时间序列相空间重构数据挖掘方法及其在证券市场的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金融市场是融通资金的场所。金融市场实现了投资需求和筹资需求的对接,能有效的化解资本的供求矛盾。金融投资分析方法一直是金融领域的研究热点。随着金融市场的飞速发展,投资分析方法也得到不断的创新和进步。传统的时间序列模型的应用一方面依赖于某些假设条件,因而应用受到限制;另一方面,由于经济和商业时间序列的结构经常是逐渐变化的,应用结构固定的全局模型来描述并不十分合适。
     随着信息技术在金融行业的普及以及人们收集数据能力的大幅提高,在金融市场的飞速发展过程中,积累了海量的包含丰富信息的数据。数据挖掘方法为人们分析金融时间序列提供了新的思路和视野。本文以相空间重构技术为基础,以时间序列作为研究对象,分析面向时间序列数据的数据挖掘方法,并将研究结果应用于实际金融市场,以发现金融时间序列中隐含的规律、模式和知识,为市场分析和投资决策提供新的思路、方法和辅助决策信息。
     本文从研究所处的背景出发,详细讨论了数据挖掘技术以及时间序列数据挖掘与金融数据挖掘的相关研究现状,并分析了相空间重构的相关理论和方法。为应用相空间重构进行时间序列数据挖掘的可行性提供了理论基础和技术保障。
     通过对比时间序列模式挖掘的不同思路,本文指出时间序列数据挖掘框架TSDM所存在的问题。系统地提出了应用小波聚类进行序列时间模式挖掘的方法。应用小波变换的多分辨率特性和基于网格的划分方法,可以实现任意形状和不同精度的聚类。采用以事件指导的投资策略将方法应用于中国证券市场。结果表明,以时间模式预测事件为指导的投资策略能获得高于持有策略的收益;时间模式挖掘能有效识别事件点;事件序列与非事件序列存在显著差别。
     在讨论了嵌入定理和时间序列的可预测性的基础上,本文从现有模糊神经网络存在的问题入手,结合非线性的空间聚类方法EM算法,对原有TS模糊神经网络模型进行改进,提出了基于相空间重构的EM聚类模糊神经网络预测模型。通过对重构空间进行EM模糊聚类,实现数据对象的分类训练以及隶属度的计算,以减少输入规则的条数简化神经网络的结构。同时,将该模型分别应用于深成指数和上证指数。结果表明,该预测模型的预测误差低于传统的BP模型,有效地提高了预测精度。
     本文从序列异常的角度提出了时间序列的偏差异常检测方法。应用CC算法同时对嵌入维和嵌入延时进行估计进行重构以构造多维空间,应用偏差异常检测方法抽取异常模式,再通过符号离散化将问题转化为分类问题构建决策树实现异常的分类和预测。以决策树的分类标识为指导构建交易策略,在证券市场上进行了应用。结果表明,尽管在股市大势呈现下降趋势的情况下,应用分类标识为指导的交易策略仍能获得较高的收益。
     本文应用相空间重构技术将时间序列分割成长度相同的子序列集合,并将其映射到多维特征空间,从而将有序的时间序列一维数据挖掘问题转换成为多维空间的无序数据集合的挖掘问题。本文的研究不仅为金融时间序列分析提供了新的方法,也为数据挖掘技术提供了新的研究思路。
Financial market sets up a connection between the demands of investment and funding. It could resolve the contradiction between supply and demand of capital effectively. Analysis methods of investment are always the researching hotspot of financial field. With the rapid developments of the financial market, there comes lots of creation and progress in investment analysis. Traditional time sires models have two disadvantages, which could not be avoided. The one is that it depends on several hypothesis conditions. The other is that applying overall fixed model to describe the economic or commercial time series structures, which are changed with times gradually, is not perfectly applicable.
     With the popularization of information technology in financial field and significant improvement of people’s ability of collecting data, large amounts of data were accumulated, which were full of abundant information, while the rapid development of financial market. Data mining provides us new directions to analyze financial time series. Based on phase space reconstruction, This paper took time series as researching object to present time series data mining methods and apply these methods to financial market, in order to find the implicit rules, patterns and knowledge, so as to provide new directions, methods and accessorial information to market analysis and investment decision.
     Considering the researching background, this paper discussed the associated research of data mining technology, time series and financial time series data mining, separately. As following, the basic theory and methods of phase space reconstruction were analyzed in details. All of these provided the theoretical basis and technical feasibility to time series data mining based on phase space reconstruction.
