迟滞时间差型磁通门传感器及磁测装置的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁通门传感器是弱磁场测量应用中较为重要的器件,其原理服从法拉第电磁感应定律,其模型类似于变压器模型。根据电磁场理论,利用磁芯的磁滞特性,磁通门将磁信号最终转换成便于测量的电信号。目前,大多数磁通门都是通过检测其输出信号的偶次谐波幅度来测量磁场的,其灵敏度受传感器噪声的制约,需采用差分等能够抑制奇次谐波噪声或带有补偿线圈的探头结构。同时由于传统磁通门需要检测偶次谐波幅度,因而其检测电路较为复杂,后续数据处理也较为烦琐。要提高磁通门的灵敏度、分辨力及精度等性能指标,除了改进制作工艺,提高制作技术水平外,还必须从磁通门的原理入手研究新的检测机理。
     本文提出了迟滞时间差检测机理,系统地建立了迟滞时间差型磁通门的数学模型,并依此机理完成新型磁通门实体的制作,最终实现高灵敏度、高分辨力的磁测装置的设计。根据电磁场理论建立迟滞时间差型磁通门传感器模型,并推导迟滞时间差同励磁场及待测磁场的关系以及灵敏度同励磁幅度和频率的关系。以迟滞时间差为检测对象,采用高导磁率、高矩形比的钴基非晶合金为磁敏感材料,运用PCB工艺,制作完成一种单磁芯探头结构的新型磁通门传感器。以迟滞时间差型磁通门实体为磁探头,文中完成便携式弱磁测量装置的设计,并实现-4×104nT~+4×104nT弱磁场的标定,其分辨力达到60nT。同传统磁通门相比,传感器的探头结构得到很大的简化,体积有效地减小,易于微型化;检测电路简单,磁测装置的体积也大为减小,易于便携式测量;数据处理简单,测量周期短;在传感器的体积和功耗同时降低的情况下,可以使灵敏度和分辨力等性能指标达到理想。
With modern technological advancing, magnetic sensors are developing towards high sensitivity, high resolution, miniature and intelligence. As one of the most important devices in the detection of weak magnetic field, fluxgate magnetic sensor plays a major role. It can measure the weak magnetic field that the range is about 10"10T~10"4T and the resolution is about 10"11 T~10"9T, and also can detect the gradient field and vector field. It is widely used in mineral prospecting, archeology, magnetic field measurement, spacecraft attitude control and other industrial, military and medical fields, and has good development prospects.
     Traditional fluxgate sensor is based on the general principle of even harmonic which detects the output signal of the even harmonic amplitudes to calculate the measured magnetic field. Its sensitivity subjects to the constraints of fluxgate sensor noise, and requires the use of difference that can inhibit the probe noise or with a compensation coil for reducing the impact of noise. By the level of modern production technology and material constraints, the traditional fluxgates go into the bottleneck of the development.
     This article will study the design of a new type of fluxgate sensors (namely hysteresis time difference type fluxgate sensor) based on the hysteresis characteristics of magnetic materials and magnetic measurement device. We calculate the time difference between the positive and negative pulse of the induction voltage from fluxgate output, and we can attain the size and direction of the magnetic field. When the excitation current Ie drive magnetic core as the period Te, the core is periodically saturated, and the voltage induced of fluxgate output signal modulate by the magnetic permeability. When the fluxgate is exposed in the zero magnetic fields, the time of negative saturation state is the same with the time of positive saturation state. And therefore the induced voltage signal is a symmetric signal. The time interval between positive pulse and negative pulse is equal to the time between negative pulse and the next period pulse, and the time difference is zero. When the sensor is in the external weak magnetic environment, the time of positive saturation and negative saturation is not the same. Therefore, the induced voltage signal is an asymmetrical signal. The time interval between positive pulse and negative pulse is unequal to the time between negative pulse and the next period pulse, and so the time difference is non-zero. The detection circuit of magnetic measurement device is simpler than that of the traditional fluxgates. Which effectively reduces the size and power consumption, and data processing is also relatively simple. Fluxgate based on hystereis time difference can access to higher resolution and accuracy in the cases of significantly lower power consumption and volume.
