水下目标的时间反转法声探测技术应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究工作以时间反转法为基础,针对复杂浅海环境中沉底、掩埋目标在强海底混响背景下的探测问题进行理论分析、仿真和实验验证,研究和讨论目标探测中亟待解决的关键技术问题。本论文包括了作者对时反法水下目标探测的理论和仿真研究工作,及在某基础声探测项目中的部分实验成果和工作内容。
     强混响干扰背景下的目标探测,尤其是掩埋目标探测一直是探雷声纳工作中检测和识别的重要工作内容之一。一般方法是通过对混响信号进行建模和预测处理,直接对混响干扰下的回波信号进行处理,滤除混响的干扰以达到增强信混比的效果。但由于混响的形成机理比较复杂,表象上具有随机性而统计上又存在一定的规律性,因此长期以来,虽然抗混响研究取得了一定的技术进步,但仍然有较大的不足需要进一步的研究和发展。
     时间反转法作为一种具有独特优点的自适应聚焦方法,可以在没有信道条件先验知识的情况下,实现自适应聚焦,同时对混响和噪声信号具有一定的抑制作用。这对于传统的主动声纳探测技术来说,具有一定的工程应用前景。尤其对于浅海水下目标探测,特定海域的强混响和强吸收的复杂环境使得时间反转法可以提高聚焦增益的作用更具吸引力。
     论文首先简单的介绍了时间反转法的起源、发展历程和研究现状,从总体上对时间反转法理论进行了回顾和总结;介绍了时间反转法在水下目标探测中的应用,以及国内外对这一方法的研究现状和取得的成果。通过对时间反转法水下目标探测的理论方法进行了分析和总结;论文基于射线声学的理论模型,对水下波导中的时反目标探测进行了理论分析和仿真验证,证明了时反法的可行性和稳健性,并进一步讨论和仿真验证了迭代时间反转法的原理和特性。
     其次通过对混响建模的仿真和计算,就时间反转法在沉底和掩埋条件下水下目标探测中抑制混响、增强回波的性能和效果进行了比较详细的分析,为工程应用奠定了理论和方法的基础;针对沉底和掩埋目标探测的特点讨论了噪声和混响对时反法的影响及时反法多目标探测的鲁棒性。
     然后论文针对掩埋目标声探测的强混响和弱回波信号的情况,利用匹配滤波和混沌信号处理的方法对回波信号进行处理,以检测和定位目标回波信号,从而能够以较短的时间窗截取和获得时反信号。对信号进行处理以降低混响强度和进行回波信号的提取,有利于提高低信混比条件下的时反处理的效果。因此,论文讨论了混响的混沌属性,利用混沌模型对混响序列进行建模,并在此基础上对混响背景下信号的混沌处理方法做了一定的分析研究,实现了对较低信混比条件下回波的检测和提取。
     最后论文通过信道水池实验,对信道水池条件下的单通道悬浮和掩埋小目标的时反探测进行了研究和分析,给出了单时反阵元时反法水下目标探测的分析结果,获得了一些实际工程应用时间反转镜系统目标探测的经验,其结果和结论对后续理论和应用研究具有一定的参考价值。并就工程中应用时反探测方法的系统方案以及面临的技术问题进行了设计和分析,为以后的实际工程应用打下了一定的基础。
The work of this thesis is based on the Time Reversal Theory. According to the problem of small target detection which is sunk on or buried in the seafloor in the strong reverberation background, we analyze and validate with theory and experiment about the essential problem of small target detection which is desired to be resolved in the complex shallow sea environment. Work of the paper includes theory analyzing and simulation about time reversal method on mine detection, and includes some experiment achievement and work in a certain acoustic detection foundation project.
     The problem of buried target detection in the strong reverberation environment is all along important study content. General methods are modeling or predicting process, which direct treat with reverberation signal. Then we can filter out reverberation signal and enhance signal-reverberation ratio. But, because of the complex forming mechanism of reverberation, it has randomness of the representation and regularity of the statistics. So a long time, although anti-reverberation of some of the technical progress has been made, but there are still large requirement for further research and development. Time reversal method has unique advantages as a self-adaptive focusing method with nothing prior knowledge of channel conditions, and it has inhibiting effect while reverberation and noise signals have a certain extent. So, time reversal method has good prospects of engineering application than traditional active sonar detection methods. Especially for mine detection in the shallow sea, it has strong attraction in the complex environment which has strong reverberation and strong absorption.
     Firstly, the paper has a brief introduction of the origin of time reversal method, the development and the status quo. The general theory of time reversal methods are reviewed and summarized, and the domestic and foreign researching status and achievements of this method are introduced. Based on ray acoustics theoretical model, the detection problem is analyzed and simulated about the target which in the underwater waveguide with time reversal method. It is proved that time reversal method is feasibility and robustness. And it need analyz and simulates further of the iterative time reversal method.