     After contrasting the different means of time series pattern mining, we pointed out the problem of time series data mining framework TSDM, and presented the temporal patterns mining method based Wave Cluster systematically. By the multiresolution property of wavelet transformations and the grid-based partition method, it could detect arbitrary-shape clusters at different scales and levels of detail. We set up the investment strategy dictated by events that was predicted from temporal patterns and applied it to Chinese stock market. The result shows it would get the yield higher than buy-and-hold strategy. There is significant difference between the event series and non-event series. Mining temporal pattern could identify event effectively.
     After discussing the embedding theory and the time series forecasting, we improved original TS fuzzy neural network by means of EM (Expectation Maximization) method that is applicable to nonlinear space’s clustering, and presented a new forecasting model of fuzzy neural network combined with Expectation Maximization method based on phase space reconstruction. It could cluster the data object and compute the membership automatically, to reduce the number of rules and simplify the structure of neural networks by applying EM method to the input reconstructed space. We used it to make forecasts on stock market. The results show that this model could reduce the error of forecasts effectively and improve the system’s performance.
     We presented the sequential deviation detection method of time series derived from sequential outlier. We applied phase reconstruction CC method to estimate embedded dimension and embedded delay of time series and mapped time series into multi-dimension space. Extracted from multi-dimension phase space by the method of sequential deviation detection, outlier set was used to construct a decision tree in order to identify the kinds of outliers. According to the results of decision tree, a trading strategy was set up and applied it to Chinese stock market. The results show that, although in bear market, the strategy dictated by decision tree brought in considerable yield.
     This paper divided time series into the sub-series set which had the same length and mapped all these sub-series into multidimensional space, so as to turn the one dimensional ordered data problem of time series into data mining on out-of-order data sets of multidimensional space. The researches of the paper provided not only new methods to financial time series analysis, but also new directions to data mining research.
引文
[1] Agrawal R., Faloutsos C., Swami A. Efficient similarity search in sequence databases. In: Proc. 4th Intl. Conf. Foundations of Data Organization and Algorithms, Chicago: 1993, 69-84
    [2] Berndt J. D., Clifford J. Using dynamic time warping to find patterns in time series. In Working Notes of the Knowledge Discovery in Database Workshop, Seatle, WA: 1994, 359-370
    [3] Faloutsos C., Ranganathan M., Manolopoulos Y. Fast subsequence matching in time-series database. In: Proc of the ACM SIGMOD Intl Conf, Minniapolis, Minnesota: 1994, 419-429
    [4] Agrawal R., Lin K., Sawhney H. S. Fast similarity search in the presence of noise, scaling and translation in time series database. In: Proc Intl Conf on Very Large Database, Zurich, Switzerland: 1995, 490-501
    [5] Chan K. P., Fu A. W. Efficient time series matching by wavelets. In: Proceedings of the 15th IEEE International Conference on Data Engineering, Sydney: 1999, 126-133
    [6] Keogh E., Chu S., Hart D., et al. An Online Algorithm for segmenting time series. In: Proceedings of the IEEE International Conference on Data Mining, San Jose: 2001, 289-296
    [7] Guttman A. R-tree: A dynamic index structure of spatial searching. In: Proceedings of ACM SIGMOD, Boston: ACM Press, 1984, 47-57
    [8] Ciaccia P., Patella M., Mehrotra S., et al. M-tree: An efficient access method for similarity search in metric spaces. In: Proceedings of the 23th International Conference on Very Large Data Bases (VLDB), Athens, Greece: Morgan Kaufmann, 1997, 426-435
    [9] Sakurai Y., Yoshikawa M., Uemura S., et al. The A-tree: An index structure for high-dimensional spaces using relative approximation. In: Proceedings of the 26th International Conference on Very Large Data Bases (VLDB), Cairo, Egypt: 2000, 516-526
    [10] Agrawal R., Srikant R. Fast algorithms for mining association rules in large database. In: Proc. of the 20th Intl. Conf. on Very Large Data Base, Santiago, Chile: 1994, 487-499
    [11] Agrawal R., Imlinski T., Swami A. Fast Algorithm for association rules between sets of items in large database. In: Proc of ACM SIGMOD Intl Conf, Washington, DC, USA: 1993, 207-216
    [12] Bettini C., Wang X. S., Jajodia S. Mining temporal relationships with multiple granularities in time sequences. Data Engineering Bulletin, 1998, 21: 32-38
    [13] Agrawal R., Srikant R. Mining sequential patterns. In: Proc of Data Engineering Intl Conf, Taipei, Taiwan: 1995, 3-14
    [14] Mannila H., Toivonen H., Verkamo A. I. Discovering frequent episodes in Sequences. In Proc. of KDD95, Montreal, Canada: 1995, 210-21
    [15] Das G., Lin K., Mannila H., et al. Rule Discovery from Time Series. In: Proc. of the 4th Intl Conf. Of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998, 16-22.
