水下动目标被动跟踪关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下被动定位技术一直以来是人们关注的焦点。随着对水下声场研究的进一步深入,出现了以声场分析为基础的匹配场被动定位技术。TMA技术则通过对一段时间内数据的综合利用,来对目标运动状态进行分析。它们是被动定位技术中新发展起来的两个热点。本文以这两种方法为出发点,通过分析低频矢量声场,探索适用于单水听器(矢量水听器)的被动定位新方法。
     文中首先根据射线理论建立了低频矢量声场的模型,给出了传播损失曲线,并与波动理论结果进行了比较,说明射线理论在近距离是波动理论的良好近似。通过对声压、振速的干涉现象进行分析,说明了声压和水平振速符合一致的传播规律。之后,以干涉声场分析为基础,分析了水面舰船干涉条纹的双曲线簇分布规律,目标运动的状态(包括速度、深度和水平距离)将决定双曲线簇的形状。分别讨论了目标运动在深海和浅海状态下,干涉条纹的不同特点。Hough变换是一种用于边缘检测的图像处理手段,在水声信号处理中已被用来与时频分析手段联合起来对信号进行估计,例如Wigner-Hough变换利用对直线的Hough变换来估计线性调频信号斜率等。针对干涉谱双曲线型条纹,本文利用Hough变换提取双曲线参数,可以分析目标的航速、航深和最近通过距离。然后,文章从理论上分析了干涉谱中频率周期的物理意义,给出了测量干涉频率周期对目标定位的方法。讨论了干涉谱分析在水声信号处理中应用的优缺点,利用干涉谱来分析目标尾流干扰的频段,消除强线谱引起的窄带干扰等,对水下靶场等近距离目标被动探测有一定的应用价值。
     水下高速运动目标的被动跟踪系统,目前己步入实际系统的研制阶段。被动跟踪方式的靶场测控技术,无需在目标上加装合作信标,因而能够大大提高试验效率。水下高速运动目标的被动跟踪需要面临的主要挑战是高速运动目标的多普勒效应和水下信道的多途效应。由于目标高速运动,产生的多普勒效应,使得多普勒补偿成为必需,然而由于水下高速运动目标的多普勒系数很大,分析多普勒变化率成为关键。文章首先推导并分析了二阶多普勒系数及其对一阶补偿的影响,又对二阶多普勒系数估计的信噪比条件进行了分析,之后分析了高速目标运动引起各途径声线之间的多普勒系数差。在此基础上克服高速运动目标多普勒效应的影响。针对被动跟踪系统,为了获得高精度解,需要采用长基线定位手段。然而,传统的长基线定位在不知道目标初始位置的情况下,需要通过大量的计算来进行关联,对于高速运动目标,同时还要进行多普勒补偿,这就进一步增加了计算的负担。根据对本跟踪系统的阵形分析,提出了利用长基线和虚元短基线联合进行被动目标跟踪的方案。既有效地减少了计算量,又不需要增加系统设计成本,达到了最优的设计目的。在近程高精度跟踪系统中,多途效应成为影响定位精度的主要因素,根据本系统用于测量近程高速变深运动目标的特点,设计了被动目标跟踪的抗多途专家系统,能够有效减小相关峰的误判概率,从而保证了被动跟踪系统对水下高速运动目标的运动轨迹可以进行有效测量。
Passive detection and location in underwater acoustic has always been the focus of researchers. As the further research on the underwater acoustic field, the matched field passive source location is proposed. While TMA (target motion analysis) make full use of the data during a time period to estimate the state of the moving target. They are the two new hotspots in passive location researching field. According to these two technology, this dissertation explores the new way for passive source location which can be used in single (vector) hydrophone based on the analysis on the underwater acoustic vector field modeling.
