时间反转镜聚焦和成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋是目标信号传至接收点所经的声信道,如何克服传播介质不均匀及信道的多途特性对接收信号的影响,是声呐信号处理的关键之一。时间反转法是从光学中的相位共轭法演化而来的一种自适应聚焦方法,它具有不需要介质不均匀性的先验信息,自适应修正各种多途引起的畸变,实现自适应聚焦的独特优点。本文首先对研究的基本理论作简单的阐述,并且介绍了时间反转镜在医学、水声等领域的实际应用。然后全文就时间反转镜自适应聚焦和成像作如下研究:
     (1)分析了时间反转自适应聚焦原理,在典型的水文条件下进行了时间反转镜自适应聚焦的仿真研究并进行了相应的理论分析。仿真结果表明,在随机媒质中,时间反转镜利用水声信道的相干多途特性获得聚焦增益,聚焦效果明显优于均匀媒质。
     (2)研究了非均匀媒质中时间反转镜的聚焦性能问题。在虚拟水槽内进行了时间反转聚焦的仿真实验研究并进行了相应的理论分析。理论和仿真实验结果表明,在非均匀媒质中,由于利用水声信道的相干多途特性,时间反转镜的有效孔径增大,获得空间处理增益10dB以上;非均匀媒质聚焦效果明显优于均匀媒质。
     (3)提出一种时间反转算子特征值分解算法。对于可分辨的理想散射目标,该算法将时间反转算子特征值分解,每个非零特征值对应的特征向量为换能器阵列提供相应目标的聚焦相位信息,实现选择性检测和聚焦,这为时间反转镜区分多目标和选择聚焦提供了理论依据。
     (4)提出一种基于时间反转镜和Wigner-Hough变换的线性调频信号检测方法。在虚拟水槽内进行时频分析的仿真研究,将时间反转镜被动接收的信号进行时间反转再发射到同一媒质中,在信号源处将接收到的信号进行WHT时频分析,同时比较了WVD分布和WHT变换的LFM信号检测性能。仿真结果表明,对于多分量LFM信号,WVD在每个散射信号的低频和高频段产生交叉干扰项,影响对LFM信号的检测。时间反转镜结合WHT分析能够抑制多途效应,减少交叉项,提高双分量LFM信号的检测性能。
     (5)提出在随机媒质中采用时间反转镜超声成像的DOA-AT新算法。新算法通过对散射中接收信号的到达时间和响应矩阵频域奇异值进行分解,将时域内目标函数DOA估计与到达时间估计结合起来,使成像目标的纵坐标估计得到明显改善,对目标检测能力增强。
Ocean is underwater acoustic channel propagate signal from source to receiver. It is important for signal processor to know how to compensate for aberrations caused by inhomogeneities in the propagation medium. Time reversal is a unique self-adaptive focusing technique developed from phase conjugation using in nonlinear optics and ultrasonic fields. It can avoid imaging aberration of inhomogeneous media in acoustic and realize self-adaptive focusing without the prior knowledge of the media and the transducer. The foundamental theory to study is expained first in this paper and we introduce the application of the time reversal mirror in the domain of the medince and underwater acoustic and so on, then adaptive focusing and imaging on time reversal mirror are studied:
     (1) The self-adaptive focusing effects of time reversal mirror (TRM) are studied based on time-reversal focusing theory. The simulation on self-adaptive focusing for time reversal is carried out in typical underwater experiment and corresponding theoretical analysis is also conducted. The simulation results of TRM show that focusing gain can be obtained using the coherence of multi-path channel. Focusing effect with a TRM through random medium is much better than that obtained in homogeneous medium.
     (2) Focusing performance of TRM in inhomogeneous medium is studied. The experiment research on time reversal focusing is carried out in a virtual water tank and corresponding theoretical analysis is also conducted. Using the coherence of multi-path, the effective aperture of TRM is enlarged and spatial processing gain can be obtained more than lOdB. Focusing effect with a TRM through inhomogeneous medium is much better than that obtained in homogeneous medium.
     (3) An eigenvalue decomposition algorithm of time reversal operator is proposed. The time reversal operator can be decomposed for ideally resolved scattered target. Each of its eigenvectors of non-zero eigenvalue provides the focusing phase law of the corresponding target for transducer arrays. The algorithm realizes selective detection and focusing and provides theoretical foundation for distinguishing multiple targets and selective focusing.