    [16] Oates T. MSDD as a tool for classification. Research Report, Experimental Knowledge Systems Laboratory, Department of Computer Science, University of Massachusetts, Amherst, 24-29, 1994
    [17] 李斌, 谭立湘, 解光军, 等. 非同步多时间序列中频繁模式的发现算法. 软件学报, 2002, 13(3): 410-416
    [18] Zeng H. Q., Shen Z., Hu Y. F. Mining sequence pattern from time series based on inter-relevant successive trees model. In Proceedings of 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing: LNCS/LNAI, Spring-Verlag, Chongqing, China: 2003
    [19] Ozden B., Ramaswamy S., Siberschatz A. Cyclic association Rules. In: Proc of Data Engineering Intl. Conf, Florida, USA: 1998, 412-421
    [20] Han J, Gong W, Yin Y. Mining segment-wise periodic patterns in time-related database. In: Proc of Knowledge Discovery and Data Mining Intl Conf, New York, USA: 1998, 214-218
    [21] McCulloch W. S., Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin od Mathematical Biophysics, 5, 115-133, 1943
    [22] Rumelhart D.E, Hinton G.E, Williams R.J. Learning representations by backpropagating errors, Nature, 323, 533-536, 1986
    [23] 马超群, 高仁祥. 现代预测理论与方法. 长沙: 湖南大学出版社, 1999
    [24] 蒋宗礼. 人工神经网络导论. 北京: 高等教育出版社, 2002
    [25] Suykens J. A. K., Vandewale J. Least squares support vector machine classifiers. Neural processing Letters, 1999, (9): 293-300
    [26] Roobaert D. DirectSVM: A fast and Simple Support Vector Machine Perception.In: Proceedings of IEEE Signal Processing Society Workshop. Sydney, Australia: IEEE Press, 2000, 356-365
    [27] Schlkoph B., Smola A. J., Bartlett P. L. New support vector algorithms. Neural Computation, 2000, 12(5): 1207-1245
    [28] Suykens J. A. K., Branbanter J. D., Lukas L., et al. Weighted least square support vector machines: robustness and spare approximation. Neurcomputing, 2002, 48(1): 85-105
    [29] Hawkins D. Identification of Outliers. Chapman and Hall, London, 1980
    [30] Jorma L., Martti J., Erna K. Informal identification of outliers in medical data. Intelligent Data Analysis in Medicine and Pharmacology, Berlin, 2000
    [31] Markos M., Sameer S. Novelty detection: A review (Part 1: Statistical Approaches), http://www.dcs.ex.ac.uk/research/pann/pdf/pann_SS_087.PDF, 2001-01-30
    [32] Knorr E. M., Ng R. T., Tucakov V. Distance-based outliers:Algorithms and applications. VLDB Journal:Very Large Databases,2000. 8(3): 237-253
    [33] Ramaswamy S., Rastogi R., Shim K. Efficient algorithms for mining outliers from large data sets. In: Proceedings of the ACM SIGMOD Conference, Dallas, ACM Press, 2000. 427-438
    [34] Bay S. D., Schwabacher M. Mining distance-based outliers in near linear time with randomization and a simple pruning rule. SIGKDD ’03, Washington, DC, USA, 2003. 29-38
    [35] Arning A., Agrawal R., Raghavan P. A linear method for deviation detection in large databases. In: Proc. Intl. Conf. Data Mining and Knowledge Discovery, Philadelphia, PA: 1999, 164-169
    [36] Breunig M. M., Kriegel H. P., Ng R. T., et al. LOF:Identifying density-based local outliers. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, Texas, U.S.A., 2000. 93-104
    [37] Anny L. C., Ada W. F. Enhancements on Local Outlier Detection. In: The 7th Int Database Engineering and Applications Symposium. Hong Kong, 2003. 298-307
    [38] Papadimitriou S., Kitagawa H., Gibbons D. B., et al. LOCI: Fast Outlier Detection Using the Local Correlation Integral. In: Proc of IEEE 19th International Conference on Data Engineering (ICDE'03), Bangalore, India, 2003, 315-326
