基于OFDM的浅海高速水声通信关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的单载波相干水声通信采用自适应判决反馈均衡的结构和相位跟踪的方法,随着通信速率的提高,符号持续时间变短,信道的时延扩展导致均衡器的复杂度升高,阻碍了其在高速水声通信中的进一步应用。
     正交频分复用(OFDM)技术是首先在无线电视频广播和通信中发展起来的新技术。由于其具有频谱利用率高、抗多径和脉冲噪声能力强、在高效带宽利用率情况下的高速传输能力以及简单的实现方法,使其成为近年来高速水声通信中的研究重点和热点之一
     高速水声通信面临最困难的问题就是有限的带宽、强多途和信道结构的快速时变,再加上海洋环境的高噪声背景,使水声信道成为迄今为止最困难的无线通信信道。正因为如此,高速高可靠性的水声通信,尤其是浅海水声通信成为世界性的难题。
     本论文主要针对浅海水声通信中OFDM的关键技术与应用进行了研究,所做的工作主要有:
     1.编码OFDM (COFDM)技术研究。研究了Turbo码的在水声OFDM系统中的应用,并与目前普遍使用的卷积码和RS码进行了性能比较,最后对近年来因Turbo研究而重新认识到性能优越的低密度奇偶校验码(LDPC)码进行了初步探讨,并通过仿真、信道水池和湖上试验进行了验证。
     2.OFDM水声移动通信系统中多普勒估计与补偿。设计了两种基于循环前缀OFDM (CP-OFDM)系统的多普勒估计与补偿算法,分别是基于块多普勒估计和基于单频信号测频的方法,并且在国内首次进行了较为规范的基于OFDM的移动水声通信的外场试验,试验验证了所设计的两种算法的有效性,并且分析了两种算法各自的优缺点及未来的发展。
     3.分析比较了不同种类的信道估计与补偿技术并指出如何选择信道估计与补偿算法。针对基于辅助导频的信道估计(PSAM)的导频结构、导频位置信道估计和内插滤波器结合水声信道进行了仿真比较,并对不同导频间隔进行了性能分析。针对OFDM的不同保护间隔(CP-OFDM, ZP-OFDM)进行了性能比较,并结合运算量给出了选择保护间隔的依据。结合浅海水声信道的稀疏特性,提出了一种基于DFT和最小二乘(LS)相结合的信道估计与补偿技术,并且通过仿真和试验验证了改进的算法性能。
     4.OFDM水声通信中的空间分集技术。分析了分集技术的3种基本的分集合并方式——最大比合并、等增益合并和选择性合并,并结合OFDM具体技术分别分析了不同分集技术在OFDM系统中的应用和运算量比较,最后对前DFT最大比合并(Pre-DFT-MRC)、后DFT最大比合并(Post-DFT-MRC)、后DFT等增益合并(Post-DFT-EQU)、后DFT选择性合并(Post-DFT-SC)进行了仿真和信道水池试验。通过运算量、仿真结果和试验结果进行比较,给出了空间分集算法的选择依据。
In traditional single-carrier coherent underwater acoustic communication, adaptive decision feedback equalizer coupled with phase tracking methods is adopted. As the communication rate is increasing, symbol duration is becoming shorter, and equalizer is more complex with channel delay spread, the application of traditional methods is hampered in high-speed underwater acoustic communication.
     Orthogonal frequency division multiplexing (OFDM) has been successfully used in broadband wireless communication over radio channel. Because the performances such as high spectrum efficiency, strong anti-multipath and impulse noise ability, high-speed transmission capacity under efficient bandwidth utilization, and simple implementation, OFDM becomes one of the research priorities and hotspots in high-speed underwater acoustic communication.
     The most difficult problems in realizing high-speed underwater acoustic communication are limited bandwidth, strong multi-path and rapid time-varying in channel structure. Considering the high noise background in the marine environment, so far the underwater acoustic channel has become the most difficult wireless communication channel. Therefore, how to realize high-speed and reliable underwater acoustic communication, especially in shallow water, is a worldwide problem.
     In this thesis, key technologies and applications of OFDM are researched mainly for the shallow underwater acoustic communication. The works done as follows:
     1. Coded OFDM (COFDM). Application of Turbo code is studied in underwater acoustic OFDM system, and the performances of Turbo code are compared with the popular convolutional code and Reed-Solomon (RS) code. Then LDPC code, of which the excellent performances are re-recognized through studying the Turbo code, is explored primarily and validated by simulating and experimenting in the pool and lake test.
     2.Doppler estimation and compensation in mobile OFDM underwater acoustic communication system. Two algorithms based on CP-OFDM are designed which are block Doppler estimation and frequency measurement method based on single-frequency signal. Also the experiment about mobile underwater acoustic communication on OFDM is done, the two algorithms are validated, and the advantages and disadvantages as well as the development are analyzed.
     3.Channel estimation and compensation. Analysis and Comparison of the different types of channel estimation and compensation techniques are made out, the principles of how to choose the estimation and compensation methods are pointed out. For different guard intervals (CP-OFDM, ZP-OFDM), capabilities are compared, principles of choosing guard intervals are given. Finally, considering the sparse features in shallow acoustic channel, a channel estimation and compensation method based on the combination of DFT and LS is given, and the improved algorithm performances are validated through simulation and experiments.
     4. Spatial diversity in OFDM underwater acoustic communication. Three kinds of diversity combining methods are analyzed, which are the Maximum Ratio Combining (MRC), Equal Gain Combining (EGC) and Selection Combining (SC). Different spatial diversity techniques combined OFDM are analyzed in computational complexity and error-rate performance. At last, Pre-DFT-MRC, Post-DFT-MRC, Post-DFT-EQU, Post-DFT-SC are simulated and experimented in pool test. Through the comparison of computational complexity, simulation and experiment results, the principles of choosing spatial diversity algorithms are given.