     The model of acoustic vector field at low frequency based on the ray theory is established first. Then the transmission loss curves between ray theory and mode theory are compared, which show that the ray model is a good approximation to the mode theory in near distance. And then the interference phenomenon of pressure and velocity is discussed, which shows that the pressure and the horizontal velocity have the same interference pattern. Based on the analysis of the acoustic interference phenomenon, this dessertaion deduced that the interference pattern is hyperbola cluster. The target motion state (speed, depth and the nearest distance) will determine the shape of these hyperbola clusters. The different affect of target traveling in shallow water and deep water to the interference pattern is discussed. Hough transform is a usual method for the image edge detection. It has been used in the underwater acoustic field for estimation combined with time-frequency analysis, exemplified by estimate the frequency slope of the LFM signal with wigner-Hough transform. This dissertation uses the Hough transform to distill the parameter of the hyperbola curve to estimate the target state (speed, depth and the nearest distance) .Then, this dissertation analyzes physical meaning of the interference period theoretically and discusses the location methods. The application of the interference spectrum in underwater acoustic is also discussed. It can be used to eliminate the wake effect of the moving target and the strong instantaneous narrowband disturb which could have some practical value in the short distance detection.
     The passive tracking system for underwater high speed target has already stepped into the realizing stage. Passive ranging technology needs no informations of the target signal form, which would improve naval shooting trial efficiency greatly.The main obstacles for the passive tracking system are the Doppler effect and multipath effect.The Doppler compensation is necessary for the high speed target tracking because of the high Doppler coefficient in underwater acoustic environment.The second order Doppler coefficient is deduced and the affect to the first order Doppler compensation is discussed.And then this dissertation analyzes the Doppler coefficient difference between the different acoustic ray caused by the high speed moving target.The purpose of all these analysis is to overcome the Doppler effect.To obtain high estimation precision, the long baseline system is needed. However, the traditional long baseline positioning cost expensive computation in absence of target initial position,which will be even worse for the high speed target because of Doppler compensation.According to the passive tracking system composing model , a noval method is presented that the long baseline associated with virtual short baseline.Using this method, the computation burden is lightened with no increasing of system facility.To overcome the multipath effect, an expert system for the short range tracing target is designed,which can reduce the time delay estimation error in multi- correlation peaks.This expert system guarantees the effectiveness of the passive tracing measurements for the high speed target.
引文
[1](美)弗里德曼,诺曼著.丁振林等编译,1945年以来的美国潜艇:配图解说潜艇设计史,北京:中国船舶信息中心,2000,08
