时间反转镜被动定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以目标被动定位为背景,研究了基于时间反转镜的目标被动定位技术。其目的在于:研究基于时间反转镜技术的目标被动定位算法。
     论文的主要研究工作集中在以下几个方面:
     第一,基于射线传播模型,根据声场的互易性原理,讨论了时间反转镜定位的基本原理,推导了时间反转镜定位的基本公式,建立了单元、二元、多元声压传感器和矢量传感器时间反转镜被动定位模型。研究表明,实现时间反转镜被动定位的关键是信道建模与实际海洋传播信道的匹配程度,也就是主动时间反转聚焦过程在信号处理中实现的程度。
     第二,用仿真数据验证了算法和程序的正确性,评估了时间反转镜被动定位算法的性能。利用射线传播模型计算了信道的传递函数;根据各被动定位公式,进行了目标二维(距传感器水平距离和水下深度)被动定位处理。仿真数据处理结果表明:时间反转镜被动定位算法能实现被动定位,且定位的精度达到了搜索步长(论文处理的最小步长是水平5米,深度2米);单水听器时间反转镜被动定位技术检测能力达-8dB,且随着阵元数增加,检测能力也随之提高。仿真结果还表明:时间反转镜处理增益不小于平面波假设下的处理增益。
     第三,处理了垂直阵海上试验数据,揭示了时间反转镜潜在的应用价值。海试数据处理表明:单元声压、矢量传感器时间反转镜处理即可实现被动定位;多元声压传感器阵时间反转镜的检测能力明显提高。但海试数据时间反转镜处理的定位精度远不如仿真数据处理结果,这就提出了时间反转镜被动定位新的研究内容,即信道建模的正确性和算法的宽容性研究。
     第四,进行了时间反转镜技术初步应用研究。物理时间反转镜可实现自动聚焦,自适应地克服多途效应对声纳性能的不利影响。湖试表明,采用物理时间反转镜和被动时间反转镜方法,均可提高在混响限制条件下的检测能力,提高目标信混比。改善信道多途效应对传统被动测距性能影响,同样也有时间反转镜被动定位技术的用武之地,文中进行了理论分析及仿真研究。
     第五,矢量水听器时间反转镜被动定位技术研究。海洋传播的声信息既有标量信号,也有矢量信号。声压是标量,振速信号是矢量。单矢量水听器时间反转镜定位处理,可获得二元声压阵时间反转镜定位效果,但其运算量也是单声压水听器的两倍。矢量水听器与时间反转镜联合处理后,单矢量水听器即可实现空间三维定位。二元矢量阵时间反转镜检测能力明显高于单矢量水听器。
     作为一项新兴的被动定位技术,时间反转镜被动定位技术的研究,国内尚处于起步阶段,作者希望本文能够有助于促进此项技术的深入研究,使这一新技术早日应用到声纳装备上。
This paper focuses on the passive localization techniques based on time reversal mirror (TRM), validates the applicability and feasibility of TRM and corresponding algorithms.
     This paper mainly concentrates on the following problems:
     First, basic theory, physical and mathematic models, and corresponding processing methods of passive localization based on TRM are studied according to the reciprocity principle of the sound field and ray theory of sound propagation. The feasibility of TRM technique applying to passive localization is proved in theory. It deduces the formulas of TRM and establishes passive localization models of single sensor, two-sensor-array and multi-sensor-array. The study reveals that the matched degree between simulated and actual sound channel determines the passive localization performances of TRM.
     Second, the paper verifies the correctness of algorithms and codes, and evaluates the performances of TRM passive localization with simulation data processing. The target location is found at the highest power output of TRM by searching over vertical depth and horizontal range. The simulation results indicate that the localization precision reaches the search step of which the minimum is 2 meters in depth and 5 meters in range. The minimum detectable SNR of single sensor may reach to -8dB, and the more sensors are used in TRM processing, the higher the detection performance. The results also conclude that the array gain of TRM is greater than conventional beamforming based on the hypothesis of plane wave.
     Third, sea-test data processing of vertical array indicates the potential useful value of TRM. The single sound pressure sensor and single vector hydrophone can localize target, and multi-sensor array may detect target in lower SNR. But, it shows that the localization precision of sea-test data is much lower than that of simulation data, so that it puts forwards the new TRM algorithm which is more tolerant and more robust.