引文
[1]Milica Stojanovic. Recent Advances in High-Speed Underwater Acoustic Communication.IEEE J.Oceanic Eng.Vol 21, No 2.1996:125-136P
    [2]M Stojanovic, J Presig. Underwater Acoustic Communication Channels: Propagation Models and Statistical Characterization. IEEE Communications Magazine, January 2009:84-89P
    [3]孙博,程恩,欧晓丽.浅海水声信道研究与仿真.无线通信技术.2006,15(3):11-15页
    [4]Lopez M J, Singer A C. A DFE coefficient placement algorithm for sparse reverberant channels. Communications, IEEE Transactions on, vol.49, no.8, 2001:1334-1338P
    [5]M Stojanovic. Efficient Processing of Acoustic Signals for High Rate Information Transmission over Sparse Underwater Channels.Elsevier Journal on Physical Communication,2008:146-161P
    [6]Li B, Zhou S, Stojanovic M, Freitag L. Pilot-tone based ZP-OFDM Demodulation for an Underwater Acoustic Channel, OCEANS 2006, 2006:1-5P
    [7]Doufexi A, Armour S, Butler M, Nix A, Bull D, McGeehan J, Karlsson P. A comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN standards. Communications Magazine, IEEE, vol.40, no.5,2002:172-180P
    [8]IEEE Standard for local and metropolitan area networks part 16:Air Interface for Fixed Broadband Wireless Access Systems, IEEE Std 802.16TM-2004
    [9]ETSI EN 301 701 Digital Video Broadcasting (DVB); OFDM Modulation for Microwave Digital Terrestrial Television
    [10]M Chitre, S Shahabodeen, M Stojanovic. Underwater Acoustic Communications and Networking:Recent Advances and Future Challenges, vol.42, No.1, 2008:103-116P
    [11]M Stojanovic. Underwater Acoustic Communications:Design Considerations on the Physical Layer.in Proc. IEEE/IFIP Fifth Annual Conference on Wireless On demand Network Systems and Services (WONS 2008), Garmisch-Partenkirchen, Germany, January 2008
    [12]M Stojanovic. Acoustic (Underwater) Communications.entry in Encyclopedia of Telecommunications, John G. Proakis, Ed., John Wiley & Sons,2003
    [13]桑恩方.视频图象水下声传输试验研究.中国船舶科技报告.中国船舶工业总公司.1994,12
    [14]桑恩方,尤立夫,韩彦,卞红雨.视频图象水下传输试验研究.高技术通信.1995,5(6):25-28页
    [15]Kilfoyle D B, Baggeroer A B. The state of the art in underwater acoustic telemetry. Oceanic Engineering, IEEE Journal of, vol.25, no.1, Jan 2000:4-27P
    [16]乔钢.基于矢量传感器的水声通信技术研究.哈尔滨工程大学博士学位论文.2004
    [17]W K Lam, R F Ormondroyd, A novel broadband COFDM modulation scheme for robust communication over the underwater acoustic channel. MILCOM 98 Proceedings IEEE 1998:128-133P
    [18]J H Fischer, K H Bennett. High-data-rate, underwater acoustic data communication, sea tech. May,1993:10-13P
    [19]L Freitag, J Stojanovic. A Bidirectional coherent acoustic communication system for underwater vehicles,presented at the ocean'98,Nice, France. 1998
    [20]W K Lam, R F Ormondroyd, A Broadband UWA Communication System Based on COFDM Modulation. Proc.OCEANS'97, MTS/IEEE, Nova Scotia, Oct.1997:862-869P
    [21]Milica Stojanovic. Low Complexity OFDM Detector for Underwater Acoustic Channels.in Proc. MTS/IEEE Oceans 2006:1-6P
    [22]M Stojanovic, J A Catipovic, J G Proakis. Phase-Coherent digital communications for underwater acoustic channels, IEEE J.Oceanic Eng. 1994, Vol(19):100-111P
    [23]G F Edelmann, T Akal, W S Hodgkiss, S Kim, W A Kuperman, H C Song. Underwater acoustic communications using time reversal.in Oceans Hawaii MTS/IEEE Conf. and Exhibition, vol 4,2001:2231-2235P
    [24]Edelmann G F, Song H C, Kim S, Hodgkiss W S, Kuperman W A, Akal T. Underwater acoustic communications using time reversal. Oceanic Engineering, IEEE Journal of, vol.30, no.4, Oct.2005:852-864P
    [25]H C Song, W A Kuperman, W S Hodgkiss. Basin-scale time reversal communications. J. Acoust. Soc. Am.125,2009:212-217P
    [26]M Stojanovic, J Catipovic, J Proakis. Phase Coherent Digital Communications for Underwater Acoustic Channels. IEEE Journal of Oceanic Engineering, vol.19, No.1, January 1994:100-111P
    [27]M Stojanovic, J Proakis, J Catipovic. Analysis of the Impact of Channel Estimation Errors on the Performance of a Decision Feedback Equalizer in Multipath Fading Channels. IEEE Transactions on Communications, vol.43, No.2/3/4, February/March/April 1995:887-886P
    [28]M Stojanovic, J A Catipovic, J G Proakis. Performance of high-rate adaptive equalization on a shallow water acoustic channel.127th Meeting of the Acoust.Soc. Am,Cambridge,MA,95,2809-2810,1994:1-21P
    [29]M Suzuki, T Sesaki. Digital acoustic image transmission system for deep sea research submersible. Proc. OCEANS'92 Newport. RI.OCT. 1992:567-770P
    [30]G Aycla, J M Coudeville. TIVA:A long range,high baud rate image/data acoustic transmission system fro underwater applications,"presented at Proc.Underwater Defence Technol.Conf,Paris,France,1991
    [31]J Fischer, K Bennett, S Reible, J Cafarella, I Yao. A high rate underwater acoustic data communications transceiver. Proc. Oceans'92, Newport, RI, Oct,1992:571-576P
    [32]Milica Stojanovic. Adaptive Multichannel Combining and Equalization for Underwater Acoustic Communications. J. Acoust. Soc. Amer.1993, 94(3):1621-1631P