     (4) A detection method for LFM signals based on TRM and Wigner-Hough Transform is proposed. The simulation on time frequency analysis is carried out in a virtual water tank. A signal is received passively by a TRM, time-reversed and then re-transmitted into the same medium. The re-transmitted signal is received near the source and WHT time frequency analysis is performed. Then comparison of detection performance of WVD and WHT on LFM signal is made. The simulation results show that WVD of multiple component LFM signal causes cross-term interference signals at the low frequency and corresponding high frequency segments of every scattering point. This new method can suppress multi-scattering, reduce cross-term and enhance the detection performance of double component LFM signal.
     (5) A new imaging algorithm is proposed which is motivated by TRM in random medium. DOA-AT imaging algorithm performs as the following steps: arrival time analysis of the echo received from the scatters; singular value decomposition of the array response matrix in frequency domain; combination of DOA estimation of target function in the domain and arrival time estimation that results in DOA-AT estimation algorithm.The range estimation of the imaging target is improved.
引文
[1]惠俊英.水下声信道.第一版.北京:国防工业出版社,1992:26-50页
    [2]李启虎.声呐信号处理引论.北京:海洋出版社,1985:26-50页
    [3]Daniel B, Kilfoyle, Arthur B, Baggeroer. The state of the art underwater acoustic telemetry.IEEE J. Oceanic Eng.,2000(1):4-27P
    [4]Jackson D R, Bowling D R. Time reversal of ultrasonic fields. Ⅱ.Expe-rimental Results, IEEE Trans. Ultrason. Ferroelectr. Freq. Control,1992(39): 567-578P
    [5]Fink M.Time reversal of ultrasonic fields-Part I:Basic Principles.IEEE Trans.Ultrason.,Ferroelect,Freq. Contr,1992(5):554-566p
    [6]Jackson D R, Bowling DR. Phase conjugation in underwater acoustics.J.Acou-st. Soc. Am.,1991(89):171-181P
    [7]Fink M. Time reversal mirrors.J.Phys.D,1993(6):1330-1350p
    [8]Song H C, Hodgkiss W S, Skinner J.D. Numerical modeling of a time reversal experiment in shallow Singapore waters. OCEANS 2006-Asia Pacific, 2007(1):1-6P
    [9]Fouque J P, Gamier J S. Time reversal super resolution in randomly layered media Wave Motion,2006(43):646-666P
    [10]Parvulescu A, Clay C S. Reproducibility of signal reansmissions in the ocean. Radio Elec. Eng,1965(29):223-228P
    [11]Nikoonahad, Pnsateri T L. Real Time Ultrasonic Phase Conjugation. IEEE 1989 Ultrasonic Symp. Proc:677-679P
    [12]Fink M, Prada C. Acoustic time-reversal mirrors. Inverse Probl,2001(17):1-38P
    [13]Fink M. Time reversal of ultrasonic fields-Part Ⅰ:Basic Principles. IEEE
    Trans.Ultrason,Ferroelectr. Freq. Control,1992(39):555-566P
    [14]Lerosey G, de Rosny J, Tourin, A, Fink M. Focusing beyond the diffraction limit with far-field time reversal.Science,2007(315):1120-1122P
    [15]Prada C,Thomas J L, Fink M. The iterative time reversal process:Analysis of the convergence. J. Acoust. Soc. Am.,1995(97):62-71P
    [16]Roux P, Fink M.Time reversal in a wave guide:Study of the temporal and spatial focusing.J.Acoust.Soc.Am.,2000,107(5):2418-2429P
    [17]Fink M. Time reversed acoustics.Phys.Today,1997(50):1534-1540P
    [18]Fink M, Cassereau D, Derode A, Prada C, Roux P, Tanter. Time reversed acoustics. J. Phys.D,1995(9):1933-1994P
    [19]Wu F, Thomas J L, Fink M.Time reversal of ultrasonic fields-Part Ⅱ: Experimental results.IEEE Trans. Ultrason., Ferroelec, Freq. Contr,2000(12): 567-578P