     This paper introduces the background of the study subjects, the development and trend of domestic and foreign fluxgate instrument, and the purpose and significance of the hysteresis time difference magnetic fluxgate and magnetic measurement device are also proposed. In this paper, we also discuss the even harmonics theory, the structure and the measurement circuit of traditional fluxgate. The paper systematically discusses the theory of hysteresis time difference. According to Faraday's law of electromagnetic induction, we establish the mathematical model of the new fluxgate sensor, and derive the sensitivity expressions of the fluxgate to obtain the ways of optimization. With the combination of the simulation and experiment, we analyze the impacts of the driving signal waveform, amplitude and frequency on the sensor sensitivity. Sensor model simulations by using MATLAB tools are presented. We discuss in detail the structure of the sensor probe, core material and production processes on the sensor performance, and give the fluxgate sensor production program in combination with experiments. To hysteresis time difference for the detection of objects, adopting high permeability, high squareness Co-based amorphous alloy for the magnetic-sensitive material, and using PCB technology, we finally complete one single-core probe fluxgate based on hysteresis time difference. Using direct digital frequency synthesis technology, we design a high accuracy excitation signal generator whose waveform can be switched and the magnitude and frequency can be precisely adjusted. We complete the minimum system FPGA circuit, adaptive amplification as well as hysteresis shaping detection circuit. Power circuit, control and display circuit design and the design of magnetic devices system software are accomplished. According to calibration requirements, we design a high accuracy DC magnetic field device to achieve -4x10~4nT~ +4x10~4nT weak magnetic field measurement and calibration in certain circumstances, and test equipment noise, static characteristics, resolution and sensitivity performance.
     Finally, the paper summarizes the work. In order to improve the system design, we also present its follow-up design and research suggestions.
引文
[1]毛振珑.磁场测量[M].北京:原子能出版社,1985,1—10.
    [2]郭志友,孙慧卿.磁传感器及其应用[M].传感器技术,2002,21(7):56—57.
    [3]郭爱煌,傅君眉.磁通门技术及其应用[J]_传感器技术,2000.
    [4]张学孚,路怡良磁通门技术[M].北京:国防工业出版社,1995.
    [5]王钧钧.数字微弱磁传感器的设计[D].成都:电子科技大学硕士论文,2007.
    [6]张莹.基于单片机的数字磁通门传感器[D].西安:西北工业大学硕士论文,2006.
    [7]周行平.全数字磁通门的设计与实现[D].杭州:浙江大学硕士论文,2007.
    [8]徐游,电磁学[M].北京:科学出版社,2004.
    [9]唐列娟.磁场反馈式磁通门磁强计研究[D].武汉:华中科技大学硕士论文,2006.
    [10]杨会平.一维磁通门磁力计的研究[D].武汉:华中科技大学硕士论文,2005.
    [11]李大明,祝伯英.利用峰差法的一种新型磁通门磁强计[J].电测与仪表,1996—6:10,19.
    [12]严密,彭晓领.磁学基础与磁性材料[M].杭州:浙江大学出版社,2006.
    [13]R.C.奥汉德利.现代磁性材料原理和应用[M].北京:化学工业出版社,材料科学与工程出版中心,2002.
    [14]程德福,王君,凌振宝等.传感器原理及应用[M].北京:机械工业出版社,2008.
    [15]何焱,吴武臣,丁广玉.一种便于应用的磁通门技术[J].仪器仪表学报,2006,27(10).
    [16]王一平.电磁场与波理论基础[M].西安:西安电子科技大学出版社,2002.
    [17]涂疑,郭文生,曹大平.磁通门传感器的应用与发展[J].水雷战与舰船防护,2002:36—38.
    [18]丁鸿佳,隋厚堂.磁通门磁力仪和探头研制的最新进展[J].地球物理学进展,2004,19(4):743—745.
    [19]杨晓东,陈利敏.磁通门罗盘的数字信号处理方法[J].交通运输工程学报,2008,8(3):33—36.
    [20]翁孟超,杨志强,宣仲义.微型磁通门传感器的制备与测试研究进展[J].仪表技术与传感器,2008—6:9—11.
    [21]何静,李斌.基于二次谐波脉冲幅值法的磁通门[J].传感器与微系统,2007.