    [33]Roy S, Duman T M, McDonald V, Proakis J G. High-Rate Communication for Underwater Acoustic Channels Using Multiple Transmitters and Space-Time Coding:Receiver Structures and Experimental Results. Oceanic Engineering, IEEE Journal of, vol.32, no.3, July 2007:663-688P
    [34]Roy S, Duman T M, McDonald V. Error Rate Improvement in Underwater MIMO Communications Using Sparse Partial Response Equalization. OCEANS 2006, Sept 2006:1-6P
    [35]席红艳.用于水声通信的自适应均衡技术研究.哈尔滨工程大学博士学位论文.1999
    [36]朱维庆,朱敏,王军伟等.水声高速图像传输信号处理方法.声学学报.2007,32(5):385-397页
    [37]朱婷婷,王英民,林欢欢.一种新的适用于水声信道的常模类盲均衡算法.应用声学.2008,27(6):449-453页
    [38]张银兵,赵俊渭,李金明等.一种分数间隔判决反馈盲均衡算法的研究.计算机仿真.2008,25(8):331-334页
    [39]孙丽君,连卫民,孙超.一种浅海水声信道分数间隔自适应均衡算法研究.声学技术.2007,26(1):137-140页
    [40]Stephen Phillips.US Navy emulates the denizens of the deep [J].London Financial Times,Oct.4,2000
    [41]郭中源,陈岩,贾宁等.水下数字语音通信系统的研究和实现[J].声学学报.2008,33(5):409-418页
    [42]许肖梅.浅海水声数据传输技术研究.厦门大学博士学位论文.2002
    [43]Bingham J A C. Multicarrier modulation for data transmission:An idea whose time has come. IEEE Commun.Magazine, vol.28, May 1990:5-14P
    [44]S Coatelan, A Glavieux. Design and test of a multicarrier transmission system on the shallow water acoustic channel. Proc. IEEE Oceans'94, 1994:Ⅲ472-Ⅲ477P
    [45]Coatelan S, Glavieux A. Design and test of a coding OFDM system on the shallow water acoustic channel," OCEANS'95. MTS/IEEE. Challenges of Our Changing Global Environment. Conference Proceedings.1995:2065-2070P
    [46]K F Scussel, J A Rice, S Merriam. A new MFSK acoustic modem for operation in adverse underwater channels, presented at theOceans'97, Halifax, NS, Canada,1997:247-254P
    [47]E Bejjani, J C Belfiore. Multicarrier coherent communication for the underwater acoustic channel. Proc. IEEE. Oceans'96,1996:1125-1130P
    [48]W K Lam, R F Ormondroyd. A novel broadband COFDM modulation scheme for robust communication over the underwater acoustic channel. Proc. IEEE Oceans'98,1998:794-799P
    [49]Kazuyoshi Miyoshi, Preliminary design of OFDM and CDMA acoustic communication system. IEEE Oceans'2001,2001:2216-2219P
    [50]Frassati F, Lafon C, Laurent P A, Passerieux J M. Experimental assessment of OFDM and DSSS modulations for use in littoral waters underwater acoustic communications. Oceans 2005-Europe, vol.2, June 2005:826-831P
    [51]Chitre M, Ong S H, Potter J. Performance of coded OFDM in very shallow water channels and snapping shrimp noise. OCEANS'2005. Proceedings of MTS/IEEE, Vol.2, Sept 2005:996-1001P
    [52]Baosheng Li, Shengli Zhou, Stojanovic M, Freitag L, Willett P. Non-Uniform Doppler Compensation for Zero-Padded OFDM over Fast-Varying Underwater Acoustic Channels. OCEANS 2007-Europe. 2007:1-6P
    [53]Baosheng Li, Shengli Zhou, Stojanovic M, Freitag L, Willett P. Multicarrier Communication Over Underwater Acoustic Channels With Nonuniform Doppler Shifts. Oceanic Engineering, IEEE Journal of, vol.33, no.2, April 2008:198-209
    [54]Baosheng Li, Shengli Zhou, Stojanovic M, Freitag L, Jie Huang, Willett P. MIMO-OFDM Over An Underwater Acoustic Channel. Oceans'2007. 2007:1-6P
    [55]B Li, S Zhou, J Huang, P Willett. Scalable OFDM Design for Underwater Acoustic Communications. Proc. of ICASSP, Las Vegas, NV,2008:5304-5307P
    [56]Leus G, van Walree P. Multiband OFDM for Covert Acoustic Communications. Selected Areas in Communications, IEEE Journal on, vol.26, no.9, December 2008:1662-1673P
    [57]P van Walree, E Sangfelt, G Leus. Multicarrier Spread Spectrum for Covert Acoustic Communications. In Proc. of Oceans'2008, Quebec City, Canada, September 2008
    [58]G Leus, P van Walree, J Boschma C, Fanciullacci H, Gerritsen, P Tusoni. Covert Underwater Communications with Multiband OFDM. In Proc. of Oceans 2008, Quebec City, Canada, September 2008.
    [59]J Gomes, A Silva, S Jesus. OFDM Demodulation in Underwater Time-Reversed Shortened Channels. Proceedings of MTS/IEEE OCEANS' 08, Quebec City, Canada, September 2008
    [60]J Gomes, A Silva, S Jesus. Experimental assessment of time-reversed OFDM underwater communications. Proceedings of ACOUSTICS'08, Paris, France, July 2008
    [61]J Huang, S Zhou, P Willett. Nonbinary LDPC Coding for Multicarrier Underwater Acoustic Communication. IEEE JSAC Special Issue on Underwater Wireless Communications and Networks, Dec 2008
    [62]N Parrish, S Roy, P Arabshahi. OFDM in Underwater Channels. Proc. Third ACM Workshop on Underwater Networks (Mobicom 2008), San Francisco, CA, Sept.15,2008
    [63]B Li, J Huang, S Zhou, K Ball, M Stojanovic, L Freitag, P Willett. Further results on high-rate MIMO-OFDM underwater acoustic communications.in Proc. of MTS/IEEE OCEANS conference, Quebec City, Canada, Sept 2008
    [64]M Stojanovic. Adaptive Channel Estimation for Underwater Acoustic MIMO OFDM Systems.in Proc. IEEE DSP/SPE Workshop 2009, Marco Island, FL, January 2009.