    [20]Cassereau D M, Fink M.Time-reversal of ultrasonic fields-Part Ⅲ:Theory of the closed time-reversal cavity.IEEE Trans.Ultrason., Ferroelec., Freq. Contr, 1995(12):579-592P
    [21]Mallart R,Fink M.Sound speed fluctuations in medical ultrasoundimaging. Comparaison between different correction algorithms.In Proc.19th Int. Symp. Acoust. Imaging,1991,(11):198-205P
    [22]Wu F, Prada C,Fink M.Experimental progress of ultrasonic time-reversal mirrors. Acoust.Imaging,1991(2):46-49P
    [23]Ikeda O. An image reconstruction algorithm using phase conjugation for diffraction-limited imaging in an inhomogeneous medium.J. Acoust.Soc.Am., 1989(85):1602-1606P
    [24]Prada C, Manneville S, Spoliansky D, Fink M.Decomposition of the time reversal operator:Detection and selective focusing on two scatters. J. Acoust. Soc. Am.,1996,99(4):2067-2075P
    [25]Burdo O S, Dargeiko M M. Wave-field control in an acoustically inhomoge-neous medium.Cybernet.Compu. Technol,1984(1):171-176P
    [26]Bowling D R, Jackson D R.Narrow-band performance of phase-conjugate arrays in dynamic random media. J. Acoust. Soc. Am.,1992(8):3257-3277P
    [27]Bowling D R. Phase-conjugate array focusing in a moving medium. J. Acoust. Soc. Am.,1993(3):1716-1718P
    [28]Bowling D R. Acoustic pulse compression using passive phase-conjugate processing. J. Acoust. Soc. Am.,1994(3):1450-1458P
    [29]Jackson D R, Bowling D R.Phase conjugation in underwater acoustics. J.Acoust. Soc. Am.,1991(89):171-181P
    [30]Khosla S R, Bowling D R.Time-reversing array retrofocusing in simple dynamic underwater environments.J.Acoust. Soc.Am.,1998(104):3339-3350 P
    [31]Song H C,Kuperman W A,Hodgkiss W S,Akal T,Ferla C, Jackson D R.Itera-tive time reversal in the ocean, J. Acoust. Soc. Am.,1999(105):3176-3184P
    [32]Kuperman W A, Hodgkiss W S, Song H C, Akal T, Ferla C, Jackson D R.Phase conjugation in the ocean:Experimental demonstration of a time reversal mirror, J. Acoust. Soc. Am.,1998(103):25-40P
    [33]Kim S, Edelmann G F,Kuperman W A,Hodgkiss W S,Song H K.Spatial resolution of time-reversal arrays in shallow ater.J. Acoust. Soc. Am.,2001,110 (2):820-829P
    [34]Hodgkiss W S,Song H C,Kupperman W A. A long-range and variable focus phase-conjugation experiment in shallowwater.J.Acoust.Soc.Am.,1999, 105(3):1597-1604P
    [35]Kevin B,Smith, Antonio A, Abrantes M, Larraza A.Examination of time-reversal acoustics in shallow water and applications to noncoherent underwater communications. J.Acoust.Soc.Am.,2003,113(6):3095-3110P
    [36]魏炜,汪承灏.有平界面存在时时间反转法的自聚焦性能.1999,18(3):1-5页
    [37]陆铭慧,张碧星,汪承灏.时间反转法在水下通信中的应用.2005,30(4):349-354页
    [38]张碧星,陆铭慧,汪承灏.用时间反转法在水下波导介质中实现自适应聚焦的研究.声学学报.2002,26(6):541-548页
    [39]魏炜,刘晨.固体中时间反转法的声束自聚焦.声学学报,2000.025(004):340-344页
    [40]汪承灏,魏炜.改进的时间反转法用于有界时超声目标探测的鉴别.声学学报,2002,7(3):193-97页
    [41]惠俊英,刘宏.声压振速联合信息处理及其物理基础初探.声学学报,2000(4):303-307页
    [42]生雪莉.矢量反转镜空间滤波技术及其在水声中应用.哈尔滨工程大学博士论文.2005:15-45页
    [43]生雪莉,惠俊英,梁国龙.矢量反转镜时空滤波技术研究.声学学报,2005(3):271-278P
    [44]Hui J Y, Ma J G, Li F, Yin J W, Sheng X L. Passive localization technology using time reversal with a two-sensor array. Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University,2007(28):1247-1251P
    [45]惠俊英,殷敬伟,杨春,王德俊.目标线谱特征提取方法研究.声学技术,2004(23):74-77页
    [46]Hillion P. Acoustic pulse reflection at a time-reversal mirror. Journal of Sound and Vibration,2006(292):488-503P
    [47]Aubry J F, Tanter M, Gerber J, Thomas J L, Fink M. Optimal focusing by spatio-temporal inverse filter:Part Ⅱ. Experiments. J. Acoust. Soc. Am.,2001 (101):48-58P
    [48]Pincon B, Ramdani, K. Selective focusing on small scatterers in acoustic waveguides using time reversal mirrors.Inverse Problems,2007(23):1-25P