    [39] Aggarwal C. C., Yu P. Outlier Detection for High Dimensional Data. In: Proc.of ACM SIGMOD'2001, 219-234
    [40] Angiulli F., Pizzuti C. Fast Outlier Detection in High Dimensional Spaces. In: Proccedings of the 6th European Conference on the Principles of Data Mining and Knowledge Discovery,2002: 15-16
    [41] Dantong Y., Gholamhosein S., Aidong Z. FindOut: Finding outliers in very Large Datasets. Knowledge and Information Systems, 2002 (4): 387-412
    [42] Bagnall A. J., Janakec G., Zhang M. Clustering time series from mixture polynomial models with discretised data. Technical Report CMP-C03-17, School of Computing Sciences, University of East Anglia, 2003
    [43] Jagadish H. V., Koudas N., Muthukrishnan S. Mining deviants in a time series database. In: Proceedings of the 25th VLDB Conf, Edinburgh, Scotland: 1999, 102-113
    [44] Yang H. Q., Huang K. Z., Chan L. W., et al. Outliers treatment in support vector regression for financial time series prediction. In: Proceedings of ICONIP 2004, 1260-1265
    [45] Yamanishi K., Takeuchi J. A unifying framework for detecting outliers and change points from non-stationary time series data. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press. 2002: 676-681
    [46] Shahabi C., Tian X., Zhao W. Tsa-tree: A wavelet-based approach to improve the efficiency of multi-level surprise and trend queries. In: Proceedings of the 12th International Conference on Scientific and Statistical Database Management. Washington: IEEE Conputer Society. 2000: 55-68
    [47] Keogh E., Lonardi S., Chiu W. Finding surprising patterns in a time series database in linear time and space. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM Press. 2002: 550-556
    [48] Povinelli, R. J. Identifying Temporal Patterns for Characterization and Prediction of Financial Time Series Events, Temporal, Spatial and Spatio-Temporal Data Mining, 2000, 46-61
    [49] Povinelli, R. J., Xin F. Data Mining of Multiple Nonstationary Time Series, Artificial Neural Networks in Engineering, Proceedings, 1999, 511-516
    [50] David H. D., Povinelli R. J. A Temporal Pattern Approach for Predicting Weekly Financial Time Series. Artificial Neural Networks in Engineering, St. Louis, Missouri, 2003, 707-712
    [51] Last M., Klein Y., Kandel A. Knowledge Discovery in Time Series Database.IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2001, 31(1): 160-169
    [52] Leigh W., Modani N., Purvis R. Stock market trading rule discovery using technical charting heuristics. Expert System with Applications, 2002, 23: 155-159
    [53] Yi-Fan Wang. Mining Stock Price using Fuzzy Rough Set System. Expert Systems with Applications, 2003, 24: 13-23
    [54] Christopher J. N. Optimal technical trading rules in equity markets. International Review of Economics and Finance, 2003, 12: 69-87
    [55] Fu-lai Chung, Tak-chung Fu, Robert Luk, etc. Evolutionary Time Series Segmentation for Stock Data Mining. IEEE, In: Proceedings of 2002 IEEE International Conference, 2002: 83-90
    [56] Fu-lai Chung, Tak-chung Fu, Robert Luk, etc. An evolutionary approach to pattern-based time series segmentation. IEEE Transactions on Evolutionary Computation, 2004, 8(5): 471-489
    [57] Zbigniew R. S., Siebes A. Measuring time series’ similarity through large singular features revealed with wavelet transformation. DEXA Workshop 1999: 162-166
    [58] Trippi R. R., Turban E. Neural Networks in Finance and Investing. McGraw Hill- Irwin Publishing, 1996