     Fourth, the time reversal mirror technology can be used in several fields of sonar. TRM may focus energy at target position, which may change the disadvantage of multi-path channel into advantage. The lake test verifies that the active or passive time reversal mirror technology can also be used in active sonar and improves signal to reverberation ratio. It also can be used in improving passive ranging performance under the impact of multi-path transmission, which has been studied in theory and tested using simulated data in this paper.
     Fifth, the paper studies TRM passive localization with vector hydrophone. The oceanic acoustic signal includes sound press signal and vibration signal. The detection performance of single vector hydrophone TRM is as high as that of two sound press sensors, however, its computation is as twice heavy as single sound press sensor. Single vector hydrophone can carry out spatial three-dimension localization.
     As a newly bora technique, domestic researches on the passive localization by TRM are still at their initial stages. The author hopes this paper will be helpful to the promotion of further studies on the correlative techniques and their applications on sonar and generalizations.
引文
[1](美)亚.托尔斯特.水声匹配场处理.水声匹配场处理.翻译组译.第715研究所.1994:1-8页
    [2]M.Heinemann,A.Larraza,K.B.Smith,Experimental studies of applications of time-reversal acoustics to noncoherent underwater communications,J.Acoust.Soc.Am.,June 2003,113(6):3111-3116P
    [3]Kevin B.Smith,Antonio A.M.Abrantes,Andres Larraza,Examination of time-reversal acoustics in shallow water and application to noncoherent underwater communications,J.Acoust.Soc.Am.2003,113(6):3095-3116P
    [4]Abrantes,A.A.M.,Smith,K.B.,Examination of time-reversal acoustics and applications to underwater communications,J.Acoust.Soc.Am.1999,105(2):1364-1366P
    [5]J.F.Lingevitch,H.C.Song,and W.A.Kuperman,"Time reversal reverberation focusing in a waveguide," J.Acoust.Soc.Am.,2002,111(6):2609-2614P
    [6]S.Kim,W.A.Kuperman,W.S.Hodgkiss,H.C.Song,G.Edelmann,and T.Akalb,"Echo-to-reverberation enhancement using a time reversal mirror",J.Acoust.Soc.Am.,April 2004,115(4):1525-1531P
    [7]H.C.Song,S.Kim,W.S.Hodgkiss,and W.A.Kuperman,"Environmentally adaptive reverberation nulling using a time reversal mirror",J.Acoust.Soc.Am.,August 2004,116(2):762-768P
    [8]H.C.Song,W.S.Hodgkiss,W.A.Kuperman,Rroux,and T.Akal "Experimental demonstration of adaptive reverberation nulling using time reversal",J.Acoust.Soc.Am.,September 2005,118(3):1381-1387P
    [9]J.S.Kim,a) W.S.Hodgkiss,W.A.Kuperman,H.C.Song,"Null-broadening in a waveguide",J.Acoust.Soc.Am.,July 2002,112(1):182-197P
    [10]J.P.Hermand and W.I.Roderick,"Acoustic model-based matched filter processing for fading time-dispersive ocean channels:theory and experiment",IEEE Journal of oceanic engineering,Oct.1993,18(4):447-465P
    [11]S.M.Jesus "Normal mode matching localization in shallow water:Environmental and system effects",J.Acoust.Soc.Am.,1990,90(4):2034-2041P
    [12]S.M.J.Jesus,"Broadband matched-field processing of transient signals in shallow water",J.Acoust.Soc.Am.,1993,93(4):1841-1850P