    [22]张莹,刘诗斌,刘子懿.基于单片机的数字磁通门传感器[J].传感器与微系统,2006.
    [23]何乃明.磁通门探测器的数值计算与仿真[J].仪器仪表学报,2002,23(2):157—160,165.
    [24]皇子平,王文斗.非线性含磁芯线圈的PSpice模拟[J].强激光与离子束,2004,16(8).
    [25]张东辉,严萍,高迎慧,孙鹞鸿.Pspice电路仿真中变压器模型的使用[J].电器应用,2007,26(1).
    [26]朱兆才.磁通门磁变仪状态函数对电磁转换函数测定值的影响[J].东北地震研究,2003,19(1).
    [27]李南,吕晓煜,岳喜展.微型磁通门传感器研究[J].电测与仪表,2007.
    [28]石志勇,王怀光,吕游.一种三探头磁通门传感器的设计[J].传感技术学报,2005.
    [29]王正华.磁通门测磁传感器的特性[J].上海交通大学,1992.
    [30]付鑫生,刘塞立,周静.磁通门测量原理与方法[J].测井技术,1992.
    [31]路怡良磁通门磁测仪的线路分析与设计[J].电测与仪表,1984.
    [32]林钢,杨会平,白彦峥,周泽兵.高精度空间磁通门磁力计[J].华中科技大学学报,2005.
    [33]谢子殿,朱秀,周鑫.磁通门信号处理电路的设计与研究[J].黑龙江科技学院学报,2003.
    [34]刘诗斌,段哲民,严家明.电流输出型磁通门传感器的灵敏度[J].仪表技术与传感器,2002.
    [35]顾伟,褚建新.基于磁导率分段线性化的单绕组磁通门原理研究[J].仪器仪表学报,2001.
    [36]P. Ripka ( Ed. ), Magnetic Sensors and Magnetometers, Artech, London, 2001.
    [37]J.Deak, A.H.Mikich, J.Slonczewski, R.H.Koch.A. low-noise single-domain fluxgate sensor[J].Appl.Phys.lett., 1996
    [38]B. Ando, S. Baglio, A.R. Bulsara, V. Caruso, S. Castorina, A new Readout Strategy for Fluxgate Sensor, IMTC2003, Vail, CO,USA, May 2003;20-22.
    [39]O. Dezuari, E. Belloy, S.E. Gilbert, M.A.M. Gijs, Printed circuit board integrated fluxgate sensor, Sens. Actuators 81 (2000) 200-203.
    [40]E. Belloy, S.E. Gilbert, O. Dezuari, M.Sancho, M.A.M. Gijs, A hybrid technology for miniatureized inductive applications, Sens. Actuators 85 (2000) 304-309.
    [41]A.R. Bulsara and C. Seberino, Signal detection via residence time asymmetry in noisy bistable devices, Physical Review E67, 016120(2003).
    [42]L. Gammaitoni, A. Bulsara, Noise activated nonlinear dynamic sensors, Phys.Rev. Lett.88230601 (2002).
    [43]P. Ripka, Review of magnetic fluxgate sensor, Sensors and Actuators A 33(1992)
    [44]G. Bertotti, Hysteresis in Magnetism, Academic Press, San Diego,1988.
    [45]F. Primdahl, The fluxgate magnetometer, J. Phys.E: Sci. Instrum. 12(1979): 241.
    [46]A.L.Geiler, V.GHarris, C.Vittoria, N.X.Sun. A quantitative model for the nonlinear response of fluxgate magnetometers[J].Journal of applied physics, 1999
    [47]Antonio Palacios, John Aven, Visarath In, Patrick Longhini, Andy Kho, Joseph D. Neff, Adi Bulsara, Coupled-core fluxgate magnetometerNovel configuration scheme and the effects of a noise contaminated external signal, Physics Letters A 367 (2007)25-34.
    [48]A. Tipek, P. Ripka, Terence O,Donnell, J. Kubik, PCB technology used in fluxgate sensor construction,Sensors and Actuators Al 15(2004)286-292.
    [49]J. Kubik, J. Vcelak, P. Ripka, On cross-axis effect of the anisotropic magnetoresi stive sensors, Sensors and Actuators A: Physical, Volume 129, Issues 1-2, 24 May 2006, Pages 15-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700