    [59] Yi-Fan Wang. Predicting Stock Price using Fuzzy Grey Prediction System. Expert systems with Applications, 2002, 22: 33-39
    [60] Yi-Fan Wang. On-Demand Forecasting of Stock Prices using a Real-Time Predictor. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(4): 1033-1037
    [61] Kim K. Financial time series forecasting using support vector machines. Neurocomputing, 2003, 55: 307-319
    [62] Cao L. J., Francis E. H. Support Vector Machine With Adaptive Parameters in Financial Time Series Forecasting, IEEE Transations on Neural Networks, 14(6) 2003
    [63] Valeriy V., Gavrishchaka S., Ganguli B. Volatility forecasting from multiscale and high-dimensional market data, Neurocomputing 55 (2003) 285-305
    [64] Kalpakis K., Gada D., Puttagunta V. Distance measure for effective clustering of ARIMA Time series. In: Proc of The IEEE International Conference on Data Mining. San Jose, CA, 2001, 273-280
    [65] Xiong Y. M., Yeung D. Y. Mixture of ARMA models of model-based time series clustering. In: Proc of the IEEE International Conference on Data Mining. Maebashi City, Japan, 2002, 717-720
    [66] Fung G. P. C., Yu J. X., Lam W. News sensitive stock trend prediction. PAKDD, 2002, 481-493
    [67] Peramunetilleke D., Wong R. K. Currency exchange rate forecasting from news headlines. In: Proceedings of 3th Australasian Database Conf, Melbournce, Australia, 2002
    [68] Ping-Feng Pai, Chih-Sheng Lin, A hybrid ARIMA and support vector machines model in stock price forecasting, Omega 33, 2005, 497-505
    [69] Fama E. F. The behavior of stock market prices. Journal of Business, 1965, 38: 34-105
    [70] Fama E. F. Efficient Capital Markets: A review of theory and empirical work. Journal of Finance, 1970, 25(5): 383-417
    [71] 杨朝军, 蔡明超. 上海股票市场弱式有效性实证分析. 上海交通大学学报, 1998, 32(3): 65-70
    [72] 范龙振, 张子刚. 深圳股票市场的弱有效性. 管理科学学报, 1998, 12(1): 35-38
    [73] 张兆国, 桂志兵, 黄玮. 深圳股票市场有效性实证研究. 武汉大学学报, 1999, 6: 76-80
    [74] 俞乔. 市场有效、周期异常与股价波动. 经济研究, 1994, 9: 43-50
    [75] 闫冀楠, 张维. 上海股市 EMH 实证检验. 系统工程学报, 1997, 12(3): 49-56
    [76] 王哲, 王春峰, 顾培亮. 小波分析在股价数据分析中的应用. 系统工程学报, 1999, 14(3): 286-289
    [77] 张亦春, 周颖刚. 股市弱式有效吗? 金融研究, 2001, (3): 34-40
    [78] 丘宜干. 中国股市是否达到弱式有效. 东南学术, 2001, (1): 46-53
    [79] 许涤龙, 王珂英. 上海股市有效性与可预测性并存的实证研究. 经济问题, 2001, (11): 2-4
    [80] 许涤龙. 深圳股市有效性与可预测性并存的实证研究. .经济问题, 2003, (7): 37-39
    [81] Zvi Bodie, Alex Kane, Alan J. Marcus, 朱宝宪, 吴红, 赵冬青等(译). 投资学(第 5 版). 北京: 机械工业出版社, 2003
    [82] Box G. P., Jenkins G. M. Time Series Analysis: Forecasting and Control. Halden- Day, San Francisco, 1976
    [83] Mandelbrot B. The variation of certain speculative price. Journal of Business,1963, 36:394-419
    [84] Engle R. F. Autogressive conditional heteroskedasticity with estimates of the variance of UK inflation. Econometrica, 1982, 50: 987-1008
    [85] Bollerslev T. Generalized autogressive conditional heteroskedasticity. Journal of Econometrics, 1986, 31: 307-327
    [86] Chen M. S., Han J., Yu P. S. Data mining: An overview from a database perspective. IEEE Trans. On Knowledge and Data Eng., 1996, 8(6): 866-884
    [87] Shapiro G. P., Frawley W. J. Knowledge Discovery in Databases. AAAI/MIT Press, 1991
    [88] Jiawei Han, Micheline Kamber, 范明, 孟小峰(译). 数据挖掘概念与技术. 北京: 机械工业出版社, 2003
    [89] Fayyad U., Uthurusamy R. Data mining and knowledge discovery in database. Communications of the ACM, 1996, 39(11): 204-211
    [90] 史忠值. 知识发现. 北京: 清华大学出版社, 2002
    [91] Olivia P. R., 朱扬勇, 左子叶, 张忠平(译). 数据挖掘实践. 北京: 机械工业出版社, 2003
    [92] 劭峰晶, 于忠清. 数据挖掘原理与算法. 北京: 水利水电出版社, 2003