    [65]Taehyuk Kang, Iltis R A. Iterative Carrier Frequency Offset and Channel Estimation for Underwater Acoustic OFDM Systems. Selected Areas in Communications, IEEE Journal on, vol.26, no.9, December 2008: 1650-1661P
    [66]P C Ceballos, M Stojanovic. Adaptive MIMO Detection of OFDM signals in an Underwater Acoustic Channel.in Proc. IEEE Oceans'08 Conference, Quebec City, Canada, September 2008
    [67]朱彤.基于正交频分复用的水声通信技术研究.哈尔滨工程大学博士论文.2004
    [68]王明华.高速水声通信中OFDM的关键技术与应用研究.哈尔滨工程大学博士学位论文.2007
    [69]黄建国,孙静等OFDM高速水声通信系统及实验研究.通信理论与信号处理新进展-通信理论与信号处理年会论文集.2005
    [70]蔡惠智,刘云涛等.第八讲:水声通信及其研究进展.物理.2006(12):1038-1042页
    [71]Hayward, Thomas J, Yang T C. Single- and multi-channel underwater acoustic communication channel capacity:A computational study. The Journal of the Acoustical Society of America, vol.122 (4), September 2007:1652-1661P
    [72]Lanbo Liu, Shengli Zhou, Jun-Hong Cui. Prospects and problems of wireless communication for underwater sensor networks. Wireless Communications & Mobile Computing, Volume 8, Issue 8, October 2008: 977-994P
    [73]Vuran M C, Akyildiz I F. Cross-Layer Analysis of Error Control in Wireless Sensor Networks. Sensor and Ad Hoc Communications and Networks, 2006. SECON'06.2006 3rd Annual IEEE Communications Society on vol.2,2006:585-594P
    [74]D Lucani, M Medard, M Stojanovic. Underwater Acoustic Networks: Channel Models and Network Coding based Lower Bound on Transmission Power for Multicast. IEEE Journal on Selected Areas in Communications (JSAC), Special Issue on Underwater Wireless Communications and Networks, December 2008:1708-1719P
    [75]D Pompili. Efficient Communication protocols for underwater acoustic sensor networks. Georgia Institute of Technology, August,2007
    [76]Pompili D, Akyildiz I F. Overview of networking protocols for underwater wireless communications. Communications Magazine, IEEE, vol.47, no.1, January 2009:97-102P
    [77]M Stojanovic. Design and Capacity Analysis of Cellular Type Underwater Acoustic Networks. IEEE Journal of Oceanic Engineering, vol.33, No.2, April 2008:171-181P
    [78]Owen M W, Klamer D M, Dean B. Evolutionary control of an autonomous field. Information Fusion,2000. FUSION 2000. Proceedings of the Third International Conference on, vol.1, July 2000:MOD1/3-MOD1/9
    [79]J A Rice. Undersea Networked Acoustic Communication and Navigation for Autonomous Mine-Countermeasure Systems. Proc.5th International Symposium on Technology and the Mine Problem, Monterey, CA, April 2002
    [80]J A Rice. Telesonar Signaling and Seaweb Underwater Wireless Networks. Proc. NATO Symposium on New Information Processing Techniques for Military Systems, Istanbul, Turkey, Oct 2000
    [81]Joseph A Rice. Seaweb acoustic com/nav networks.August,2005. Available at http://edify.cse.lehigh.edu/EdifyTeam/presentations.html
    [82]J Rice. Enabling undersea ForceNet with seaweb acoustic networks. SSC San Diego Biennial Review,2003:174-180P
    [83]Bachmayer R, Rice J A, Crebert R, Fletchert C. Navigation and control of multiple gliders in an underwater acoustic network. Autonomous Underwater Vehicles,2004 IEEE/OES, June 2004:54-58P
    [84]Carlyle H, Wash Chair. The Naval Postgraduate School's Department of Meteorology Addresses the Critical Role of Atmospheric Sciences for Sea Power 21 and National Security. Naval Postgraduate School, February 2004
    [85]Ouimet S P, Hahn M J, Rice J. Undersea communication network as a UUV navigation aid. OCEANS'2005. Proceedings of MTS/IEEE.2005:2485-2490P
    [86]Steve Ramp, Joe Rice, Fred Bahr, Chris Fletcher. A Seaweb Implementation for the Adaptive Sampling and Prediction (ASAP) Program. Eastern Pacific Ocean Conference, Timberline Lodge,2006
    [87]Seaweb port surveillance Subsurface sensor network for maritime domain awareness. Available at http://www.nps.edu/Research/mdsr/Docs/Seaweb 2008trials.ppt
    [88]Second field test for the AOSN program. Monterey Bay August 2003. http://www.mbari.org/aosn/MontereyBay2003/MontereyBay2003Default.ht m
    [89]Geoffrey Xie, John Gibson. A Networking Protocol for Underwater Acoustic Networks. Available at http://faculty.nps.edu/xie/papers/UAN-Proposal-00.pdf
    [90]Monterey Bay 2006 field experiments. Available at http://www.mbari.org/ mb2006/
    [91]Joseph A Rice. Seaweb Network for FRONT Oceanographic Sensors. Available at http://www.onr.navy.milloas/reports/docs/nopp_funded/00/00_seaw eb.pdf
    [92]James O'Donnelll, Dan Codigal, Christopher Edwards. Front Resolving Observational Network with Telemetry (FRONT). Available at http://www. coreocean.org/nopp/project-reports/reports/02odonne.pdf
    [93]Netherlands Earth Observation NETwork. Available at http://www.neonet. nl/browse/dcn. waterland.net/neonet/Project/FRARRNMMKNKDMYDMO TECUMIDL.html
    [94]Tiffany Fox. Calit2's Reefbot Designed to Autonomously Monitor Ocean's Disappearing Coral Reefs. San Diego CA.2008.12.16
    [95]Martin Dalbro, Aart Joakim in't Veld, Stein Gjessing, Tor Sverre Lande, Havard Kolle Riis, Oddvar S(?)rasen. Poster:Building a test-bed for wireless sensor networking for under-water oil and gas installations. Wuwnet 2008
    [96]孙桂芝.水声通信网络路由协议研究.哈尔滨工程大学博士学位论文.2006
    [97]Balakrishnan Srinivasan, Capacity of Underwater Acoustic OFDM Cellular Networks[D], University of California Santa Barbara, June.2008
    [98]LinkQuest, Inc. SoundLink Underwater Acoustic Modems. Available at http://www.link-quest.com.
    [99]Benthos, Inc. Telesonar Acoustic Modems. Available at http://www. benthos.com.
