaneous measurement of infrasonic acoustic particle velocity andacoustic pressure in the ocean by freely drifting Swallow floats. IEEE J.OceanicEng.1991,16(2):195-207P
    [14] Shchurov V.A. Modern state and prospects for use of underwater acoustic intensitymeasurements,Preprint.Vladivostok:Pacific Oceanological Institute FEBRAS,1998
    [15] Shchurov V.A. Coherent and diffusive fields of underwater acoustic ambient noise,J.Acoust.Soc.Am.vol.90(2),1991
    [16] Shchurov V.A. The interaction of energy flows of underwater ambient and a localsource,Natural Physical Sources of Underwater Sound.Kluwer Academic Publishers,1993
    [17]贾志富,同振球型声压梯度水听器的研究,应用声学,1997,16(3):20-25页
    [18]贾志富,采用双迭片压电敏感元件的声压梯度水听器,传感器技术,1997,16(1):22-29页
    [19]洪连进.三维矢量水听器的研究,哈尔滨工程大学博士后研究工作报告,2001
    [20]陈红娟,洪连进.基于压电加速度计的同振型矢量水听器的设计,传感器技术,2003,22(3):20-24页
    [21]惠俊英,惠娟.矢量信号处理基础.国防工业出版社.2009
    [22] Nehorai A. Acoustic vector-sensor array processing,Trans.on Signal Processing.1994,42(9):2481-2491P
    [23] Hawkes M. Acoustic vector sensor beam forming and Capon direction estimation.Trans.on Signal Processing,1998,46(9):2291-2304P
    [24] Hawkes M. Acoustic vector sensor correlations in ambient noise. Jour of OceanicEngineering,2001,26(3):337-347P
    [25] Gordienko. Vector phase method in acoustics. Moscow, Nauka,1989
    [26] Shchurov. Noise immunity of a combined hydro acoustic receiver. Acoust, Physics,2002,48(1):110-119
    [27] D’Spain G L. Initial analysis of the data from the vertical DIFAR array. IEEE Oceans1992Proceedings,1992:346-351P
    [28] Cray B A. Directivity factors for linear arrays of velocity sensors. J. Acoust. Soc. Am.2001,110(1):324-331P
    [29] Cray B A. Highly directional acoustic receiver. J. Acoust. Soc. Am.,2003,113(3):1526-1532P
    [30]孙贵青等.基于矢量水听器的最大似然比检测和最大似然方位估计.声学学报,2003,28(1):66-72P
    [31]孙贵青.声矢量传感器及其在均匀线列阵声纳中的应用.中国科学院声学研究所博士后研究工作报告,2003
    [32] Hawkes M. Acoustic vector—sensor processing in the presence of a reflecting boundary.IEEE Trans.on Signal Processing,2000,48(11):2981-2993P
    [33]惠俊英等.声压和振速联合信号处理抗相干干扰.声学学报,2000,25(5):89-394P
    [34] Burgess K A. A subspace GLRT for vector-sensor array detection. IEEE InternationalConference on Acoustics, Speech, and Signal Processing,1994(4):253-256P
    [35] Hochwald B. Identifiability in array processing models with vector sensor applications.IEEE Trans on Signal Processing,1996,44(1):83-95P
    [36] Tichavsky P. Near-field/far-field azimuth and elevation angle estimation using a singlevector hydrophone. IEEE Trans.on Signal Processing,2001,49(11):2498-2510P
    [37] Wong K T, Zoltowski M.D. Orthogonal velocity hydrophone ESPRIT for sonar sourcelocalization. MTS/IEEE Oceanic’96Conf.:1305-1312P
    [38] Zoltowski M D. Closed-form eigenstructure-based direction finding using arbitrary butidentical subarrays on a sparse uniform Cartesian array grid. IEEE Trans. on SignalProcessing,2000,48(8):2205-2210P
    [39] Wong K T, Zoltowski M D. Self-initiating MUSIC-based direction finding in theunderwater acoustic particle velocity-filed beamspace. IEEE Intl. Symposium oncircuits&system.1997,(4):2553-2556P
    [40] Wong K T, Zoltowski M D. Polarization beamspace Self-initiating MUSIC forazimuth/elevation angle estimation. IEEE conf. Radar97,1997,(14-16):328-333P