    [13]C.A.Zala and J.M.Ozard,"Matched-field processing in a range-dependent environment",J.Acoust.Soc.Am.,1979,88(2):1011-1019P
    [14]王静,黄建国,管静.水声信号处理中匹配场技术研究的现状和展望.声学技术.2000,1(1):34-38页
    [15]A.B.Baggeroer,W.A.Kuperman,P.N.Mikhalevsky,An overview of matched-field methods in ocean acoustic,IEEE J.Ocean.Eng,1993,18(4):401-424P
    [16]毛卫宁.水下被动定位方法回顾与展望.东南大学学报.Nov.2001,Vol.31,No.6
    [17]Fawcett J.A.,Maranda B.H.,A hybrid target motion analysis/matched-field processing localization method,J.Acoust.Soc.Am.1993,94(3):1363-1371P
    [18]R.A.Fisher(Ed),Optical Phase Conjugation,Academic Press,N,Y,1983
    [19]A.P.Brysev et al,Phase Conjugation of Acoustic Beams,Sov.Phy.Acoust,1987,1(32):408-410P
    [20]O.Ikeda,An image reconstruction algorithm using phase conjugation for diffraction-limited imaging in an inhomogeneous medium,J.Acoust.Soc.Am.1989,85(4):1602-1606P
    [21]Nikoonahad,T.L.Pnsateri,Real Time Ultrasonic Phase Conjugation,IEEE,1989 Ultrasonic Symp.Proc,1989,vol2:677-679P
    [22]C.Prada,J.- L.Thomas,M.Fink,The iterative time reversal process:Analysis of the convergence,J.Acoust.Soc.Am.1995,97(1):62-71P
    [23]M.Fink,Time reversal of ultrasonic fields.I.Basic Principles,IEEE Trans.Ultrason,Ferroelectr.Freq.Control,1992,39(5):555-566P
    [24]D.Cassereau,M.Fink,Time reversal of ultrasonic fields,Ⅲ Theory of the closed time reversal cavity,IEEE Trans.Ultrason.Ferroelectr.Freq.Control,1992,39(5):579-592P
    [25]Didier Cassereau,Mathias Fink,Focusing with plane time-reversal mirrors:An efficient alternative to closed cavities,J.Acoust.Soc.Am.1993,94(4):2373-2386P
    [26]Mathias Fink,Time-reversal mirrors,J.Phys.D:Appl.Phys,1993(26):1333-1350P
    [27]M.Fink,Time reversal Acoustics,Physics Today,March 1997:34-39P
    [28]M.Fink,Time Reversal Mirrors,Acoustical Imaging edited by J.R Jones (Plenum,New York,1995,1(21):1-15P
    [29]魏炜,汪承灏.有平界面存在时时间反转法的自聚焦性能.应用声学.1999,018(003):1-5页
    [30]魏炜,刘晨.固体中时间反转法的声束自聚焦.声学学报.2000,025(004):340-344页
    [31]汪承灏,魏炜.改进的时间反转法用于有界时超声目标探测的鉴别.声学学报.2002,027(003):193-197页
    [32]张碧星,陆铭慧.用时间反转法在水下波导介质中实现自适应聚焦的研究.声学学报.2002,27(006):541-548页
    [33]M.Fink,C.Prada,F.Wu,D.Cassereau,Self focusing in inhomogeneous media with "time reversal" acoustic mirrors,Proc.IEEE Ultrason,Symp,1989,Vol2:681-686P
    [34]D.R.Jackson,D.R.Dowling,Time reversal of ultrasonic fields.Ⅱ.Experimental Results,IEEE Trans.Ultrason.Ferroelectr.Freq.Control, 1992,39(5):567-578P
    [35]魏炜.超声时间反转法自适应聚焦性能研究.博士论文
    [36]D.Cassereau,M.Fink,Time-Reversal focusing through a plan interface separating two fluids,J.Acoust.Soc.Am.1994,196(Partl,No.5):3145-3154P
    [37]Carsten Draeger,Didier Cassereau,M.Fink,Theory of the time reversal process in solids,J.Acoust.Soc.Am.Sep.1997,102(3):1289-1295P
    [38]R.K Ing,M.Fink,Time reversal lamb wave,IEEE UFFC,1998,45(4):1032-1043P
    [39]Najet Charkroun,Mathias Fink,Francois Wu,Ultrasonic non-destructive testing with Time Reversal Mirrors,IEEE 1992 Ultrasonic Symp.Proc.1992,vol2:809-814P
    [40]Najet Charkroun,Francois Wu,M.Fink,Improvement of time reversal mirror in detection of small cracks and metallurgical defects in sample with ultrasonic speckles noise level,IEEE 1993 Ultrasonic Symp.Proc.1993,vol2:705-710P