    [100]DSPComm, Inc. Underwater wireless modems. Available at http://www. dspcomm.com
    [101]Evologics GmbH. Underwater Acoustic. Available at http://www.Evologi-cs.de
    [102]Freitag L, Grund M, Singh S, Partan J, Koski P, Ball K. The WHOI Micro-Modem:An Acoustic Communcations and Navigation System for Multiple Platforms.in IEEE Oceans Conference, Washington DC,2005
    [103]Ethem M Sozer, Milica Stojanovic. Reconfigurable acoustic modem for underwater sensor networks. Proc. of WUWNET06 workshop, Los Angeles, CA, USA, Sep 2006
    [104]Ethem M Sozer. Simulation and rapid prototyping environment for underwater acoustic communications:reconfigurable modem. Proc. of IEEE Oceans 2005-Europe, Brest, France, June 2005:80-85P
    [105]Ethem M Sozer, Milica Stojanovic. Simulation and rapid prototyping environment for AUV networks. Proc. of UUST05 Unmanned Untethered Submersible Technology, Durham, New Hampshire USA, August 2005
    [106]M Aydinlik, A Ozdemir, M Stojanovic. A Physical Layer Implementation on Reconfigurable Underwater Acoustic Modem.in Proc. IEEE Oceans'08 Conference, Quebec City, Canada, September 2008
    [107]H Yan, S Zhou, Z Shi, B Li. A DSP Implementation of OFDM Acoustic Modem. Proc. of the ACM International Workshop on Under Water Networks (WUWNet), Montreal, Quebec, Canada, September 14,2007
    [108]S Mason, R Anstett, N Anicette, S Zhou. A broadband underwater acoustic modem implementation using coherent OFDM. Proc. of National Conference for Undergraduate Research (NCUR), San Rafael, California, April 2007
    [109]H Yan, J Liao, X Zhou, S Zhou, Z Shi, J Cui. Demonstration of PC-based and DSP-based Implementations of a MIMO-OFDM Acoustic Modem. Available at http://www.engr.uconn.edu/-shengli/MIMO-OFDM-demo.pdf
    [110]J Gomes, V Barroso. SDR underwater acoustic modem. Instituto de Sistemas e Robotica-Instituto Superior Tecnico, Tech. Rep., April 2005
    [111]Fu T, Doonan D, Utley C, Iltis R, Kastner R, Lee H. Design and Development of a Software-Defined Underwater Acoustic Modem for Sensor Networks for Environmental and Ecological Research. OCEANS 2006, Sept 2006:1-6P
    [112]Bridget Benson, Grace Chang, Derek Manov, Brian Graham, Ryan Kastner. Design of a Low-cost Acoustic Modem for Moored Oceanographic Applications. International Workshop on Underwater Networks (WUWNet), September 2006
    [113]樊昌信,张甫翊,徐炳祥,吴成柯.通信原理(第五版).国防工业出版社,2001
    [114]Urick著.洪申译.水声原理.哈尔滨工程大学出版社,1990
    [115]A Essebbar, G Loubet, F Vial. Underwater Acoustic Channel Simulations for Communication. Proc. OCEANS94. Brest. France,1994:495-500P
    [116]H W Marshy M Schulkin. Shallow water transmission, Journal of the Acoustical Society of America 34 1962:863-864P
    [117]刘伯胜,雷家煜.水声学原理.哈尔滨工程大学出版社,2002
    [118]Mari Carmen Domingo, Overview of channel models for underwater wireless communication networks, Physical Communication, Volume 1, Issue 3, September 2008:163-182P
    [119]D Lucani, M Medard, M Stojanovic. On the Relationship Between Transmission Power and Capacity of an Underwater Acoustic Communication Channel.in Proc. IEEE Oceans'08 Conference, Kobe, Japan, April 2008
    [120]惠俊英.水下声信道.国防工业出版社,1992
    [121]M Stojanovic. Underwater Acoustic Communications.entry in Encyclopedia of Electrical and Electronics Engineering, John G. Webster, Ed., John Wiley & Sons,1999:688-698P
    [122]程恩.水声电子邮件传输研究.厦门大学博士学位论文.2006
    [123]W L J Fox, P Arabshahi, S Roy, N Parrish. Underwater acoustic communications performance modeling in support of ad hoc network design. Proc. IEEE Oceans Conference, Vancouver, Canada.2007
    [124]J Preisig. Acoustic propagation considerations for underwater acoustic communications network development.in Proc. First ACM International Workshop on Underwater Networks (WuwNeT/Mobicom), Sept 2006
    [125]M Chitre. A high-frequency warm shallow water acoustic communications channel model and measurements. Journal of the Acoustical Society of America, vol.122 (5), Nov.2007:2580-2586P
    [126]James Preisig. Acoustic Propagation Considerations for Underwater Acoustic Communications Network Development.WUWNet'06, September 25,2006, Los Angeles, California, USA,2006:1-5P
    [127]M Chitre, S Shahabodeen, M Stojanovic. Underwater Acoustic Communications and Networking:Recent Advances and Future Challenges. Marine Technology Society Journal, vol.42, No.1, Spring 2008:103-116P
    [128]尹长川,罗涛,乐光新.多载波宽带无线通信技术.北京邮电大学出版社,2004
    [129]S Hara, R Prasad, Multicarrier Techniques for 4G Mobile Communications. Boston, London:Artech House,2003:27-41P
    [130]王文博,郑侃.宽带无线通信OFDM技术.人民邮电出版社,2003
    [131]张海滨.正交频分复用的基本原理与关键技术.国防工业出版社,2006.1
    [132]Henrik Schullzel, Christian Luders. Theory and Applications of OFDM and CDMA-Wideband Wireless Communications, JohnWiley & Sons Ltd., 2005:145-166P
    [133]汪裕民OFDM关键技术与应用.机械工业出版社,2006
    [134]Van Nee Richard, Prasad Ramjee, OFDM wireless multimedia communications, Boston, London:Artech House,2000:53P
    [135]Ochiai H, Imai H. On the distribution of the peak-to-average power ratio in OFDM signals. Communications, IEEE Transactions on, vol.49, no.2, Feb 2001:282-289P
    [136]Seung Hee Han, Jae Hong Lee. An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. Wireless Communications, IEEE, vol.12, no.2, April 2005:56-65P
    [137]Seok-Joong Heo, Hyung-Suk Noh, Jong-Seon No, Dong-Joon Shin. A Modified SLM Scheme With Low Complexity for PAPR Reduction of OFDM Systems. Broadcasting, IEEE Transactions on, vol.53, no.4, Dec. 2007:804-808P
    [138]Alsusa E, Lin Yang. A Low-Complexity Time-Domain Linear Symbol Combining Technique for PAPR Reduction in OFDM Systems. Signal Processing, IEEE Transactions on, vol.56, no.10, Oct.2008:4844-4855P