    [49]Calvo H L, Danieli E P, Pastawski H M. Time reversal mirror and perfect inverse filter in a microscopic model for sound propagation. Physics B: Physics of Condensed Matter,2007(398):317-20P
    [50]魏炜.超声时间反转法自适应聚焦和目标探测.中国科学院声学研究所博士学位论文.1999:35-65页
    [51]Qiu Robert, Zhang Caiming. Detection of physics-based ultra-wideband signals using generalized RAKE with multiuser detection (MUD) and time-reversal mirror.IEEE Journal on Selected Areas in Communications, 2006(24):724-730P
    [52]Agarwal G S,Wolf E.Theory of phase conjugation with weak scatterers. J.Acoust.Soc.Am.,1982(72):321-326P
    [53]Bowling DR. Acoustic pulse compression using passive phase-conjugate processing, J. Acoust. Soc.Am.,1994(3):1450-1458P
    [54]汪德昭,尚尔昌.水声学.北京:科学出版社,1981:16-24P
    [55]Keller J B,Papadakis J S. Wave propagation and Underwater Acoustics. Lecture Notes in Physics,1977 (70):42-55P
    [56]Spofford C W.The ball laboratories multiple-profile ray-trackingprogram, Bell Telephone Labs,1973(2):12-15P
    [57]Cassereau D, Fink M. Theoretical modelisation of time-reversal cavities, application to self-focusing in inhomogeneous media. J. Acoust.Imaging, 1991(5):2613-2618P
    [58]Hunt JW, Arditi M, Foster F S.Ultrasound transducers for pulse-echo medical imaging.IEEE Trans. Eiomed. Eng,1983(8):453-480P
    [59]Lind I. Specular reflection cancellation/enhancement in the presence of a phase coniugate mirror. J.Acoust.Soc.Am.,1984(11):118-120P
    [60]Roux P,Fink M.Time reversal in a waveguide:Study of the temporal and spatial fousing.J.Acoust.Soc.Am.,2000(107):2418-2429P
    [61]B'ecache E, Joly P, Tsogka C. An analysis of new mixed finite elements for the approximation of wave propagation problems. SIAM J. Numer. Anal.,2000(37):053-084P
    [62]Dungan M R,Dowling D R.Computed narrow and time-reveraing Array retrofocusing in a dynamic shallow ocean.J. Acoust.Soc.Am.,2000(107):3101-3112P
    [63]Khosla S R,Dowling D R.Time-reveraing array retrofoucng in noisy environments.J.Acoust.Soc.Am.,2001(109):538-546P
    [64]Krim G.Sabra,Sunny R.Khosla,Dowling D R.Broadband time revesing array retrofocusing in noisy environments.J.Acoust.Soc.Am.,2002(2):23-30P
    [65]Blomgren P, Papanicolaou G, Zhao H K. Super-resolution in time-reversal acoustics. J. Acoust. Soc. Am.,2002(111):238-48P
    [66]Chen C F, Lin M H. Study of focusing structure in time-reversal-mirror technique.Oceans 2006-Asia Pacific,2007(9):1-7P
    [67]Gabor D. Theory of Communication. Journal of the IEEE,1946(93):429-497 P
    [68]Wilson R, Calway A D, Pearson E R. A generalized wavelet transform for fourier analysis:the multiresolution fourier transform and its application to image and audio signal analysis. IEEE Trans.Info.Theory,1992(38):674-690P
    [69]Cohen L. Generalized phase-space distribution functions. Jour. Math. Phys., 1966(7):781-786P
    [70]Morlet J,Arens G,Fourgeau E,Giard D.Wave progagation and sampling theory-Part Ⅰ:Complex signal and scattering in multilayered media.Geophysics,1982(47):203-221P
    [71]Morlet J, Arens G, Fourgeau E, Giard D. Wave propagation and sampling theory-Part Ⅱ:sampling theory and complex waves. Geophysics,1982(2): 222-236P
    [72]Satish K, Sinha, Partha S, Routh, Phil D.Anno. Time-frequency attribute of seismic data using continuous wavelet transform. In Proc.73th SEG Annual Meeting, Houston, Texas, USA,2003,(1)1481-1484P
    [73]Moriya H, Niitsuma H. Precise detection of a P-wave in low S/N signal by using time-frequency representations of a triaxial hodogram. Geophysics,1996(5):1453-1466P