     Secondly, through simulation modeling and calculation of reverberation, the performance and effects of inhibiting reverberation and echo enhance of time reversal method about the sunk or buried target detection are more detailed analyzed. This laid a foundation of theory and method for further practical engineering application. The paper discusses the effects of noise and reverberation on the law and the robustness of a single target or multiple target detection by time reversal method.
     Thirdly, according to the strong reverberation and weak echo signal condition of buried target detection, the paper use match-filter and chaotic signal processing method for the time reversal processing to reduce reverberation intensity and signal extraction. The paper discusses the chaotic properties of reverberation, and uses chaotic model for the reverberation sequence modeling. Next, the paper do some analysis about the signal in the reverberation background based on the chaotic process method, and realize effective detection and extraction of target echo signal in the low signal-reverberation ratio background.
     Fourthly, this thesis study and analyze the experiment of time reversal detection of hanged and buried small target in the acoustic channel pool by single TRA (time reversal array) element, then get some result of underwater target detection, and achieve some useful experience about the practical engineering application of TRM (time reversal mirror). These result and conclusion have some reference value for further theory and application study.
     Finally, this thesis design and analyze the system programs and the essential technologies about time reversal detection method in the practical engineering application, and made some foundation for practical engineering application in the future. For the certain acoustic detection foundation project, a sixth channel arbitrary wave generator is designed and implementated.
引文
[1]潘翔.浅海沉底小目标时的反探测研究.浙江大学学报(工学版). 2009: 43(7). 1187-1191页.
    [2] M.Fink. Time-Reversed Acoustic. Scientific American[J]: November 1999, 91-97P.
    [3] R.A.Fisher(Ed). Optical Phase Conjugation. Academic Press. N, Y, 1983.
    [4] H.C.Song; W.A.Kuperman; W.S.Hodgkiss. Recent Result from Ocean Acoustic Time Reversal Experiments. JASA: 96. 3257-3262P.
    [5] D.R. Jackson; D.R.Dowling. Phase conjugation in underwater acoustic. JASA[J]: 91 3257-3277P.
    [6] Dowling; Jackson. Narrow-band performance of phase-conjugate arrays in dynamic random media. JASA: 94, 1716-1718P.
    [7] G.F.Edelmann; T.Akal; W.S.Hodgkiss; S.Kim; W.A.Kuperman; H.C.Song. An Initial Demonstration of underwater acoustic communication using time reversal. IEEE Journal of Oceanic Engineering, 27(3), 602-609P, 2002.
    [8] Dr. David M. Pierson; Dr. David E. Aspnes. Breakthrough Mine-Detection Turns Ocean Floor“Transparent”. News Release. 2004.
    [9]魏炜,汪承灏.有平界面存在时时间反转法的自聚焦性能.应用声学. 1999:18(3).
    [10]汪承灏,魏炜.改进的时间反转法用于有界面时超声目标探测的鉴别.声学学报. 2002:27(3).193-197页.
    [11]张碧星,陆铭慧,汪承灏.用时间反转法在水下波导介质中实现自适应聚焦的研究.声学学报. 2002:27(6).541-548页.
    [12]魏炜.超声时间反转法自适应聚焦和目标探测.中国科学院声学研究所博士论文. 1999.
    [13]陆铭慧.各向异性单晶硅中声波时间反转自适应聚集.中国声学学会2003年青年学术会议[CYCA`03]论文集. 273-275页.
    [14]魏炜.固体时间反转法的声束自聚焦.声学学报.2000:25(4). 340-344页.
    [15]汪素萍.被动时反聚焦技术的实验研究.应用声学. 291-293页.
    [16]郭国强.基于时反处理的混响抑制技术研究.西北工业大学硕士学位论文. 2007.
    [17]生雪莉.垂直阵时反被动定位方法及其改进技术研究.声学技术.2009: 28(2). 201-203页.
    [18]马敬广.虚拟时反镜在水声被动测距中的应用.应用声学.2007:26( 3).
    [19]殷敬伟.无源时间反转镜在水声通信中的应用.声学学报.2007:32(4). 362-368页.
    [20]陆铭慧.时间反转法应用于水下通信中BPSK信号解扩处理.中国声学学会2002年全国声学学术会议论文集. 209-210页.
    [21]生雪莉.时间反转镜用于被动检测技术的研究.应用声学.2005:24(6). 351-358页.
    [22]生雪莉.矢量反转镜时空滤波技术及其在水声中的应用.哈尔滨工程大学博士学位论文.2005.
    [23]宋春云.基于混沌理论的水中混响建模及应用研究.哈尔滨工程大学博士学位论文. 2008.
    [24]郝柏林.从抛物线谈起—混沌动力学引论[M].上海:上海科技教育出版社. 1996: 16-18页.