    [139]李霞.水声通信中的自适应均衡与空间分集技术研究.哈尔滨工程大学博士学位论文.2004
    [140]W A Kuperman, W S Hodgkiss, H C Song, T Akal, C Ferla, D R ackson. Phase conjugation in the ocean:Experimental demonstration of a time reversal mirror. J. Acoust. Soc. Am.103,1998:25-40P
    [141]Song H C, Hodgkiss W S, Kuperman W A, Stevenson M, Akal T. Improvement of Time-Reversal Communications Using Adaptive Channel Equalizers. Oceanic Engineering, IEEE Journal of, vol.31, no.2, April 2006:487-496P
    [142]陆铭慧,张碧星,汪承灏.时间反转法在水下通信中的应用.声学学报.2005,30(4):349-354页
    [143]殷敬伟,惠娟,惠俊英等.无源时间反转镜在水声通信中的应用.声学学报.2007,32(4):362-368页
    [144]Subramaniam L V, Rajan B S, Bahl R. Trellis coded modulation schemes for underwater acoustic communications, OCEANS'98 Conference Proceedings, vol.2, Oct 1998:800-804P
    [145]Goalie A, Trubuil J, Beuzelin N. Channel Coding for Underwater Acoustic Communication System. OCEANS 2006, Sept 006:1-4P
    [146]Simon Haykin, Michael Moher著,郑宝玉译.现代无线通信.电子工业出版社,2006:167-168页
    [147]Bernard Sklar著.徐平平等译.数字通信-基础与应用(第二版)电子工业出版社,2002:328页
    [148]Claude Berrou, Alain Glavieux and Punya Thitimajshima. Near Shannon Limit Error Correcting Coding And Deconding Turbo-Codes(l)[P] NO 9105279 (France), NO 92460011.7(Europe), NO 07/870,483 (USA).1993
    [149]张忠培,史治平,王传丹编著.现代编码理论与应用.国防工业出版社,2007:59页
    [150]Hoshyar R, Jamali H, Bahai A R S, Turbo coding Performance in OFDM Packet Transmission. IEEE Vehicular Technology Conference,2000
    [151]Torabi M, Soleymani M R. Turbo Coded OFDM for Wireless Local Area Networks. Proceedings of the 2002 IEEE Canadian Conference on Electrical and Computer Engineering,2002
    [152]Christian B, Schlegel, Lance C, P'erez. Trellis and Turbo Coding. Institute of Electrical and Electronics Engineers,2004
    [153]Benedetto S, Divsalar D, Montorsi G, Pollara F. Serial concatenation of interleaved codes:performance analysis, design, and iterative decoding. Information Theory, IEEE Transactions on, vol.44, no.3, May 1998: 909-926P
    [154]S Benedetto, G Montorsi. Iterative decoding of serially concatenated convolutionalcodes. IEE Electron. Lett.vol.32, June 1996:1186-1188P
    [155]D Lee, E K Joo. Performance Comparison and Analysis of Serial Concatenated Convolutional Codes. Proceeding of world academy of science, engineering and technology, vol 16, November 2006
    [156]D Divsalar, F Pollara. Hybrid concatenated codes and iterative decoding. JPL TDAProgress Report 42-130, Aug.1997
    [157]王琳,徐位凯.高效信道编译码技术及其应用.人民邮电出版社,2007:65P
    [158]刘东华Tutbo码原理与应用技术.电子工业出版社,2004:72-81页
    [159]Yufei Wu. Design and Implemention of parallel and serial concatenated convolutional codes[D]. Virginia Polytechnic Institute and State University, Blacksburg, Viginia, May 1999
    [160]刘东华Turbo码关键技术及Turbo原理的应用研究.国防科技大学博士学位论文.2003
    [161]John G.Proakis, Masoud Salehi.李锵等译.Fundamentals of Communication Systemms.电子工业出版社,2006:546-548P
    [162]王新梅,马建峰,马啸.软判决译码研究进展.电子学报.1998,(7)19-26页
    [163]R G Gallager. Low-Density Parity-Check Codes. MA:M.I.T. Press,1963
    [164]D J C Mackay, R M Neal. Near Shannon limit performance of low-density parity-check codes. Electronics Letters,Vol.32,1996:1645-1646P
    [165]Michael G Luby, Michael Mitzenmacher, M Amin Shokrollahi, Daniel A Spielamn. Improved Low-Density Parity-Check Codes Using Irregular Graphs. IEEE Transactions on Information theory, VOL.47,NO.2,February 2001
    [166]Davey M C, MacKay D J C. Low density parity check codes over GF(q). Information Theory Workshop,1998, Jun 1998:70-71P
    [167]Campello J, Modha D S. Extended bit-filling and LDPC code design. Global Telecommunications Conference,2001. GLOBECOM'01. IEEE, vol.2, no., vol.2,2001:985-989P
    [168]Kou Y, Lin S, Fossorier M P C. Low-density parity-check codes based on finite geometries:a rediscovery and new results. Information Theory, IEEE Transactions on, vol.47, no.7, Nov 2001:2711-2736P
    [169]MacKay D J C. Good error-correcting codes based on very sparse matrices. Information Theory, IEEE Transactions on. vol.45, no.2, Mar 1999:399-431P
    [170]Richardson T J, Urbanke R L. Efficient encoding of low-density parity-check codes. Information Theory, IEEE Transactions on, vol.47, no.2, Feb 2001:638-656P
    [171]袁东风,张海刚LDPC码理论与应用.人民邮电出版社,2008:30-31页
    [172]彭立,朱光喜LDPC码位翻转解码算法研究.华中科技大学学报(自然科学版).2004,(5):14-18页
    [173]刘文明.LDPC码编译码研究及应用.华中科技大学博士论文.2006
    [174]T Pollet, M.V.Bladel and M.Moeneclaey,BER sensitivity of OFDM systems to carrier frequency offset and wiener phase noise, IEEE Trans.on comm. 1995,43(2):191-193P
    [175]K Sathananthan, C Tellambura. Probability of Error calculation of OFDM systems with frequency offset, IEEE Trans.on comm.2001,49(11):1884-1888P
    [176]Heiskala J, Terry J. OFDM Wireless LANs:A theoretical and practical guide. Pearson Education, Inc.2002
    [177]Meng-Han Hsieh, Che-Ho Wei. A low-complexity frame synchronization and frequency offset compensation scheme for OFDM systems over fading channels. Vehicular Technology, IEEE Transactions on Volume 48, Issue 5, Sept 1999:1596-1609P
    [178]Capoglu I R, Ye Li, Swami A. Effect of Doppler spread in OFDM-based UWB systems. Wireless Communications, IEEE Transactions on, vol.4, no.5, Sept 2005:2559-2567P
    [179]Salberg A B, Swami A. Doppler and frequency-offset synchronization in wideband OFDM. Wireless Communications, IEEE Transactions on, vol.4, no.6,Nov.2005:2870-2881P
    [180]Moose P H. A technique for orthogonal frequency division multiplexing frequency offset correction. Communications, IEEE Transactions on, vol.42, no.10, Oct 1994:2908-2914P