    [93] 陈文伟, 黄金才. 数据挖掘技术. 北京: 北京工业大学出版社, 2002
    [94] Takens F. Determining strange attractors in turbulence, Lecture Notes in Math, 1981, 898: 361-381
    [95] 吕金虎, 陆君安, 陈士华. 混沌时间序列分析及其应用. 武汉: 武汉大学出版社, 2002
    [96] Li T, York J.A. Periods 3 implies chaos. Amer. Math. Monthly. 1975, 82: 985-992
    [97] Devaney R. I. An introduction to chaotic dynamical systems. Benjamin/ Cummings, Menlo Park, Ca, 1985
    [98] Ruelle D., Takens F. On the nature of turbulence. Commun. Math. Phys. 1971, 20: 167-192
    [99] Wolf A., et al. Determining Lyapunov exponents from a time series. Physica D, 1985, 16: 285-317
    [100] Barana G., Tsuda I. A new method for computing Lyapunov exponents, Phys. Lett. A, 1993, 175: 421-427
    [101] Rosenstein M. T., Collins J. J., De luca G. J. A practical method for calculating largest Lyapunov exponents form small data set. Phys D, 1993, 65: 117-134
    [102] 张筑生. 微分动力系统原理. 北京: 科学出版社, 1987
    [103] 陈士华, 陆君安. 混沌动力学初步. 武汉: 武汉水利水电大学出版社, 1998
    [104] 张锁春. 现代振荡反应的数学理论和数值方法. 郑州: 河南科学技术出版社, 1989
    [105] Packard N. H., Crutchfield J. P., Farmer J. D., et al. Geometry from a time series, Phys. Rev, Lett, 1980, 45: 712-716
    [106] Broomherd D. S. Extracting qualitative dynamics from experimental data. Phys D, 1987, 20: 217-236
    [107] Vatutard R, Yiou P, Ghil M. Singular-spectrum analysis: A toolkit for short noisy chaotic signals. Physica D, 1992, 58: 95-126
    [108] Mees A. I., Rapp P. E. Singular-value decomposition and embedding dimension. Phys. Rev. A, 1987, 36: 340-346
    [109] Palus M., Dvorak I. Singular-value decomposition in attractor reconstruction: pitfalls and precaution. Physica D, 1992, 55: 221-234
    [110] Kennel M. B., Brown R., Abarbanel H. D. I., et al. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 1992, 45(6): 366-381
    [111] Buzug T, Pfister G. Comparison of algorithms calculating optimal embedding parameters for delay time coordinates. Phys D, 1992, 58: 127-137
    [112] Aleksic Z. Estimating the embedding dimension. Physica D, 1991, 52: 362-368
    [113] Buzug T., Pfister G. Optimal delay time and embedding deimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractor. Phys Rev A, 1992, 45: 7073-7084
    [114] Rosenstein M. T., Collins J. J., Luca C. Reconstruction expansion as geometry- based framework for choosing proper delay time. Phys D, 1994, 82-98
    [115] Kember G., Fowler A. C. A correlation function for choosing time delays in phase portrait reconstruction. Phys. Lett. A. 1993, 179: 72-80
    [116] Albano A. M., et al. SVD and Grassberger-Procaccia algorithm. Phy Rev A, 1988, 38: 3017-3026 61
    [117] Fraser A. M., Swinney H. L. Independent coordinates for strange attractors form mutual information. Physical Review A, 1986, 33: 1134-1140
    [118] Sheikholeslami G., Surojit C., Zhang A. WaveCluster: A Wavelet-based Clustering Approach for Spatial Data in Very Large Database. The VLDB Journal, 2000(8): 289-304
    [119] Lin J., Keogh E., Lonardi S., et al. A symbolic representation of time series with implications for streaming algorithms. Proc of the DMKD, 2003
    [120] 沈清, 汤霖. 模式识别导论. 长沙: 国防科技大学出版社, 1991
    [121] Kolatch E. Clustering algorithms for spatial databases: A survey. Dept. of Computer Science, University of Maryland, College Park, 2001
    [122] MacQueen J. Some methods for classification and analysis of multivariate observations. In: Porc. 5th Berkeley Symp. Math. Statist, Prob., 1: 281-297, 1967
    [123] Kaufman K. L., Rousseeuw P. J. Finding groups in data: An introduction to cluster analysis. New York, USA: John Wiley and Sons, 1990. 30-66