    [25]黄润生.混沌及其应用[M].武汉:武汉大学出版社,2000:182-183页.
    [26]陈奉苏.混沌学及其应用[M].北京:中国电力出版社,1998.
    [27]郭少男.强杂波下微弱目标检测技术研究.电子科技大学硕士学位论文. 2006.
    [28]杜鹏飞,王永良,孙文峰.混沌海杂波背景下的弱信号检测.系统工程与电子技术[J].2002,24(7):65-68页.
    [29]蔡志明,郑兆宁,杨士莪.水中混响的混沌属性分析[J].声学学报. 2002:27(6):497-501页.
    [30]李超.用时间反转处理实现水中小目标探测的空_时逆滤波.浙江大学硕士学位论文.2006.
    [31]王宁.简正波耦合机理与广义射线简正波转换.中国海洋大学学报.2004: 34(5). 821-825页.
    [32] Knut Solna. Focusing of time-reversed reflections. IOP Publishing Ltd. 2002 (12) 1-21P.
    [33] W.A.Kuperman; W.S.Hodgkiss; H.C.Song; T.Akal; C.Feria; D.R.Jackson. Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror. JASA: 103(1), 25-40P, 1998.
    [34]惠俊英.水下声信道.国防工业出版社. 1992.
    [35] R.J.尤立克.水声原理(第三版)[M].哈尔滨船舶工程学院出版社. 1990.
    [36]唐俊峰.基于射线声学理论的三维声场计算研究.哈尔滨工程大学硕士学位论文. 2003.
    [37]范敏毅.水下声信道的仿真与应用研究.哈尔滨工程大学博士学位论文. 1999.
    [38]王德俊.水下声信道特性仿真研究.哈尔滨工程大学硕士学位论文.2001.
    [39]汤渭霖.声纳目标回波的亮点模型.声学学报.1994:19(2).92-99页.
    [40]雷亚辉.时间反转法水下目标探测技术研究.哈尔滨工程大学硕士学位论文. 2005.
    [41]生雪莉.信道冲激响应函数和频响函数在水声信号处理中的应用.声学技术.2004(Z1):227-229页.
    [42] Claire Prada; Jean-Louis; Mathias Fink. The Iterative Time Reversal Process Analysis of the Convergence. JASA: 97(1), 62-71P, 1995.
    [43] H.C.Song; W.A.Kuperman; W.S.Hodgkiss. Iterative time reversal in the ocean. JASA: 105(6), 3176-3184P, 1999.
    [44] Karim G Sabra. Experiment demonstration of iterative time-reversed reverberation focusing in a rough waveguide.JASA: 2006, 120(3).
    [45] H.C.Song; W.A.Kuperman; W.S.Hodgkiss. Iterative time reversal in the ocean. JASA: 105(6), 3176-3184P, 1999.
    [46] Liliana Borcea; George Papanicolaou; Chrysoula Tsogka. Imaging and time reversal in random media. Computational and Applied Mathematics: December 15, 2002.
    [47]李春晓.干扰环境下窄带信号时反算子分解聚焦性能分析.哈尔滨工程大学学报.2008:29(8). 867-871页.
    [48] Prada.Claire; Maneville.Sebastien; Spoliansky.Dimitri; Fink.Mathias. Decomposition of the time reversal operator: Detection and selective focusing on two scatterers. JASA: 99(4), 2067P, 1996.
    [49]李云飞,杨坤德.利用时间反转技术增强沉积层声波透射.计算机仿真. 2008:25(10).308-311页.
    [50]杨坤德.掩埋物体的小掠角散射声场与回波信混比.声学技术.2007.26(6). 1081-1088页.
    [51]阎丽明.时间反转处理用于掩埋目标检测.声学学报.2008:33(6).542-547页.
    [52]孙文俊.主动声呐混响模型与抗混响信号处理.西北工业大学硕士学位论文. 2006.
    [53]孙琳.浅水环境中时反镜聚焦性能的研究.哈尔滨工程大学硕士论文. 2007.
    [54] A.D惠伦.噪声中的信号检测[M].北京:电子工业出版社. 1990.
    [55] Karim G.Sabra. Broadband performance of time-reversing arrays in shallow water. PhD Dissertation, the University of Michigan, 2003.
    [56]刘伯胜,雷家煜.水声学原理.哈尔滨工程大学出版社. 1993.
    [57]朱埜.主动声呐检测信息原理.海洋出版社.1990.
    [58]丁涛,周惠成.混沌时间序列局域预测方法[J].系统工程与电子技术,2004,26(3),338-340页.
    [59]张家树,肖先赐.混沌时间序列的Volterra自适应预测[J].物理学报,2000, 49(3), 403-407页.
    [60]张家树,肖先赐.混沌时间序列的自适应高阶非线性滤波预测[J].物理学报,2000, 49(7), 1221-1227页.