    [41] Wong K T, Zoltowski M D. Self-initiating MUSIC-based direction finding in theunderwater acoustic particle velocity-filed beamspace. IEEE J. Oceanic Engineering,2000,25(2):262-273P
    [42] Wong K T, Zoltowski M D. Root-MUSIC based azimuth/elevation angle of arrivalestimation with uniformly spaced but arbitrarily oriented velocity hydrophone. IEEETrans.on Signal Processing,1999,(47):3250-3260P
    [43] Wong K T, Zoltowski M D. ESPRIT based extended-aperture source localization usingvelocity hydrophone, Proc. MTS/IEEE Oceanic Conf. Fort Lauderdale, FL, Sept,1996,(3):1425-1432P
    [44] Wong K T, Zoltowski M D. High accuracy2D estimation with extended aperture vectorsensor arrays, IEEE Trans Antennas and Propagation,1996,(3):2789-2792P
    [45] Wong K T, Zoltowski M D. Extended-aperture underwater acoustic multi-sourceazimuth/elevation direction finding using uniformly but sparsely-spaced vectorhydrophone. IEEE J, Oceanic Eng,1997,22(4):659-672P
    [46] Wong K T, Zoltowski M D. Extended-aperture spatial diversity and polarizationdiversity using a sparse array of electric dipoles or magnetic loops. IEEE VehicularTechnology Int. Conf.1997:1163-1167P
    [47]姚爱红,惠俊英.单矢量传感器倍频窄波束技术研究.哈尔滨工程大学学报,2004,25(1):50-52P
    [48]姚爱红,惠俊英.单矢量传感器DEMON谱检测技术研究.声学技术.2006(2):66-70P
    [49]陈新华,蔡平,惠俊英.声矢量阵指向性.声学学报,2003,28(2):141-144P
    [50]陈新华.矢量传感器阵列信号处理.哈尔滨工程大学博士学位论文,2004
    [51]赵羽.矢量阵阵处理研究.哈尔滨工程大学博士学位论文,2004
    [52]王逸林,赵羽,蔡平.矢量阵组合增益仿真分析.声学技术,2004(23):219-221P
    [53]徐海东.矢量传感器阵高分辨方位估计.哈尔滨工程大学博士学位论文,2005
    [54]王德俊.矢量声场与矢量信号处理理论研究.哈尔滨工程大学博士学位论文,2005
    [55]余敏.矢量传感器方位估计.哈尔滨工程大学硕士学位论文,2004
    [56]乔刚.基于矢量传感器的水声通信技术研究.哈尔滨工程大学博士学位论文,2004
    [57]田坦,齐娜.矢量水听器阵波束域MVDR犯法研究.哈尔滨工程大学学报,2004,24(3):295-298P
    [58]刘伯胜,田宝晶.矢量传感器估计目标方位的误差仿真研究.哈尔滨工程大学学报,2004,24(5):491-494P
    [59]王永良等.空间谱估计了理论与算法.清华大学出版社.2004
    [60] Capon J. High-resolution frequency-wavenumber spectum analysis Proc.IEEE57,19691408-1418P
    [61] Schmidt. A signal subspace approach to multiple emitter location. Stanforduniv,Stanford, CA,1980
    [62] Roy R, Kailath T. ESPRIT-a subspace rotation approach to eatimation of parameters ofcissoids in noise. IEEE Trans.on ASSP,1986,34(10):1340-1342PBohme J F. Estimationof source parameters by manimum likelihood and nonlinear regression. ICASSP,1984,7.3.1-7.3.4
    [63] Bohme J F. Estimation of source parameters by manimum likelihood and nonlinearregression. ICASSP,1984,7.3.1-7.3.4
    [64] Bohme J F. Estimation of spectral parameters of correlated signals in wavefields. Trans.on SP,1986,11(4):329-337P
    [65] Cadzow J A, A high resolution direction of arrival algorithm for narroe-band coherentand incoherent sources. IEEE Trans.on ASSP,1988,36(7):965-979P
    [66] Viberg M, Ottersten B. Sensor array processing based on subspace fitting. IEEE Trans.on SP,1991,39(5):1110-1121P
    [67] Viberg M, Ottersten B. Detection and estimation in sensor arrays using weigthedsubspace fitting. Sensor array processing based on subspace fitting. IEEE Trans.on SP,1991,39(11):2436-3449P
    [68] Krim H, Viberg M. Two decades of array sognal processing reseach. IEEE signalprocessing magazine,1996,13(4):65-94P
    [69] Stoica P, Sharman K C. Novel eigenanalysis method for direction estimation.IEEEProcessing Pt.F,1990,137(1):19-26P
    [70] Stoica P, Nehorai A. Performance study of conditional and unconditional direction ofarrival estimation. IEEE Trans.on ASSP,1990,38(10):1783-1795P