    [74]Page C H. Instantaneous power spectra J.Journal of Applied Physics, 1952(1):103-106P
    [75]Braham B. Instantaneous frequency estimation of nonlinear frequency modu-lated signals in the presence of multiplicative additive noise. IEEE Trans on Signal Processing.2001(10):2214-2222P
    [76]张子瑜,吴镇杨.基于Hough变换的任意时频分布线条特征提取.电子学报.2001,29(3):1-3P
    [77]Barbarossa S, Zanalda A.A combined Wigner-Ville and Through txansform for cross-terms suppression and optimal detection and parameter estimation. Proc IEEE ICASSP-92,1992,173-176P
    [78]孙晓旭,皇甫堪.基于Wigner-Hough变换的多分量LFM信号检测及离散计算方法.电子学报,2003(2):241-244P
    [79]Barbarossa S.Analysis of multicomponent signals by a combined Wigner-Hough Transform. IEEE Trans. Signal Processing,1995,(43):1511-1515P
    [80]郭汉伟,梁甸农董臻.不同时频分析方法综合检测信号.信号处理,2003(6):586-589P
    [81]吴新余,周井泉,沈兀隆.信号与系统-时域、频域分析及MATLAB软件的应用.第1版.北京:电子上业出版社,1999:1-12页
    [82]Velez E F, Absher R G. Spectral estimation based on the Wigner-Ville representation. Signal, Processing,1990,(4):134-142P
    [83]Boashash B, Black P.An efficient real time implementation of the Wigner-Ville distribution. IEEE Trans. on Acoustic, Speech, and Signal Processing, 1987(11):161-1618P
    [84]Cohen L.Time-frequency distributions-a review. IEEE Trans. on Signal Pro-cessing,1989 (6):941-981P
    [85]Stankovic S, Stankovic L J, Uskokovic Z. On the local frequency, group shift,and cross-terms in some multidimensional time-frequency distributions: A method for multidimensional time-frequency analysis. IEEE Trans. on Signal Processing,1995(7):1719-1724P
    [86]Curlander J, Mcdonough R.Synthetic Aperture Radar.Wiley,New York,1991: 89-96P
    [87]Cheney, M. A mathematical tutorial on synthetic aperture radar. SIAM Review,2001(43):301-12P
    [88]Papanicolaou G, Ryzhik L, Solna K. Statistical stability in time reversal. Submitted to SIAM J. on Applied Mathematics,2002(101):18-25P
    [89]孙锐,孙洪,姚天任.基于奇异值分解的半易损水印算法.电路与系统学报,2002(3):62-65P
    [90]Huang F J, Guan Z H. A hybrid SVD-DCT watermarking method based on LPSNR. Pattern Recognition Letters,2004(25):1769-1775P
    [91]Liu R Z, Tan T N. SVD-based watermarking scheme for protecting rightful ownership. IEEE Trans on Multimedia,2002(1):21-128P
    [92]Ulrich T J, Johnson P A, Sutin A. Imaging nonlinear scatterers applying the time reversal mirror. J.Acoust.Soc.Am.,2006(119):1514-1518P
    [93]Dimitris G. Manolakis等著,周正等译.统计与自适应信号处理.北京:电子工业出版社,2003:16-119页
    [94]Borcea L, Papanicolaou G C, Tsogka C, Berryman J. Imaging and time reversal in random media. Inverse Problems,2002(18):1247-1279P
    [95]张贤达,保铮.通信信号处理.北京:国防工业出版社,2000:48-262P
    [96]张贤达.现代信号处理.北京:清华大学出版社,1995:26-146P
    [97]Dasgnpta N, Carin L.Time-reversal imaging an classification for distant targets in a shallow water channel. IEEE ICASSP,2004(2):65-68P
    [98]Song H C, Kim S, Hodgkiss WS. Environmentally adaptive reverberation nulling using a time reversal mirror. J. Acoust. Soc. Am.,2004(2):762-768P
    [99]Lehman S K, Devaney A J.Transmission mode time-reversal super-resolution imaging.J. Acoust. Soc. Am.,2003(113):2742-2753P
    [100]Karaman M, Li P C, Donnell M O.Synthetic aperture imaging for small scale systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1995(42):429-442P
    [101]Derode A, Tourin A, Fink M. Limits of time-reversal focusing through multiple scattering:Long-range correlation..J. Acoust. Soc. Am.,2000(107): 2987-2994P
    [102]Jorgen J.Field Ⅱ simulation program.Verson 3.16/12-2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700