    [2]第701研究所五室编辑,安静型潜艇声学设计文集,北京:第701研究所五室出版,2000,10
    [3]毛卫宁.水下被动定位方法回顾与展望.东南大学学报(自然科学版).2001,11
    [4]S D.Chuprov.Interference structure of a Sound Field in a Layered Ocean.in Ocean Acoustics,Current State,Edited by L.M.Brekhovskih and I.B.Andreevoi,Moscow,1987:71-91P
    [5]Kuperman W A,G.L.D'Spain,(Eds).Ocean Acoustic Interference Phenomena and Signal Processing,AIP,2002
    [6]Fawcett J A.Maranda B H.A hybrid target motion analysis/matched—field processing localization method.JASA,1993,94(3):1363-1371P
    [7]陈雄洲,刘艳萍.国外主动攻击型水雷发展趋势分析.水雷战与舰船防护.2001(2):1-3页
    [8]傅金祝.水雷的发展现状与趋势.水雷战与舰船防护.2004(3):47-51页
    [9]Bernard Xerri,Jean-Francois Cavassilas,Bruno Borloz.Passive tracking in underwater acoustic.Signal Processing,2002,vol 82,1067-1085P
    [10]Prosperi,Serge.New passive tracking algorithms using power infor -mation with application to passive sonar.IEEE International Confere nce on Acoustics,Speech and Signal Processing.1991,2:1437-1440P
    [11]Chan,Y.T.,Niezgoda,G.H.Passive sonar detection and localization by matched velocity filtering.IEEE J.Ocean.Eng.1995,20(3):179-189P
    [12]Berry,Jesse F.Introduction to sonar systems.Vitro Technical Journal.1991,9(1):1-11P
    [13]李启虎.水声信号处理领域若干专题研究进展.应用声学.2001,Vol.20(1):1-5页
    [14]李启虎,声纳信号处理引论.北京:海洋出版社,1985:371-377页
    [15]Smith J O,Abel J S.Closed—form least—square source location estimation from range—difference measurements.IEEE trans ASSP,1981:35P
    [16]阎福旺等.现代声纳技术.北京:海洋出版社,1998
    [17]孙仲康,周一宇,何黎星.单多基地有源无源定位技术.北京:国防工业出版社,1996:196-225页
    [18]Jauffret C,Pillon D.Observalility in passive target motion analysis.IEEE Transaction on Aerospace and Electronic Systems.1996,32(4):1290-1300P
    [19]Lindgren A G,Gong K F.Position and velocity estimateion via bearing observation.IEEE Transactions on Aerospace and Electronic Systems,1978,14(4):564-577P
    [20]杜选民,姚蓝.多基阵联合的无源纯方位目标运动分析研究.声学学报.1999,24(6):604-610页
    [21]Chan Y T,Rudnicki S W.Bearing—only and Doppler—bearing tracking using instrumental variables.IEEE Transactions on Acoustics,Speech and Signal Processing,1992,28(4):1076-1082P
    [22]Becker K.A general approach to TMA observability from angle and frequentcy measurements.IEEE Transactions on Acoustics,Speech and Signal Processing,1996,32(1):487-496P
    [23]Johnson G W,Gohen A O.et al.Modified polar coordinates for ranging from Doppler and bearing measurements.Proceedings of ICASSP 83:907-910P
    [24]Passerienux J M,Pillon D.et al.Target rn tion analysis with bearings and frequentcies measurements.Proceedings of the 22nd Asilomar Conference,1988:458-462P
    [25]Marandda B H,Fawcett J A.Detection and localization of weak targets by space—time integration.IEEE Journal of Oceanic Engineering,1991,16(2):189-194P
    [26]胡友峰,孙进才.多平台基于方位时延差的目标运动分析.系统工程与电子技术.2002,24(11):28-30页
    [27]王燕,梁国龙.基于目标方位及时延差的双基阵目标运动分析.声学技术.2001,20(5):60-62页
    [28]王静等.水声信号处理中匹配场处理技术研究的现状和展望[J].声学技术.2000,19(1)
    [29]A.B.Baggeroer,W.A.Kuperma,at al.IEEE Journal of Oceanic Engineering.1993,18:425-427P
    [30]马远良.匹配场处理——水声物理学与信号处理的结合.电子科技导报.1996(4)
    [31]生雪莉.矢量反转镜时空滤波技术及其在水声中的应用.哈尔滨工程大学博士论文.2005
    [32]黄益旺.基于射线理论的匹配场声源定位研究.哈尔滨工程大学工学硕士论文.2002,1
    [33]王德俊.矢量声场与矢量信号处理理论研究.哈尔滨工程大学博士学位论文.2004,11
    [34]布列霍夫斯基赫,雷桑诺夫.海洋声学基础.北京:海洋出版社,1985:82页
    [35]L.M.布列霍夫斯基赫.分层介质中的波第二版.北京:科学出版社,1985:4-7页