    [41]N.Chakroun,M.Fink,F.Wu,Time reversal processing in nondestructive testing,IEEE Trans.Ultrason.Ferroelectr.Freq.Control 1995,42(6):1087-1098P
    [42]Jeans-Louis Thomas,Philippe Roux,M.Fink,Inverse problem in wave scattering with an acoustic time-reversal mirror,IEEE 1993 Ultrasonic Symp.Proc.1993,vol2:1143-1148P
    [43]Jeans-Louis Thomas,Francios Wu,M.Fink,Self focusing on extend objects with time reversal mirror,applications to lithotripsy,IEEE 1994 Ultrasonic Symp.Proc.1994,vol2:1809-1813P
    [44]Jeans-Louis Thomas,M.Fink,Ultrasonic Beam Focusing Through Tissue Inhomogeneities with a Time Reversal Mirror:Application to Transskull Therapy,IEEE Trans.UFFC,Nov.1996,43(6):1122-1129P
    [45]D.R.Jackson,D.R.Dowling,Phase conjugation in underwater acoustics,J.Acoust.Soc.Am.1991,89(1):171-181P
    [46]W.A.Kuperman,W.S.Hodgkiss,H.C.Song,T.Akal,C.Ferla,D.R.Jackson,Phase conjugation in the ocean:Experimental demonstration of a time reversal mirror,J.Acoust.Soc.Am.1998,103(1):25-40P
    [47]M.Fink,Time reversal mirrors,Acoustic Image,1995,1(21):1-15P
    [48]Hee Chun Song,W.A.Kuperman,W.S.Hodgkiss,A time-reversal mirror with variable range focusing,J.Acoust.Soc.Am.1998,103(6):3234-3240P
    [49]Sunny R.Khosla,David R.Dowling,Time-reversing array retrofocusing in simple dynamic underwater environments,J.Acoust.Soc.Am.1998,104(6):3339-3350P
    [50]Karim G.Sabra,David R.Dowling,Effect of ocean currents on the performance of a time-reversing array in shallow water,J.Acoust.Soc.Am.,Dec.2003,114(6),Pt.1:3125-3135P
    [51]Karim G.Sabra,David R.Dowling,Effect of time-reversing array deformation in an ocean wave guide,J.Acoust.Soc.Am.,June 2004,115(6):2844-2847P
    [52]P.Blomgren,G.Papanicolaou,H.Zhao,Super-resolution in time reversal acoustics,J.Acoust.Soc.Am.2002,111(1):230-248P
    [53]Kim SeongilKuperman W A,Robust time reversal focusing in the ocean,J.Acoust.Soc.Am.,2003,114(1):145-157P
    [54]C.S.Clay,"Use of arrays for acoustic transmission in a noisy ocean",Rev.Geophys,1966,04(4):475-504P
    [55]M.J.Hinich,"Maximum likelihood signal processing for a vertical array",J.Acoust.Soc.Am.,1973,54(2):499-503P
    [56]殷敬伟,惠俊英,惠娟,生雪莉,姚直象.无源时间反转镜在水声通信中的应用.声学学报.2007,32(4):362-368页
    [57]Rouseff D,Jackson D R,Fox W L J,et al.Underwater acoustic communication by passive-phase conjugation: Theory and experimental results. IEEE J. Oceanic Eng., 2001, 26(4): 821-831P
    [58] T C Yang. Temporal resolutions of time-reversal and passive-phase conjugation for underwater acoustic communications. IEEE J. Oceanic Eng.,2003, 28(2): 229-245P
    [59] Paul Hursky, Michael B Porter, Martin Siderius. Point-to-point underwater acoustic communications using spread-spectrum passive phase conjugation.J. Acoust. Soc. Am., 2006, 120(1): 247-257P
    [60] G F Edelmann, T Akal, W S Hodgkiss, et al. An initial demonstration of underwater acoustic communication using time reversal. IEEE. J. Oceanic Eng., 2002, 27(3): 602-609P
