中纬度负指数环流与阻塞过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了一种新的反映中纬度环流异常的指数。通过计算逐日指数场,发现指数从正值到负值的转变可以描述一类偏离纬向流的环流过程。这一新的指数是对西风指数(环状模指数)的一种发展。环状模指数揭示的是纬向均匀的高低纬度间的一种遥相关,这种遥相关在整个半球尺度普遍的存在着,称之为北(南)极涛动(AO)或者环状摸(Annular mode)。在北半球这种振荡的遥相关型还显示出一定的局地性,NAO指数指示的就是北大西洋地区的这种振荡。然而所有这些指数所反映的都是半球尺度的或者区域尺度的纬向均匀模态。伴随着这种大尺度指数的变化,中高纬度60°N~70°N和30°N~40°N两个遥相关型的两个显著中心之间的55°N附近地区大气环流在不断的调整着,通常这一纬度带是大气阻塞活跃的地带。
     本文所提出的指示中纬度环流异常的指数既着眼于整个纬度带的普遍情况又能自然的反映出纬度带上环流的局地变化特征,通过指数值的由正到负的变化体现环流从接近纬向均匀态(NAO/AO的高指数时期)到偏离纬向均匀态——异常态(NAO/AO的低指数时期)的转变。负指数能敏感的反映出中纬度55°N附近地带一类活跃的异常事件,本文称之为“负指数过程”。活跃在55°N附近的这种偏离纬向流的环流型在中高纬度普遍存在,它们活动频度和强度的变化是北半球跷跷板型遥相关支点地带大气活动情况的反映。借助于这一指数本文对中纬度负指数环流及阻塞系统进行了定量化的研究。
     本文首先将所有的负指数过程作为一个整体,研究了活跃在中纬度的经向型环流过程(负指数流型过程)的地理分布、强度、持续时间、季节变化、年循环和长期演变特征。负指数过程包含各种时间和空间尺度,其中强度大的一类是比瞬变天气过程变化缓慢的低频过程。本文的研究发现持续性负指数环流过程能很好的反映中高纬度阻塞事件,并利用这一指数定义了新的阻塞客观指数。将这一新的阻塞指数与已有指数作了比较,指出了这一新的阻塞指数的优越性:负指数区能反映出阻塞的局地特征和强度;通过跟踪指数场在某区域由正到负再到正的演变过程准确的指出阻塞的开始、演变过程和结束;新的阻塞指数增加了指数的自由度,能反映等压面上的二维信息既不同于Dole(1983)的基于点的指数也不同于通过抽取几个纬度的信息来反映阻塞的整体特征;新的指数通过跟踪负指数区域直接的反映了阻塞空间和时间上的真实过程,而不是通过间接的途径去反映。本文利用这个新的阻塞指数的定义对42年中所有阻塞的强度、发生频度、季节变化和长期演变特征等作了全面的统计。
     关于负指数过程以及负指数定义下的阻塞的统计研究主要得到如下的结果:
     (1)负指数过程是北半球西风带的一种普遍现象,其发生有一定的局地聚集性,在某些地区经常发生而在另一些地区却很少发生。
     (2)负指数过程的聚集型存在季节差异:冬春季分布范围广,主要分布于东大西洋、欧洲及乌拉尔山地区和北美沿岸,夏秋季分布范围缩小秋季最小。只有在亚洲远东地区特殊,该地区夏季的负指数过程最频繁,其他季节很少。
     (3)对平均振幅和平均持续时间分布的分析表明,负指数过程频繁发生的区域也是长持续时间大振幅的负指数过程存在的区域。
     (4)持续时间在5天以上的负指数过程的分布更加集中,主要分布在几个活动中心地域附近。
    
     (5)对42年soohPa高度场进行了合成,发现每一个负指数过程的活动中心都
     对应一个高度场上的典型阻塞流型。
     (6)统计了每一个活动中心的负指数过程活动日数得到了每个季节最频繁出
     现的负指数流型场,绝大多数的负指数流型(阻塞)的活动是局地型的,
     也就是说负指数过程发生在某地则仅在该地有负指数过程出现在北半球
     的其他地域没有同时的负指数过程发生。仅在少数的情况下,两大洋地区
     的负指数过程同时出现。
     (7)负指数过程的振幅和活动日数存在着显著的季节变化,振幅冬春季大夏秋
     季小,活动日数的年循环在不同的区域有不同的特征。
     (8)用新的阻塞指数统计得到的阻塞日数的地区差异和季节差异:大西洋区的
     平均季节内阻塞日最多。乌拉尔亚洲区和太平洋北美区比较,冬、春、秋
     季太平洋北美区的阻塞日比乌拉尔亚洲区的阻塞日多,而在夏季乌拉尔亚
     洲地区的阻塞日数比太平洋北美区的要多。大西洋欧洲区,冬、春、夏季
     阻塞活动频繁,秋季阻塞活动最不频繁。乌拉尔亚洲区,阻塞活动在夏季
     最频繁,其他季节都很少。太平洋北美地区阻塞活动日数冬夏两季较多,
     秋季最少。
     (9)阻塞多年季节平均振幅冬春季比夏秋季大,只有在乌拉尔亚洲区夏季阻塞
     的振幅较大与冬季振幅相当。
     (10)对逐年的阻塞数和平均振幅进行统计得出了阻塞个数和强度的年变化。发
     现冬季两大洋阻塞包含显著的10年周期变化。
     利用负指数对阻塞关键区的界定,对阻塞生命循环中的动力和热力特征进行
    个例分析。分析了阻塞生命循环中阻塞关键区和其周围区域的流速、涡度的分布
    和时间演变特征,还计算了阻塞关键区及其周围区域的涡度和感热通量的时间演
    变。结果显示,控制阻塞生命?