    [71] Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Trans.onAP,1986,34(3):276-280P
    [72] Stoica P, Nehorai A. MUSIC, maximum likelihood, Cramer-Rao bound. IEEE Trans.onASSP,1989,37(5):720-741P
    [73] Parat B, Friedlander B. Analysis of the asymptotic relative of the MUSIC algorithm.IEEE Trans.on ASSP,1988,36(4):532-543P
    [74] Stoica P, Nehorai A. MUSIC, maximum likelihood, Cramer-Rao bound: further resultsand comparisons. IEEE Trans.on ASSP,1990,38(12):720-741P
    [75] Xu X L, Buckly K M. Bias analysis of the MUSIC location estimator. IEEE Trans.on SP,1990,40(10):2559-2569P
    [76] Zhou C, Haber F, Jaggard D L. A resolution easure for the MUSIC algorithm and itsapplication to plane wave arrivals contaminated by coherent interference.IEEE Trans.onSP,1991,39(2):454-463P
    [77] Rao B D, Hari K V S. Weighted subspace methods and spatial smoothing;analysis andcomparisons. IEEE Trans.on SP,1993,41(2):788-803P
    [78] Barabell A J, Improving the resolution performance of eigenstructure based directionfinding algorithms. IEEE Trans.on ICASSP.1993,336-339P
    [79] Rao B D, Hari K V S. Performance analysis of Root-MUSIC. IEEE Trans.on ASSP,1989,37(12):1939-1949P
    [80] Zoltowski M D, Kautz G M. Simultaneous sector processing via Root-MUSIC for largesensor arrays. In Proc fifth ASSP workshop spectrum estmation Modeling.1995:315-321P
    [81] Silverstein S D, Zoltowski M D. The mathematic basic for element and fourier beamspace MUSIC and Root-MUSIC algorithms. Digital signal processing,1991,1(2):1-15P
    [82] Krim H, Forster P, Proakis J G.. Operator approach to performance analysis ofRoot-MUSIC and root min-nrom. IEEE Trans. on SP,1962,40(7):1685-1696P
    [83] Zoltowski M D, Kautz G M, Silverstein S D. Beanspace Root-MUSIC. IEEE Trans. onSP,1993,41(1):344-364P
    [84] Zoltowski M D, Silverstein S D. Beanspace Root-MUSIC for minimum redundancylinear arrays. IEEE Trans. on SP,1993,41(7):2502-2507P
    [85] Shan T J, Wax M. Adaptive beanforming for coherent signals and interference. IEEETrans. on ASSP,1985,33(3):525-536P
    [86] Shan T J, Wax M. On spatial smoothing for estimation of coherent signals. IEEE Trans.on ASSP,1985,33(4):806-811P
    [87] Pillai S U, Kwon B H. Forward/backward spatial smoothing techniques for coherentsignal indentification. IEEE Trans. on ASSP,1989,37(1):8-15P
    [88] Pillai S U, Kwon B H. Performance analysis of MUSIC-type high resolution eatimatorsfor direction finding in the correlated and coherent scenes. IEEE Trans.on ASSP,1989,37(8):1176-1189P
    [89] Rao B D, Hari K V S. Effect of spatial smoothing on the performance of the MUSICand the minimum-norm method. IEEE Proc.F,1990,137(6):449-458Py
    [90] Rao B D, Hari K V S. On spatial smoothing and weighted subspace methods. InProc.24th, Asilomar Conf. Signals, Syst., Comput., Nov,1990,936-940P
    [91] Bienvenu G, Kopp L. Decreasing high resolution method sensitivity by conventionalbeamformer preprocessing. ICASSP,1984,33(2):1-4P
    [92] Gabriel W F. Using spectral estimation technique in adaptive processing antenna system.IEEE Trans. On AP,1986,34(3):291-300P
    [93] Byrne C L, Steele A K. Sector-focused stability for high-resolution array processing.ICASSP,1984,33(2):1-4P