    [61] Heinemann M, Larraza A, Smith K B. Experimental studies of applications of time-reversal acoustics to noncoherent underwater communications. J.Acoust. Soc.Am., 2003, 113(6): 3111-3116P
    [62] Joao Gomes, Victor Barroso. Time-Reversed OFDM communication in underwater channels. IEEE 5th Workshop on Signal Processing Advances in Wireless Communications, 2004: 626-630P
    [63] G F Edelmann, H C Song, S Kim, W S Hodgkiss, et al. Underwater acoustic communications using time reversal. IEEE J. Oceanic Eng., 2005, 30(4):852-864P
    [64] James V Candy, Alan W Meyer, Andrew J Poggio, Brian L Guidry.Time-reversal processing for an acoustic communications experiment in a highly reverberant environment. J. Acoust. Soc. Am., 2004,115(4): 1621-1631P
    [65] Arnaud Derode, Arnaud Tourin, Julien de Rosny, et al. Taking advantage of multiple scattering to communicate with time-reversal antennas. Physical Review Letters, 2003, 90(1):014301-1-4P
    [66] H T Nguyen, J B Andersen, G F Pedersen. The potential use of time reversal techniques in multiple element antenna systems.IEEE Communications Letters,2005,9(1):40-42P
    [67]H C Song,P Roux,W S Hodgkiss,et al.Multiple-input/multiple-output coherent time reversal communications in a shallow water acoustic channel.IEEE J.Ocean.Eng.,2006,31(1):170-178P
    [68]H.C.Song,W.A.Kuperman,W.S.Hodgkiss,T.Akal,C.Ferla,D.R.Jackson,Iterative time reversal in the ocean,J.Acoust.Soc.Am.1999,105(6):3176-3184P
    [69]J.S.Kim,H.C.Song,W.A.Kuperman,Adaptive time reversal mirror,J.Acoust.Soc.Am.2001,109(5):1817-1825P
    [70]Mathias Fink,Christian Dorme,Phase Aberation correction with ultrasonic time reversal mirrors,IEEE 1994 Ultrasonic Symp.Proc.1994,vol2:1629-1638P
    [71]张碧星,吴吴,汪承灏.Time Reversal Self-Focusing in a Solid-Plate Waveguide,Chinese Physics Letters(中国物理快报:英文版).2004.021(002):337-340P
    [72]Kim J S,Multiple focusing with adaptive time-reversal mirror,J.Acoust.Soc.Am.,2004,115(2):600-606P
    [73]Karim G.Sabra,David R.Dowling,Broadband performance of a time reversing array with a moving source,J.Acoust.Soc.Am.,June 2004,115(6):2807-2817P
    [74]生雪莉,惠俊英,梁国龙.时间反转镜用于被动检测技术的研究.应用声学.2005,24(6):351-358页
    [75]生雪莉,惠俊英,梁国龙.矢量反转镜时空滤波技术研究.声学学报.2005,030(003):271-278页
    [76]G.Montaldo,M.Fink,R Roux,A.Derode,Generation of very high pressure pulses with 1-bit time reversal in a solid waveguide,J.Acoust.Soc.Am.2001,110(6):2849-2857P
    [77]D.H.Chambers,A.K.Gautesen,Time reversal for a single spherical scatter,J.Acoust.Soc.Am.2001,109(6):2616-2624P
    [78]M.Tanter,J.- L.Thomas,M.Fink,Time reversal and the inverse filter,J.Acoust.Soc.Am.2000,108(1):223-234P
    [79]C.Prada,S.Manneville,D.Spoliansky,M.Fink,Decomposition of the time reversal operator:Detection and selective focusing on two scatters,J.Acoust.Soc.Am.1996,99(4):2067-2076P
    [80]M.Fink,D.Cassereau,A.DerodeC.Prada,Time-reversed acoustics,Rep.Prog,Phys,2000(63):1993-1995P
    [81]M.Fink,C.Prada,Acoustic time-reversal mirrors,Inverse Probl,2001(17):1-38P
    [82]David R.Dowling,Darrell R.Jackson,Narrow-band performance of phase-conjugate arrays in dynamic random media,J.Acoust.Soc.Am.June 1992,91(6):3257-3277P