A new regional circulation index is defined in this dissertation. It is calculated at daily 500hpa height field. The transition of the index of certain regions from positive to negative means the changing of the mid-latitude atmosphere circulation from zonal flow pattern to meridianal circulation pattern. So the new index is a development of those zonal index/annular mode index. While the new index not only concerns the situation of the whole latitude circle, but also it can reflect the regional pattern of the meridianal circulation by the negative index area in the index field. The experience of a certain region from positive index to negative index then back to positive index is called as "negative index process". The process begins at the first appearance of negative index on a certain grid point and terminates at the last time the negative index occurring at that grid point. According to the conception of negative index process, one could take out a collection of local circulations from the profound mid-
    latitude westly band atmosphere motions.
    Firstly, the whole collection of the mid-latitude regional circulations is considered. A statistic is made about the geographical distribution, strength/amplitude, persistence properties and the annual cycle of the negative process around the whole north hemisphere mid-latitude area. Analysis shows that of the whole collection of the negative process one main kind of the negative index process has a certain long duration and considerably big magnitude, and negative index process longer than 5 days has a good resemble to atmospheric blocking.
    Then, based on the conception of negative index, a new blocking index is put forward. A Comparison has been done between the new blocking index and the others blocking index defined by former researchers, which shows that the new blocking index can depicture blocking events better at many aspects than the former ones. By means of the new blocking index, all blocking events are selected from the 42-year long data, a statistic of the strength, occurrence perturbation and the long term variations is done.
    Since the negative index can discover the key area of blocking region, a case study of the persistent negative index pattern process or blocking event has been performed, which studied the flow field and temperature field characters and fluxing properties of the key area and the four directions around area, gives a clear picture of the blocking, and tells the location of the sensitive heat and vorticity sources.
    Besides, a mechanical study of the interactions between the planetary-scale part of blocking flow and the synoptical-scale transient eddies has also done to study the role of the topography forcing induced type blocking in causing the pole-ward deflection of storm-track.
    A diagnose has also been done to discus the different roles played by different interactions between large scale and small scale waves in effecting the life cycle of blocking.
引文
1. Anderson, J. L., 1993, ,The climatology of blocking in a numerical forecast model. Journal of Climate, 6(6), 1041-1056.
    2. Austins, J. F., 1980,The blocking of middle latitude westerly winds by planetary waves, Quart. J. Roy. Meteor. Soc., 106, 327~350.
    3. Berggren, R., B. Bolin and C. G. Rossby, 1949, An Aerological Study of zonal motion, its perturbations and break-down. Tellus, 2, 14-37.
    4. Bjerknes, J. 1964. Atlantic Air-Sea Interactions. Adv. In Geophys. 10, 1-82.
    5. Blackmon, M. L., 1976, A climatological spectral study of the 500mb geopotentiai height of the northern Hemisphere, J. Atmos. Sci., 33, 1607-1623.
    6. Blackrnon, M. L., J. M. Wallace, N.-C. Lau, and S. L. Mullen, 1977, An observational study of the northern Hemisphere wintertime circulation, J. Atmos. Sci., 34, 1040~1053.
    7. Blackmon, M. L., Lee, Y.-H. and Wallace. J. M., 1984, Horizontal Structure of 500 mb Height fluctuations with Long, Intermediate and Short Time Scales', J. A tmos. Sci., 41, 961~979.