    [94] Forster P, Vezzosi G.. Application of spheroidal sequences to array prosessing. ICASSP,1987,2265-2271P
    [95] Lee H, Wengrovitz M. Improved high-resolution direction finding through the use ofinhomogeneous constraints. In Proc. Fourth ASSP work Spectrum estimation modeling.1988(8):152-157P
    [96] Zoltowski M D. High-resolution sensor array signal processing in the beamspacedomain: Novel techniques based on the poor resolution of Fourier beamforming. In Proc.Fourth ASSP work Spectrum estimation modeling.1988(8):350-355P
    [97] Veen B D, Williams B. Structured covariance matrices and dimensionality reduction inarray processing. In Proc. Fourth ASSP work Spectrum estimation modeling.1988(8):168-171P
    [98] Xu X L, Buckly K M. Reduction-dimension beamspace broadband source localization:preprocessor design and evaluation. In Proc. Fourth ASSP work Spectrum estimationmodeling.1988(8):22-27P
    [99] Xu X L, Buckly K M. A comparison of element and beam space spatial-spectrumestimation for multiple source clusters. ICASSP,1990,2643-2646P
    [100] Xu X L, Buckly K M. Statistical performance comparison of MUSIC in element spaceand beam-space. ICASSP,1989,2124-2127P
    [101] Godara L C. Beamforming in the presence of correlated arrivals using structuredcorrelation matrix. IEEE Trans. On ASSP,1990,38(1):1-15P
    [102]梁国龙,张锴,付进.单矢量水听器的高分辨方位估计应用研究.兵工学报.2011,32(5):986-990P
    [103]梁国龙,张锴,张光普.基于二元矢量阵MUSIC算法的相干源分辨研究.高技术通讯.2012,22(4):335-339P
    [104] Kaceh M, Barabell A J.The Statistical Performance of the MUSIC and theMinimum-Norm Algorithms in Resolving Plane Waves in Noise. IEEE Trans on ASSP,1986,34(2):331-341P.
    [105] Harry B Lee. Resolution threshold of beamspace MUSIC for two closely spacedemitters. IEEE Trans. on ASSP,1990,38(9):1545-1559P
    [106] Zhang Q T. Probability of Resolution of the MUSIC Algorithm. IEEE Trans. on SP,1995,46(4):978-987P
    [107] Hudson J E, Adaptive Array Principles, U.K, Peter Peregrinus Lt,1981:50-67P
    [108]梁国龙,张锴,范展.基于MUSIC改进算法的矢量水听器DOA估计及性能评价.哈尔滨工程大学学报.2012,33(1):30-36P
    [109]付彦.基于小尺度矢量阵的多目标分辨研究.哈尔滨工程大学博士学位论文,2007.
    [110]惠俊英.二元阵被动时间反转镜定位技术研究.哈尔滨工程大学学报,2007,28(11):1245-1251P
    [111] Shan T, Wax M and Kailath T. On spatial smoothing for direct of arrival estimation ofcoherent signal, IEEE Trans. on ASSP,1985,28(6):806-811P
    [112] Pillai S U, Kwon B H. Forwad/backwad spatial smoothing techniques for coherentsignal indentification. IEEE Trans.on ASSP,1989,31(7):8-15P
    [113] Williams R T, Prasad S. A. An improved spatial smoothing techniques for bearingeatimation in a multipath environment. IEEE Trans.on ASSP,1988,36(4):425-432P
    [114]叶中付.空间平滑差分法.通信学报,1997,18(9):1-7P
    [115] Ma C W, Teng C C. Ditection of coherent signals using weighted subspace smoothing.IEEE Trans.on AP,1996,44(2):179-187P
    [116] Di A. Matrix decomposition and multiple sources location. C W, Teng C C. Ditection ofcoherent signals using weighted subspace smoothing. IEEE Trans.on ICASSP,1985,33(4):1-4P
    [117]高世伟,保铮.利用数据矩阵分解实现对空间相干源的超分辨处理.通信学报,1998,9(1):4-13P
    [118] Wang H, Kaveh M. On the performace of signal-subspace processing using a lineararray. Proc. IEEE Trans.on ICASSP,1987,1595-1600P
    [119] Linbarger D A. Redundancy averaging with large arrays. IEEE Trans.on SP,1993,41(4):1705-1710P