    [83]David R.Dowling,Acoustic pulse compression using passive phase-conjugate processing,J.Acoust.Soc.Am.,March 1994,95(3):1450-1458P
    [84]Gaumond C F,Application of DORT to active sonar,Ocean'04,2230-2235P
    [85]Stevenson M,Roux P,A nonreciprocal implementation of time reversal in the ocean,J.Acoust.Soc.Am.,2004,116(2):1009-1015P
    [86]Carin L,Wideband time-reversal imaging of an elastic target in an acoustic waveguide,J.Acoust.Soc.Am.,2004,115(1):259-268P
    [87]Akal T,Potential applications of ocean acoustic time-reversal mirrors,Sea technology,2003,44(11):25-29P
    [88]Fox W L J,Experimental results of passive phase conjugation applied to underwater acoustic communication,17th International Congress on Acoustics
    [89]陆铭慧,张碧星,汪承灏.时间反转法在水下通信中的应用.声学学报.2005,30(4):349-354页
    [90]Gabriel Montaldo,Mickael Tanter,Mathias Fink,Revisiting iterative time reversal processing:Application to detection of multiple targets,J.Acoust.Soc.Am.2004,115(2):776-784P
    [91]Gabriel Montaldo,Mickael Tanter,Mathias Fink,Real time inverse filter focusing through iterative time reversal,J.Acoust.Soc.Am.2004,115(2):768-775P
    [92]Etter,R C.,Underwater Acoustic Modeling:Principles,Techniques and Applications,Elsevier,London,1991:83-118P
    [93](美)保罗 C.艾特.水声模拟--原理、技术和应用.水声模拟.翻译组译.第715研究所.1994:52-74页
    [94]Claire Prada,Mathias Fink,Separation of interfering acoustic scattered signals using the invariants of the time-reversal operator,Application to Lamb waves characterization,J.Acoust.Soc.Am.1998,104(2),P1.1:801-807P
    [95]马大猷.现代声学理论基础.科学出版社,2004:11-17页,90-91页
    [96]惠俊英.水下声信道.国防工业出版社,1992:30-35页
    [97]惠俊英等.声压振速联合信息处理及其物理基础初探.声学学报.2000,25(4):303-307页
    [98]冯海泓等.目标方位的声压、振速联合估计.声学学报.2002,25(6):516-520页
    [99]P.Stoica and A.Nehorai,"Music,maximum likelihood and cramer-Rao boun",IEEE Trans.Acoust.,Speech,Signal Processing,May 1998,(37):720-741P
    [100]陈新华,蔡平,惠俊英,梁国龙.矢量阵指向性.声学学报.2003,28(2):141-144页
    [101]余华兵等.小尺度声传感器的指向性锐化技术研究.声学学报.2000,25(4):319-322页
    [102]李春旭.声压、振速联合信息处理.哈尔滨工程大学博士论文.2000
    [103]生雪莉.矢量反转镜时空滤波技术及其在水声中的应用.哈尔滨工程大学 博士论文.2005:35-37页
    [104]范敏毅.水下声信道的仿真与应用研究.哈尔滨工程大学博士论文.2000
    [105][苏]JI.M,布列霍夫斯基.海洋声学.北京.科学出版社,1983
    [106]Negreira C,Efficiency parameters in time reversal acoustics:applications to dispersive media and multimode wave propagation,J.Acoust.Soc.Am.,2005,117(3):1202-1209P
    [107]Roux P,Kuperman W,Time reversal of ocean noise,J.Acoust.Soc.Am.,2005,117(1):131-136P
    [108]Lepage K D,Acoustic time series variability and time reversal mirror defocusing due to cumulative effects of water column variability,Journal of Computational Acoustics,2001,9(4):1455-1474P
    [109]Richard O.Nielson,Sonar Signal Processing,Artech House,Boston.London,1991:59-65P
    [110]姚直象.单矢量传感器及矢量阵信号处理研究.哈尔滨工程大学博士论文.2006
    [111]孙贵青,杨德森等.基于矢量水听器的最大似然比检测和最大似然方位估计.声学学报.2003,28(1):66-72页
    [112]朱野.主动声呐检测信息原理.海洋出版社,1990:324-326页
    [113]宋新见,惠俊英,殷冬梅等.水下噪声目标被动测距技术研究[J].应用声学.2005,24(3):133-139页
    [114]R.J.尤立克.水声原理.哈尔滨船舶工程学院出版社,1990:190-225页,102-106页
    [105]M.J.Hinich,"Maximum likelihood estimation of the position of a radiating source in a waveguide",J.Acoust.Soc.Am.,1979,66(2)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700