    [181]van de Beek, Sandell M, Borjesson P O. ML estimation of time and frequency offset in OFDM systems. Signal Processing, IEEE Transactions on, vol.45, no.7, Jul 1997:1800-1805P
    [182]Guillermo Acosta-Marum. Measurement, Modeling, and OFDM Synchronization for the Wideband Mobile-to-Mobile Channel [D]. Georgia Institute of Technology. May 2007
    [183]Sharif B S, Neasham J, Hinton O R, Adams A E. A computationally efficient Doppler compensation system for underwater acoustic communications. Oceanic Engineering, IEEE Journal of, vol.25, no.1, Jan 2000:52-61P
    [184]Sharif B S, Neasham J, Hinton O R, Adams A E. Doppler compensation for underwater acoustic communications. OCEANS'99 MTS/IEEE. Riding the Crest into the 21st Century, vol.1,1999:216-221P
    [185]Beaujean P P J, LeBlanc L R. Adaptive array processing for high-speed acoustic communication in shallow water. Oceanic Engineering, IEEE Journal of, vol.29, no.3, July 2004:807-823P
    [186]Limin Yu, White L B. Optimum Receiver Design for Broadband Doppler Compensation in Multipath/Doppler Channels With Rational Orthogonal Wavelet Signaling. Signal Processing, IEEE Transactions on, vol.55, no.8, 2007:4091-4103P
    [187]Limin Yu, White L B. Broadband Doppler compensation for rational wavelet-based UWA communication systems. Communications,2005 Asia-Pacific Conference on, Oct 2005:605-609P
    [188]S Mason, C R Berger, S Zhou, P Willett. Detection, Synchronization, and Doppler Scale Estimation with Multicarrier Waveforms in Underwater Acoustic Communication. IEEE JSAC Special Issue on Underwater Wireless Communications and Networks, Dec 2008
    [189]S Mason, C Berger, S Zhou, K. Ball, L Freitag, P Willett. An OFDM design for underwater acoustic channels with Doppler spread.in Proc. of the 13th DSP Workshop, Marco Island, FL, January 2009
    [190]张翔.水声通信中多普勒频移补偿的仿真研究.系统仿真学报.2005,17(5):1172-1174页
    [191]李红娟,孙超.水声通信自适应多普勒频移补偿仿真研究.计算机仿真. 2007,24(2):302-303页
    [192]Z-B.Lin. wideband ambiguity function of broadband signals. J. Acoust. Soc. Am. Volume 83, Issue 6, June 1988:2108-2116P
    [193]胡广书.数字信号处理.清华大学出版社,2003:417-422页
    [194]John G.Proakis.方艳梅等译.数字信号处理.电子工业出版社,2007:560-571页
    [195]van de Beek, Sandell, M, Isaksson M, Ola Borjesson P. Low-complex frame synchronization in OFDM systems. Universal Personal Communications.1995. Record.,1995 Fourth IEEE International Conference on, Nov 1995:982-986P
    [196]Li Y, Cimini L J Jr, Sollenberger N R. Robust channel estimation for OFDM systems with rapid dispersive fading channels. Communications, IEEE Transactions on, vol 46, no 7. Jul 1998:902-915P
    [197]H Meyr, M Moeneclaey, S Fechtel. Digital Communication. Receivers: Synchronization and Channel Estimation Algorithms. New York:Wiley, 1997
    [198]S Coleri, M Ergen, A Puri, A Bahai. Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Trans.on Broad. Vol(48), No(3), Sep 2002:223-229P
    [199]J J Van de Beek,O Edfors, M Sandell, S K Wilson, P O Borjesson. On Channel Estimation in OFDM Systems.in Proc. IEEE 45th Vehicular Technology Conf., Chicago, IL. Jul 1995:815-819P
    [200]J Moon, S Choi. Performance of channel estimation methods for OFDM systems in multi-path fading channels. IEEE trans on Consu. Elec. 2000:161-170P
    [201]R Negi, J Cioffi. Pilot tone selection for channel estimation in a mobile OFDM system. IEEE Transactions on Consumer Electronics.1998:1122-1128
    [202]M H Hsieh, C H Wei. Channel Estimation for OFDM systems Based on Comb-TypePilot Arrangement in Frequency selective Fading Channels. IEEE Transactions onConsumer Electronics.vol 44, Feb 1998
    [203]Y Li. Pilot-symbol-aided chennel estimation for OFDM in wireless system. IEEE Transations on Vehicular Technology, vol 49,2000
    [204]J Rinne, M Renfors. Pilot spacing in orthogonal frequency division multiplexing systems on practical channels. IEEE Transactions on Consumer Electronics, vol 42, no 4. Nov 1996:959-962P
    [205]Jan-Jaap van de Beek, Ove Edfors, Magnus Sandell, Sarah Kate Wilson, Per Ola Borjesson. On Channel Estimation in OFDM Systems. Proceedings of IEEE Vehicular Technology Conference (VTC'95), vol 2, Chicago, USA, July 1995:815-819P
    [206]Edfors O, Sandell M, Beek J. OFDM channel estimation by singular value decomposition.IEEE VTC'96. May 1996:923-927P
    [207]Coleri S, Ergen M, Puri A, Bahai A. Channel estimation techniques based on pilot arrangement in OFDM systems. Broadcasting, IEEE Transactions on, vol 48, no 3, Sep 2002:223-229P
    [208]Stephen A Dyer, Justin S Dyer. Cubic-Spline Interpolation:Part 1.Numbers, March 2001:44-46P
    [209]Stephen A Dyer, Xin He. Cubic-Spline Interpolation:Part 2.Numbers, June 2001:34-36P
    [210]Jae Kyoung Moon, Song In Choi. Performance of channel estimation methods for OFDM systems in a multipath fading channels. IEEE Transactions, Volume 46, Issue 1, Feb 2000:161-170P
    [211]Cavers J K. An analysis of pilot symbol assisted modulation for Rayleigh fading channels. IEEE Trans, Vehicle Tech, Nov 1991,40(4):686-693P
    [212]Peled A, Ruiz A. Frequency domain data transmission using reduced computational complexity algorithms. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP'80. vol 5, Apr 1980:964-967P
    [213]Muquet B, Zhengdao Wang, Giannakis G B, de Courville M, Duhamel P. Cyclic prefixing or zero padding for wireless multicarrier transmissions? Communications, IEEE Transactions on, vol 50, no 12, Dec 2002:2136-2148P
    [214]Athaudage C R N, Angiras R R V.Sensitivity of FFT-equalised zero-padded OFDM systems to time and frequency synchronisation errors. Communications, IEE Proceedings-, vol.152, no.6, Dec 2005:945-951P