    8. Bretherton, F.P., 1966, Critical layer instability in baroclinic flows, Quart. J. Roy. Meteor. Soe., 92, 325~334.
    9. Cai, M., and M. Mak, 1990, Symbiotic relation between planetary and synoptic waves, J. Atmos. Sci., 47, 2953~2968.
    10. Chang, E. K. M., and I. Orlanski, 1993, On the dynamics of a storm track, J. Atmos. Sci., 50(7), 999~1015.
    11. Chang, E. K. M., S. Lee, and K. L. Swanson, 2002, Storm track dynamics, J.. Climate. 15, 2163~2183.
    12. Charney, J. G. and J. G. DeVore, 1979, Multiple flow equilibria in the atmsohere and blocking. J. Atmos. Sci. , 35, 1205-1216.
    13. Colucci, S. J., 1985, Explosive cyciogenesis and large-scale circulation changes: Implications for atmospheric blocking, J. Atmos. Sci., 42, 2701-2717.
    14. Colucci, S. J., 1987,Comparative diagnosis of blocking versus nonblocking planetary-scale circulation changes during synoptic-scale cyclogenesis. J. Atmos. Sci., 44, 124-139.
    15. Dole, R. M., 1986, The life cycles of persistent anomalies and blocking over the North Pacific. Adv. in Geophys., 29, 31-69.
    16. Dole, R. M., and N. D. Gordon, 1983, Persistent anomalies of the extra-tropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Mon. Wea. Rev., 111, 1567-1586.
    17. Edmon, HJ, BJ Hoskins and ME Mclntyre, 1980, Eliassen-Palm cross-sections for the tropo-sphere. J. Atmos. Sci., 37, 2600-2616.
    
    
    18. Egger, J., 1978, Dynamics of blocking high. J. Atmos. Sci.,35, 1788-1801.
    19. Elliott, R. D., and T. B. Smith, 1949, A study of the effects of large blocking highs on the general circulation in the Northern Hemisphere westerlies. J. Meteor., 6, 27-85.
    20. Green, J. S.A., 1977, The weather during July 1977, Some dynamical consideration of the drought. Weather, 32, 120-126.
    21. Haines, K., and J. C. Marshall, 1987, Eddy-forced coherent structures as a prototype of atmospheric blocking, Quart. J. Roy. Meteor. Soc., 113,681~704.
    22. Hansen, A., and T., C., Chen, 1982, A spectral energetics analysis of atmospheric blocking, Mon. Wea.Rev. 110, 1146~1159.
    23. Hoskins, B. J., and P. J. Valdes, 1990, On the existence of storm-tracks, J. Atmos. Sci., 47, 1854-1864.
    24. Hoskins, B. J., M. E. McIntyre and A. W. Robertson, 1985, On the use and significance of isentropic potential vortieity maps, Quart. J. Roy. Meteor. Soc, 111,877~946.
    25. Hoskins, B.-J., 1983, Modelling of the transient eddies and their feedback on the mean flow. Large Scale Dynamical Processes in the Atmosphere, pp. 127-167. Academic Press, London.
    26. Hurrell, J. W., 1995, Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science, 269, 676-679.
    27. Hurrell, J.W. and van Loon, H. 1997. Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change 36:301-326.
    28. Hurrell,J.W., 1996, Influence of Variations in Extratropical Wintertime Teleconnections on Northern Hemisphere Temperatures. Geophysical Research Letters: Vol. 23, No. 6, pp.665-668.
    29. Illari, L. and J. C. Marshall, 1983, On the interpretation of eddy fluxes during a blocking episode, J. Atmos. Sci., 40, 2232-2242.
    30. Kutzbach, J. E., 1970 , Large-scale features of monthly mean Northern Hemisphere anomaly maps of sea-level pressure. Mon. Wea. Rev., 98, 708-716.
    31. Lee, S., and I. M. Held, 1993, Baroclinic wave packets in models and observations, J. Atmos. Sci., 50(10), 1413~1428.
    32. Lejen(?), H., and H. φkland,1983,Characteristics of Northern Hemisphere blocking as determined from a long time series of observational data, Tellus, 35A, 350~362.
    33. Lindzen R.S.,1986, Stationary planetary waves, blocking, and interannual variability. Adv. Geophys., 29, 251-273.
    34. LI Jianping and Julian X. L. wang 2003 A New North Atlantic Oscillation Index and Its Variability, Advances in atmospheric sciences. Vol. 20 No. 5 P. 661-676
    35. Lindzen R.S., Straus D. and Katz B. 1984. An observational study of large scale atmospheric Rossby waves, J. Atmos. Sci., 41, 1320-1335.
    36. Loon, H., and Rogers J. C., 1978, The seesaw in winter temperatures between Greenland and northern Europe. Part Ⅰ: General Description. Mon.Wea.Rev., 106, 296-310.
    37. Lorenz, E., 1951, Seasonal and irregular variations of the Northern Hemisphere sea-level pressure profile. J. Meteor., 8, 52-59.