    [36]郭玉红.被动声纳仿真技术研究.哈尔滨工程大学工学博士学位论文.2000:87-88页
    [37]何作镛,赵玉芳.声学理论基础.北京:国防工业出版社,1981:58页[
    38]关治,陈景良.数值计算方法.北京:清华大学出版社,1990:173页
    [39]朱代柱,惠俊英,蔡平.近程目标距离的实时估计研究.应用声学.1999(4):33-35页
    [40]刘伯胜,雷家煜.水声学原理.哈尔滨:哈尔滨工程大学出版社,1997,3:120-121页
    [41]L.科恩.时频分析理论与应用.西安:西安交通大学出版社,2000,10:78页
    [42]Rafael C.Gonzalez、Richard E.Woods著,阮秋琦、阮宇智等译.数字图像处理.北京:电子工业出版社,2003,3(1):475-479页
    [43]葛凤翔,智能诱饵中“变收边发”技术研究.哈尔滨工程大学硕士学位论文.1999
    [44]陶然,齐林,王越等.分数阶Fourier变换的原理与应用.北京:清华大学出版社,2004,08
    [45]Santhanam B and McClellan J H.The discrete rotational Fourier tra -nsform,IEEE Transactions on Signal Processing.Vol 42.No 4,1996:994-998P
    [46]Dickinson B W,Steiglitz K.Eigenvectors and functions of the discrete Fourier transform.IEEE Trans.Acoust.Speech.Signal Processing,vol.ASSP-30,no.1,Feb.1982:25-31P
    [47]McClellan J H,Parks T W.Eigenvalue and Eigenvector decomposi-tion of the discrete Fourier transform,IEEE Trans.Audio Electroacoust,vol.AU—20,Mar.1972:66-74P
    [48]Haldum M.Ozaktas,Orhan Arikan,Alper Kutay M.and Gozde Bozdagi.Digital Computation of the Fractional Fourier Transform.IEEE Transactions on Signal Processing,Vol44.No.9,1996:2141-2150P
    [49]吴国清.线谱非平稳性分析和利用干涉谱测距.声学学报.2004,7
    [50]梁国龙,生雪莉.基于WVD—HT的宽带调频信号检测技术研究.电子学报.2004,32(12)
    [51]陈励军.利用多普勒信息的多途被动定位方法.声学技术.1998(4)
    [52]殷冬梅,蔡平,惠俊英.非同步的多普勒水声跟踪定位原理.应用声学.2001(4)
    [53]惠俊英.水下声信道.北京:国防工业出版社,1992
    [54]J.E.Dennis,JR.and Robert B.Schnabel.Numerical methods for unconstrained optimization and nonlinear equations.Prentice—Hall Press,1983:118-236P
    [55]王燕,岳剑平,冯海泓.双基阵纯方位目标运动分析研究.声学学报.2001,26(5):405-409页
    [56]Li X R,Jilkov V P.Survey of maneuvering target tracking.PartⅠ:dynamic models.IEEE Trans.on Aerospace and Electronic Systems,2003,39(4):1333-1364P
    [57]Li X R,Jilkov V P.A survey of maneuvering target tracking.Part Ⅴ:multiple—model methods.IEEE Trans.on Aerospace and Electronic Systems,2005,41(4):1255-1321P
    [58]Julier S J,Ulhmann J K.A consistent,debiased method for converting between polar and Cartesian coordinate systems,the proc.AeroSense:-on Acquisition,Tracking and Pointing Ⅺ,1997,3086:110-121P
    [59]Mazor E,Averbuch A,Bar—shalom Y,etal Interacting multiple model in target traction.,a survey.IEEE Transactions on Aerospace and Electronic Systems,1998,34(1):103-124P
    [60]Daeipour E,Bar shalom Y.IMM tracking of maneuvering targets in the presence of Glint.IEEE Transactions on Aerospace and Electronic Systems,1998,34(3):996-1003P
    [61]Li R X,Bar—shalom Y.Performance prediction of the interacting multiple model algorithm.IEEE Transactions on Aerospace and Eectronics,1993: 755-771P
    [63]陈玲,李少洪.基于无源时差定位系统的机动目标跟踪算法.系统工程与电子技术.2005,01:127-130页
    [64]李伟,黄晓刚.对机动目标的多站无源定位IMM算法.现代雷达.2005.10.20-22
    [65]董志荣.舰艇指控系统的理论基础.北京:国防工业出版社,1995
    [66]Streit,R.L.;Walsh,M.J.A Linear Least Squares Algorithm for Bearings—only Target Motion Analysis.Aerospace Conference,1999.Proceedings.1999.Vol4:443-455P
    [67]De J H,Vlieger,Robert H J.Gmeligh Meyling.Maximum Likelihood Estimation for Long—Range Target Tracking Using Passive Sonar Measurements.IEEE Transactions on Signal Processing,1992,40(5):1216-1225P
    [68]Berman,Z.Areliable maximum likelihood algorithm for bearing—only target motion analysis.Proceedings of the 36th IEEE Workshop on Decision and Control,1997,5:5012-5017P.