    [215]Papadimitriou P D, Georghiades C N. Zero-padded OFDM with improved performance over multipath channels. Consumer Communications and Networking Conference,2004. CCNC 2004. First IEEE, Jan 2004:31-34P
    [216]T Araujo, R Dinis Proc. Efficient Detection of Zero-Padded OFDM Signals with Large Blocks. SIP2006-8th IASTED International Conference on Signal and Image Processing, Honolulu, Hawaii, USA,2006
    [217]H Steendam, M Moeneclaey. Different Guard Interval Techniques for OFDM:Performance Comparison.6th International Workshop on Multicarrier Spread Spectrum, MC-SS'07, Herrsching, Germany, May 2007:11-24P
    [218]Molisch A F. Ultrawideband propagation channels-theory, measurement, and modeling. Vehicular Technology, IEEE Transactions on, vol 54, no.5, Sept 2005:1528-1545P
    [219]Czink N, Yin X, Ozcelik H, Herdin M, Bonek E, Fleury B H. Cluster Characteristics in a MIMO Indoor Propagation Environment. Wireless Communications, IEEE Transactions on, vol 6, no 4, April 2007:1465-1475P
    [220]W Li. Estimation and tracking of rapidly time-varying broadband acoustic communication channels [D]. MIT/WHIO Joint Program, Massachusetts Inst. Technol., Cambridge, MA,2005
    [221]Rontogiannis A A, Berberidis K. Bandwidth efficient transmission through sparse channels using a parametric channel-estimation-based DFE [decision-feedback equaliser]. Communications, IEE Proceedings-,vol.152, no.2, April 2005:251-256P
    [222]Carbonelli C, Vedantam S, Mitra U. Sparse Channel Estimation with Zero Tap Detection. Wireless Communications, IEEE Transactions on, vol 6, no 5,May 2007:1743-1763P
    [223]Kocic M, Brady D, Stojanovic M. Sparse equalization for real-time digital underwater acoustic communications. OCEANS'95 MTS/IEEE. Challenges of Our Changing Global Environment, Conference Proceedings, Oct 1995:1417-1422P
    [224]M Stojanovic. OFDM for Underwater Acoustic Communications:Adaptive Synchronization and Sparse Channel Estimation, in Proc. International Conference on Acoustics, Speech, and Signal Processing (ICASSP'08), April 2008
    [225]E Camdes, J Romberg, T Tao. Stable signal recovery from incomplete and inaccurate measurement. Commun. Pure Appl Math, Mar 2006
    [226]Malioutov D, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays. Signal Processing, IEEE Transactions on, vol 53, no 8, Aug 2005:3010-3022P
    [227]Cotter S F, Rao B D. The adaptive matching pursuit algorithm for estimation and equalization of sparse time-varying channels. Signals, Systems and Computers,2000. Conference Record of the Thirty-Fourth Asilomar Conference on, vol.2,2000:1772-1776P
    [228]Karabulut G Z, Yongagoglu A. Estimation of time-varying channels with orthogonal matching pursuit algorithm. Advances in Wired and Wireless Communication,2005 IEEE/Sarnoff Symposium on, April 2005:141-144P
    [229]W U Bajwa, A M Sayeed, R Nowak. Learning sparse doubly-selective channels.in Proc.46th Annu. Allerton Conf. Communication, Control, and Computing, Monticello, IL, Sep 2008
    [230]W U Bajwa, A M Sayeed, R Nowak. Sparse multipath channels:Modeling and and estimation. Proc.13th IEEE Digital Signal Processing Workshop, Marco Island, FL, Jan 2009
    [231]Weichang Li, Preisig J C. Estimation of Rapidly Time-Varying Sparse Channels. Oceanic Engineering, IEEE Journal of, vol.32, no.4, Oct 2007:927-939P
    [232]Bridget Benson, Ali Irturk, Jung Uk Cho, Ryan Kastner. Survey of Hardware Platforms for an Energy Efficient Implementation of Matching Pursuits Algorithm for Shallow Water Networks. International Workshop on Underwater Networks (WUWNet), September 2008
    [233]Taehyuk Kang, Litis R A. Matching pursuits channel estimation for an underwater acoustic OFDM modem. Acoustics, Speech and Signal Processing,2008. ICASSP 2008. IEEE International Conference on, 2008:5296-5299P
    [234]Catipovic J A, Freitag L E. Spatial diversity processing for underwater acoustic telemetry. Oceanic Engineering, IEEE Journal of, vol 16, no 1, Jan 1991:86-97P
    [235]郭梯云,邬国扬,李建东.数字移动通信(修订本).人民邮电出版社,2001:286-292页
    [236]Gordon L.Stuber.裴昌幸等译.移动通信原理(第二版).电子工业出版社,2004:221-230页
    [237]Jalloh M, Das P, BER analysis of MRC-OFDM receiver with RF impairments and imperfect channel state information. Personal, Indoor and Mobile Radio Communications,2008. PIMRC 2008. IEEE 19th International Symposium on, Sept.2008:1-6P
    [238]Muhammad Imadur Rahman, Suvra Sekhar Das, Frank H P Fitzek, Ramjee Prasad. Pre- and Post-DFT Combining Space Diversity Receiver for Wideband Multi-Carrier Systems.in proc.8th International Symposium on Wireless Personal Multimedia Communications, WPMC'05, Aalborg Denmark, September 2005
    [239]Sugbong Kang. Antenna diversity techniques for orthogonal frequency division multiplexing(OFDM) wireless communications [D]. Purdue University, May 2005
    [240]Slimane S B. A low complexity antenna diversity receiver for OFDM based systems. Communications,2001. ICC 2001. IEEE International Conference on, vol 4,2001:1147-1151P
    [241]Defeng Huang, Letaief K B, Jianhua Lu. A receive space diversity architecture for OFDM systems using orthogonal designs. Wireless Communications, IEEE Transactions on, vol.3, no.3, May 2004:992-1002P
    [242]Okada M, Komaki S. Pre-DFT combining space diversity assisted COFDM. Vehicular Technology, IEEE Transactions on, vol 50, no 2, Mar 2001:487-496P
    [243]Muhammad Imadur Rahman, Klaus Witrisal, Suvra Sekhar Das, Frank H P Fitzek, Ole Olsen, Ramjee Prasad. Optimum Pre-DFT Combining with Cyclic Delay Diversity for OFDM Based WLAN Systems.in the proceedings of IEEE VTC Spring 2004, May 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700