    [124] Ng R. T., Raymond T., Jiawei H. Efficient and Effective Clustering Methods for Spatial Data Mining. In: Proceedings of the 20th Very Large Databases Conference (VLDB 94), Santiago, Chile. 144-155
    [125] Zhang T., Ramakrishnan R., Livny M. BIRCH: An efficient data clustering method for very large databases. ACM SIGMOD Record. June 1996. 25(2): 103- 114
    [126] Guha S., Rastogi R., Shim K. CURE: An efficient clustering algorithm for large database. In: Laura M. Haas, Ashutosh Tiwary eds. Proceedings of ACM SIGMOD International Conference on Management of Data. Seattle, USA. June, 1998. Atlantic City, NJ, USA: ACM Press, 1998. 73-84
    [127] Ester M., Kriegel H. P., Sander J. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. in: Evangelos Simoudis, Jiawei Han, Usama Fayyad eds..In: Proc. of the 2nd Int. Conf. on Knowledge Discovery and Data Mining. Porland, Oregon, USA. August 2-4, 1996. Menlo Park, CA, USA: AAAI/MIT Press, 1996. 226~231
    [128] Ankerst M., Breuning M., Sander J. OPTICS: Ordering Points to Identify the Clustering Stucture. In: Alex Delis, Christos Faloutsos, Shahram Ghande- harizadeh eds.. Proceedings of the ACM SIGMOD International Conference on Management of Data. Philadelphia, Pennsylvania, USA. June 1-3, 1999. Atlantic City, NJ, USA: ACM Press, 1999. 49-60
    [129] Hinneburg A., Keim D. A. An efficient approach to clustering in large multimedia databases with noise. in: Rakesh Agrawal, Paul Stolorz eds. Proceedings of the 4th International Conference on Knowledge Discovery and Data mining. New York, New York, USA. August 27-31, 1998. Menlo Park, CA, USA: AAAI/MIT Press, 1998. 58-65
    [130] Wang W., Yang J., Muntz R. STING: A Statistical Information Grid Approach to Spatial Data Mining. in: Matthias Jarke, Michael J. Carey, Klaus R. Dittrich, et al. eds. Proceedings of the 23rd VLDB Conference. Athens, Greek. August 25-29,1997. San Francisco, California, USA: Morgan Kaufman, 1997. 186-195
    [131] Agrawal R., Arning A., Bullinger T., et al. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. in: Laura M. Haas, Ashutosh Tiwary eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle, Washington, USA. June 2-4, 1998. Atlantic City, NJ, USA: ACM Press, 1998. 94-105
    [132] 李世雄. 小波变换及其应用. 北京: 高等教育出版社, 1997 5-6
    [133] Garbor D. Theory of Communication. J. Inst. Elect. Eng. 1946, 93(3): 429-457
    [134] Daubechies I. The wavelet transform: Time-frequency localization and signal analysis. The Trans. On Ioform. Th. 1990, 36(5): 961-1005
    [135] 秦前清, 杨宗凯. 实用小波分析, 西安: 西安电子科技大学出版社, 1994, 17- 23
    [136] Mallat S., Zhong S. Characterization of Signals from Multiscale Edges. IEEE trans Pattern and Machine Intell, 1992, 14(7): 710-732
    [137] 兰秋军. 金融时间序列隐含模式挖掘方法及其应用研究:[湖南大学博士学位论文]. 长沙: 湖南大学, 2004, 30-31
    [138] Takagi T., Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Trans on Systems, Man, and Cybernetics, 1985, 15(1): 116-132
    [139] 孙增圻, 徐红兵. 基于 T-S 模型的模糊神经网络. 清华大学学报(自然科学版), 1997, 37(3): 76-80
    [140] 梁艳春, 王政, 周春光. 模糊神经网络在时间序列预测中的应用. 计算机研究与发展, 1998, 35(7): 663-667
    [141] 陈兴, 孟卫东, 严太华. 基于 T-S 模型的模糊神经网络在股市预测中的应用. 系统工程理论与实践, 2001, (2): 66-72
    [142] 黄金才, 陈文伟. 基于聚类的模糊神经网络预测系统. 小型微型计算机, 1999, 20(11): 842-845
    [143] 陈传波, 彭炎, 陆枫. 基于聚类的神经网络及其在预测中的应用. 华中科技大学学报(自然科学版), 2003, 31(6): 84-85
    [144] Bezdek J. C. Pattern Recognition with Fuzzy Objective function Algorithms. New York: Plenum Press, 1981