    [69]Vincent J.Aidala Kalman Filter Behavior in Bearings—only Tracking Applications.IEEE Transactions on Aerospace and Electronic System,1991,15(1):29-39P
    [70]Blackman S S.Implementation of an Tracking Filter.Signal and Data Processing of small Targets,1991,1481:292-297P
    [71]陈冬等.基于匹配处理的纯方位目标运动分析方法.火力与指挥控制.2004,12
    [72]Yaakov Bar—Shalom,X.Rong Li,Thiagalingam Kirubarajan.Estimation with Applications To Tracking and Navigation.2001.
    [73]Simon J.Julier,Jeffrey K.Uhlmann.A New Extension of the Kalman Filter to Nonlinear Systems.SPIE,vol3068,1997:182-193P
    [74]Simon J.Julier,Jeffrey K.Uhlmann.A New method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators. IEEE Trans. onAC, 45 (3), No. 3, 2000: 477-482P
    [75] Simon J. Julier, Jeffrey K. Uhlmann. Data fusion in nonlinear systems. in Handbook of Multisensor Fusion (D. L. Hall and J. Llinas, eds.) ch. 13,Boca Raton, FL: CRC, 2001
    [76] E. A. Wan and R. van der Merwe. The unscented Kalman filter for nonlinear estimation, in Proc IEEE symp. Adaptive Systems for Signal Proc., Comm. And control (AS —SPCC), (Lake Louise Alberta,Canada), 2000: 153 —158P
    [77] T. S. Schei, A finite—difference method for linearization in nonlinear estimation algorithms. Automatica, vol. 33, Nol1, 1997: 2053-2058P
    [78] M. Norggard, N. K. Poulsen, and O. Ravn, New developments in state estimation of nonlinear systems , Atomatica, vol. 36, 2000: 1627—1638P
    [79] K. Ito and K. Xiong, Gaussian filters for nonlinear filtering problems, IEEE Trans. Automatica Control, vol45. May 2000: 910-927P
    [80] A. Gelb, Applied Optimal Estimation. Cambridge, MA: MIT Press, 1974
    [81] Gordon, N. J., Salmond. Novel approach to Nonlinear/Non—Guassian Bayesian State Estimation . IEEE Proceedings — Radar and Signal Processing, Vol. 140, No. 2, 1993, 140 (2): 107-113P
    [82] Simon J. Julier, The scaled unscented transform, in Proc. American Control Conf., pp. 4555-4559. May 2002
    [83] J. Levine, R. Marino, Constant—Speed Target Tracking Via Bearings-Only Measurements. IEEE Trans. On AES, 1992, 28 (1): 174—181P
    [84] Merwe R., E. A. Wan. Efficient Derivative—Free Kalman Filters for Online Learning, In European Symposium on Artificial Neural Networks,2001: 205-210P
    [85] J.Joesph,Jr. LaViola. A Comparison of Unscented and Extented Kalman Filtering for Estimating Quaternion Motion. In the Proceedings of the 2003 American Control Conference, 2003: 2435-2440P
    [86] M. C. VanDyke, J. L. Schwartz, C.D. Hall. Unscented Kalman Filtering for Spacecraft Attitude State and Parameter Estimation,AAS/AIAA Space Flight Mechanics Conference, 2004
    [87] Duda, R. O., and Hart, P. E. Use of the Hough transformation to detect lines and curves in pictures. 135 Communication of the ACM, 12, 1(Jan. 1972): 11-15P