    [120] Park H R, Kim Y S. A solution to the narrow-band coherency problem in multiplesources location.IEEE Trans.on SP,1993,41(1):473-476P
    [121] Akaike H. A new look at the statistical model identification. IEEE Trans.on AC,1974,19(6):716-723P
    [122] Schwartz G. Estimation on the dimension of a model.Anal.Stat,1978,14:465-471
    [123] Wu H T, Yang J, Chen F K. Source number estimation using transformed gerschorinradii. IEEE Trans. on SP,1995,43(6):1325-1333P
    [124] Chen W, Reilly J P. Detection of the number of signals in noise with banded covariancematrices. IEEE Trans. on SP,1992,42(5):377-380P
    [125]白兴宇,姜煜,赵春晖.基于声压振速联合处理的声矢量阵信源数目检测和方位估计算法.声学学报,2008,33(1):56-61P
    [126] Jiang Lei, Cai Ping, Yang Juan. The source number estimation based on the beameigenvalue method. Second IEEE Conference on Industial Electronics and Application.2007:2727-2731P
    [127]江磊,蔡平,杨娟,王逸林.一种新的小尺度阵的空间信号源数估计算法.哈尔滨工程大学学报,2008,29(5):479-483P
    [128]孙国仓,惠俊英.基于解析振速的ESPRIT算法.系统仿真学报,2008,20(13):406-1410P
    [129]邹安静,张扬,熊建,黄禾.一种矢量传感器阵列误差的自校正算法及DOA估计.通信技术,2010,43(4):161-613P
    [130]吕钱浩.矢量传感器阵列技术研究.哈尔滨工程大学博士学位论文,2004
    [131]张揽月,杨德森.矢量阵的非空间ESPRIT算法.哈尔滨工程大学学报,2009,30(4):406-1410P
    [132] Valaee S, Kabal P. Wideband array processing using a two-side correlationtransformation. IEEE Trans. on SP,1995,43(1):160-172P
    [133] Doron M A, Weiss A J. On focusing matrices for wide-band array processing. IEEETrans.on SP,1992,40(6):1295-1302P
    [134] Hung H, Kaveh M. Focusing matrices for coherent signal-subspace processing. IEEETrans.on ASSP,1988,36(8):1272-1281P
    [135] Valaee S, Champagne B. Localization of wideband signals using Least-Square and TotalLeast-Square approaches. IEEE Trans.on SP,1999,47(5):1213-1222P
    [136] Weiss A J, Friendlander B. Effects of modeling errorson the resolution threshold of theMUSIC algorithm.IEEE Trans.on SP,1994,42(6):1519-1526P
    [137] Hamza R, Buckley K. An analysis of weigthed eigenspace methods in the presence ofsensor errors. IEEE Trans.on SP,1995,43(5):1140-1150P
    [138]苏卫民,顾红,倪晋林,刘国岁,张光义.通道幅相误差条件下MUSIC空间谱的统计性能.电子学报,2001,28(5):105-107P
    [139] Zhang M, Zhu Z D. DOA estimation with sensor gain, phase and positionperturbations.Proceedings of the IEEE national Aeorospace and Electronics Conference,NACEO1993,67-69P
    [140] Zhang M, Zhu Z D. Array shape calibration using sources in unkowon locations.Proceedings of the IEEE national Aeorospace and Electronics Conference, NACEO1993,70-73P
    [141] Hung E. Matrix-construction calibration method for antenna arrays. IEEE Trans. OnAeorospace and Electronics Systems,2000,36(3):819-828P
    [142]王鼎,林四川,李长胜.一种新的阵元位置误差有源校正算法.雷达与科学技术,2008,6(3):226-230P
    [143] Weiss A J, Friendlander B. Eigenstructure methods for direction finding with sensorgain and phase uncertainties.Circuits. Syst. Signal Processing,1990,9(3):271-300P
    [144] Friendlander B, Weiss A J. Perfoamace of direction finding system with sensor gain andphase uncertainties.Circuits. Syst. Signal Processing,1993,12(1):3-33P
    [145] Weiss A J, Friendlander B. Array shape calibration using in unkwin locations-Amaximum likelihood approach.IEEE Trans.on ASSP,1989,37(12):1958-1966
    [146] Hung E. Critical study of a self-calibrition direction-finding method for arrays. IEEETrans.on SP,1994,42(2):471-474P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700