    [145] Moon T. K. The expectation-maximization algorithm. IEEE Signal Processing Magazine, 1996, 13(6): 47-60
    [146] Wang L. X. et al. Approximation properties of fuzzy systems generated by the min inference. IEEE Trans on SMC, Part B, 1996, 26(1): 187-193
    [147] 王立新. 模糊系统与模糊控制教程. 北京: 清华大学出版社, 2003, 3-5
    [148] Buckey J. J. et al. Theory of the fuzzy controller: An introduction. Fuzzy Sets and Systems, 1992, 51: 249-258
    [149] Iebeling K., Miltion B. Designing a neural network for forecasting financial and economic time series. Neurocomputing, 1996, (10): 215-236
    [150] Matic N., Guyon I., Bottou L., et al. Computer aided cleaning of large databases for character recognition.In: Proceedings of the 11th International Conference on Pattern Recognition, 1992, 2: 330-333
    [151] Kim H. S., Eykholt R., Salas J. D. Nonlinear dynamics, delay times, and embedding windows, Physica D, 1999, 127: 49-59
    [152] Grassberger P., Procaccia I. Characterization of strange attractors. Phys. Rev. Lett. 1983, 50:346-349
    [153] Brock W. A., Hsieh D. A., LeBaron B. Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence, MIT Press, Cambridge, MA, 1991
    [154] Brock W. A., Dechert W. D., Scheinkman J. A., et al. A test for independence based on the correlation dimension, Econ. Rev. 1996, 15(3):197-235
    [155] Holte R. C. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 1993, 11:63-90
    [156] Richeldi M., Rossotto M. class-driven statistical discretization of continuous attributes (extended abstract). In: Lavrac N, Wrobel S. et al. Machine Learning: ECML-95, Lecture Notes in Artificaial Intelligence 914, Springer Verlag. Berlin, Heidelberg, New York, 1995, 335-338
    [157] Chmielewski M. R., Grzymala-Busse J. W. Global discertization of attributes as pre-processing for Machine Learning. In: Proc of the 3th International Workshop on RSSC94. 1994, 294-301
    [158] Nguyen H. S., Skowron A. Quantization of real value attributes. Proceedings of Second Joint Annual Conf. on Information Science, Wrightsville Beach, North Carolina, 1995:34-37
    [159] Nguyen H. S., Nguyen S. H. From optimal hyperplanes to optimal decision trees: Rough set and Boolean reasoning approach. Tsumoto S, Kobayashi S, Yokomori T, et al. The 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery. University of Tokyo, 1996, 82-88
    [160] Quinlan J. R. Induction of Decision Trees. Machine Learning, 1986, 1(1): 81-106
    [161] Quinlan J. R. C4.5: Program ofr Machine Learning. Margan KovnfmennPublishers, 1993
    [162] Andersen T. G., Bollerslev T., Diebold F. X., et al. The distribution of stock return volatility. NBER Working Paper, 2000, No.7933.
    [163] Peiro A. The distribution of stock returns: International evidence. Applied Financial Economics, 1994, 4(6): 431-439
    [164] 薛继锐, 顾岚. 中国股票市场的日历效应分析. 数理统计与管理, 2000, 19(2): 10-15
    [165] 闫冀楠, 张维. 关于上海股市收益分布的实证研究. 系统工程, 1998, 16(1): 21-25
    [166] 陶亚民, 蔡明超, 杨朝军. 上海股票市场收益率分布特征的研究. 预测, 1999, 18(2): 57-58
    [167] 李亚静, 朱宏泉. 沪深股市收益率分布的时变性. 数学的实践与认识, 2002, 32(2): 228-233
    [168] 陈启欢. 中国股票市场收益率分布曲线的实证. 数理统计与管理, 2002, 21(5): 9-11
    [169] 封建强, 王福新. 中国股市收益率分布函数研究. 中国管理科学, 2003, 11 (11): 14-21
    [170] 卢方元. 中国股市收益率分布特征研究. 中国管理科学, 2004, 12(6): 18-22
    [171] Sornette D., Simonetti P., Andersen J. V. φ q field theory for portfolio optimization: “fat-tails” and non-linear correlations. Physics Reports, 2000, 335: 19-92
    [172] 杨一文, 刘贵忠, 张宗平. 基于嵌入理论和神经网络技术的混沌数据预测及其在股票市场中的应用. 系统工程理论与实践, 2001, (6): 52-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700