    [61]张家树,肖先赐.用一种少参数非线性自适应滤波器自适应预测低维混沌时间序列[J].物理学报,2000, 49(12),2333-2339页.
    [62]范剑青,姚琦伟.非线性时间序列——建模、预报和应用[M].北京:高等教育出版社. 2005:12页.
    [63]甘建超,肖先赐.基于相空间领域的混沌时间序列自适应预测滤波器(1)非线性自适应滤波[J].物理学报,2003,52(5),1096-1101页.
    [64]甘建超,肖先赐.基于相空间领域的混沌时间序列自适应预测滤波器(2)非线性自适应滤波[J].物理学报,2003,52(5),1102-1107页.
    [65]谢红梅.基于混沌理论的信号处理方法研究.西北工业大学博士论文(2003) 43页.
    [66] P. Zakarauskas; J.M. Ozard; Complexity analysis of partitioning nearest neighbor search algorithms. IEEE Trans. Pattern Anal. Mach.Intell. 18 (6) (1996): 663–668P.
    [67]魏炜,汪承灏.有平界面存在时时间反转法的自聚焦性能.应用声学. 1999:18(3).
    [68] Pierson; David M. Buried Object Detection Using Time-Reversed Acoustics. PhD Dissertation, North Carolina State University, 2003.
    [69]李鹏.时间反转法主动声探测技术研究.哈尔滨工程大学硕士学位论文.2009.6.
    [70] D. Cassereau; M. Fink; Time-reversal focusing through a plane interface separating two fluids, J. Acoust. Soc. Am: 96, 3145–3154P.
    [71] D.H.Chambers; J.V.Candy; S.K.Lehman. Time reversal and the spatio-temporal matched filter. JASA: 116(3), 1348-1350P, 2001.
    [72] S.Kim; G.F.Edelman; W.A.Kuperman; W.S.Hodgkiss; H.C.Song. Spatial resolution of time-reversal arrays in shallow water. JASA: 110(2), 820-829P, 2001.
    [73] S.Kim; W.A.Kuperman; W.S.Hodgkiss; H.C.Song; G.F.Edelman. Robust time reversal focusing in the ocean. JASA: 114(1), 145-157P, 2003.
    [74] J.F.Lingevitch; H.C.Song; W.A.Kuperman. Time reversed reverberation focusing in a waveguide. JASA: 111(6), 2609-2614P.
    [75] H.C.Song; S.Kim; W.S.Hodgkiss; W.A.Kuperman. Environmentally adaptive reverberation nulling using a time reversal mirror. JASA: 116(2), 762-768P, 2004.
    [76] K.G.Sabra; D.R.Dowling. Effects of time-reversing array deformation in anocean wave guide. JASA: 115(6), 2844-2847P, 2004.
    [77] K.B.Smith; A.A.M.Abrantes; A.Larraza. Examination of time-reversal acoustics in shallow water and applications to noncoherent underwater communications. JASA: 113(6), 3095-3110P, 2003.
    [78] M.Heinemann; A.Larraza; K.B.Smith. Experimental studies of application of time-reversal acoustics to noncoherent underwater communications. JASA: 113(6), 3111-3116P, 2003.
    [79] W.S.Hodgkiss; H.C.Song; W.A.Kuperman; T.Akal; C.Feria; D.R.Jackson. A long-range and variable focus phase-conjugation experiment in shallow water. JASA: 105(3), 1597-1604P, 1999.
    [80] J.S.Kim; W.S.Hodgkiss; W.A.Kuperman; H.C.Song. Null-broadening in a waveguide. JASA: 112(1), 189-197P, 2002.
    [81] J.S.Kim; H.C.Song; W.A.Kuperman. Adaptive time-reversal mirror. JASA: 109(5), 1817-1825P, 2001.
    [82] W.A.Kuperman; W.S.Hodgkiss; H.C.Song; P.Gerstoft P.Roux; T.Akal; C.Ferla; D.R.Jackson. Ocean acoustic time-reversal mirror. Ecua, 1998.
    [83] H.C.Song. Enviromentally adaptive reverberation nulling using a time reversal mirror [J].JASA, 2004, 116(2).
    [84] Carsten; Draeger; Jean-Christian. One-channel time-reversal in chaotic cavities: Experimental results.JASA: 1999.
    [85] Eugeniusz Kozaczka. Buried Object Detection Using Underwater nonlinear acoustic.
    [86] A.Boh Ruffin; Joan Decker; Laurent Sanchez-Palencia; Lenaic Le Hors.Time reversal and object reconstruction with single cycle pulses. Optics Letters: 26(10), 2001.
    [87] Jean-Louis Thomas; Francois Wu; Mathias Fink. Time Reversal Focusing Applied to Lithotripsy. Untrasonic Imaging: 18, 106-121P, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700