    [88] Sklansky, J. . On the Hough technique for curve detection. IEEE Trans. Comput. 1995, 27 (10): 923-926P
    [89] Carlson B. D., E. D. Evans, S. L. Wilso. Search Radar Detection and Track with the Hough Transform, Parti: System Concept, IEEE Trans. On Aerospace and Electronic systems, 1995, 30 (1): 102— 108P
    [90] Carlson B. D., E. D. Evans, S. L. Wilso. Search Radar Detection and Track with the Hough Transform, PartII: Detection Statistics, IEEE Trans . On Aerospace and Electronic systems, 1995, 30(1): 109— 115P
    [91] Carlson B. D., E. D. Evans, S. L. Wilso. Search Radar Detection and Track with the Hough Transform, PartIII: Detection Performance with Binary Intefration, IEEE Trans. On Aerospace and Electronic systems,1995, 30 (1): 116-124P
    [92] Casasent, D. P., and Slaski, J. Optical track initiator for multitarget tracking. Applied Optics, 1998 (22): 4546-4553P
    [93] CHEN, J., LEUNG, H., LO, T., etal. A modified probabilistic data association filter in real clutter environment. IEEE Trans. AES, 1996, (32):300-314P
    [94] Leung H, Hu Z, Blanchette M. Evaluation of multiple target track initiation techniques in real radar tracking environment. IEE proc. Rada, Sonar Navig.,1996,143(4):246-254P
    [95]王国宏,苏峰,毛士芝,何友.杂波环境下基于Hough变换和逻辑的快速航迹起始.系统仿真学报.2002
    [96]郑兆宁,向大威.水声信号被动检测与参数估计理论.北京:科学出版社,1983
    [97][苏]希尔曼,B.H.曼诺斯著.雷达信息处理的理论与技术.北京:科学出版社,1987
    [98]李艳梅.声纳脉冲侦察与被动测距研究.哈尔滨工程大学硕士论文.2003
    [99]宋新见.噪声目标被动测距技术研究.哈尔滨工程大学博士论文.2004
    [100]赵羽,梁国龙等.水下目标跟踪系统中的抗多途专家系统.应用声学.2004,23(4):40-42页
    [101]J.Makhoul,Linear prediction:a tutorial review Proc.IEEE,1975,63(4):561-580P.
    [102]B.Porat,Digital Processing of random signals.Prentice Hall Information andSystem Sciences Series,1994,ISBN 0-13-063751-3.
    [103]陆传赉.现代信号处理导论.北京:北京邮电大学出版社.2003,02:77-81页
    [104]沈福民.自适应信号处理.西安:西安电子科技大学出版社.2001:86页
    [105]张贤达.现代信号处理.北京:清华大学出版社.2002:83-100页
    [106]田坦,刘国枝,孙大军.声呐技术.哈尔滨:哈尔滨工程大学出版社.2000:248-252页
    [107]A.V.奥本海姆,R.W.谢弗.离散时间信号处理.北京:科学出版社.1998.
    [108]Alan V.Oppenheim,Ronald W.Schafer.From Frequency to Quenfrequency:A History of the Cepstrum.IEEE Signal Processing Magazine.2004,09:95-99P.
    [109]Urick,洪申译.水声原理.哈尔滨:哈尔滨船舶工程学院出版社.1972:258-259页
    [110]HASSAB,J.C.Underwater signal and data processing.Florida:CRC.Press.1989:117
    [111]Bayan S.Sharif,Jeff Neasham,Oliver R.Hinton,Alan E.Adam -s.A Computationally Efficient Doppler Compensation System for Un derwater Acoustic Communications.IEEE Journal of Oceanic Engineer ing,Vol.25,No.1,2000,01:52-61P
    [112]Bayan S.Sharif,Jeff Neasham,Oliver R.Hinton,Alan E.Adam -s.Adaptive Doppler Compensation for Coherent Acoustic Communica tion.IEEE Proc-Radar,Sonar Navig.Vol.147,No.5,2000,10:239-246P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700