    
    
    38. Luo, D., 1999, Near resonant topographically forced envelope Rossby solitons in a barotropic flow, Geophys. Astrophys. Fluid Dyn., 90, 161~188.
    39. Luo, D., 2000, Planetary-scale baroclinic envelope Rossby solitons in a two-layer model and their interaction with synoptic-scale eddies. Dyn. Atmos. Oceans, 32,27-74.
    40. Luo, D., F. Huang, and Y. Diao, 2001, Interaction between antecedent planetary-scale envelope soliton blocking anticyclone and synoptic-scale eddies: Observations and theory. J. Geophys. Res., 106(D23), 31,795-31,815.
    41. Lupo, A. R. and Smith, P. J., 1995, Planetary and synoptic-scale interactions during the life cycle of a mid-latitude blocking anticyclone over the North Atlantic. Tellus, 47A, 575-596.
    42. Lupo, A. R., and P. J. Smith, 1995, Climatological features of blocking anticyclones in the Northern Hemisphere. Tellus, 47a, 439-456.
    43. Lupo, A.R., and P.J. Smith 1998, The Interactions Between a Mid-Latitude Blocking Anticyclone and Synoptic-Scale Cyclones Occurring During the Northern Hemisphere Summer Season. Monthly Weather Review, 126, 503-515.
    44. Mak, M., and M. Cai, 1989, Local barotropic instability, J. Atmos. Sci., 46, 3289~3311.
    45. Mak, M., 2001, Non-hydrostatic barotropic instability: applicability to non-supercell tornado genesis, J..4tmos. Sci., 58, 1965~1977.
    46. Mak, M., 2002, Wave packet resonance: instability of a localized barotropic jet, J. Atmos. Sci., 59,823~836.
    47. McWilliams, J. C., 1980, n application of equivalent modons to atmospheric blocking. Dyn. Atmos. Oceans, 5, 219-238.
    48. Mullen, S. L., 1987, Transient eddy forcing of blocking flows. J. Atmos. Sci., 44, 3-22.
    49. Nakamura, H. and J. M. Wallace, 1990, Observes changes in baroclinic wave activity during the life cycles of low-frequency circulation anomalies, J. Atmos. Sci., 47,1100-1116.
    50. Nakamura, H. and J. M. Wallace, 1993, Synoptic behavior of baroclinic eddies during the blocking onset, Mon. Wea. Rev., 121, 1892-1903.
    51. Nakamura, H., Nakamura, M. and J. L. Anderson, 1997, The role of high-and lowfrequency dynamics in blocking formation, Mon. Wea. Rev., 125, 2074-2093.
    52. Namias, J. 1947, Extended forecasting by mean circulation methods. Extended Forecast Section, U.S. Weather Bureau, 89 pp.
    53. Namias, J. 1964, Seasonal persistence and recurrence of European blocking during 1958-1960. Tellus, 16, 94-407
    54. Namias, J., 1950, The index cycle and its role in the general circulation. J. Meteor., 7, 130-139.
    55. Neilley, P. P., 1990, Interactions between synoptic-scale eddies and the large-scale flow during the life cycles of persistent flow anomalies. Ph.D. dissertation, Massachusetts Institute of Technology, 272 pp.
    56. Orlanski, I., 1998, Poleward deflection of storm tracks, J. Atmos. Sci., 55(16), 2577~2602.
    
    
    57. Peily, J.L. and B.J. Hoskins, 2003, A new perspective on blocking. J. Atmos. Sci., 60,743-755
    58. Pierrehumbert, R. T.,1984, Local and global baroclinic instability of zonally varying flow. J. Atmos. Sci., 41, 2141~2162.
    59. Ratcliffe, R.A.S. and R. Murray, 1970, New lag associations between north Atlantic sea temperatures and European pressure, applied to long Range weather forecasting. Q. J .Roy. Met. Soc., 96, 226?46.
    60. Rex, D. F., 1950a, Blocking action in the middle troposphere and its effects upon regional climate. I. An aerologicalstudy of blocking action. Tellus, 2, 196-211.
    61. Rex, D. F., 1950b, Blocking action in the middle troposphere and its effects upon regional climate. Ⅱ. Theclimatoiogy of blocking action. Tellus, 2, 275-301.
    62. Rossby, C. G .and H. C. Willett, 1948, The circulation of the upper troposphere and lower stratosphere. Science, 108, 643-652.
    63. Rossby, C. G., 1939, Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res. 2, 38-55.
    64. Shabbar, A., Huang, J., Higuchi, K., 2001, The Relationship between the Wintertime North Atlantic Oscillation and Blocking Episodes in the North Atlantic, Int. J. Clim., 21(3), 355-369
    65. Shukla, J., and K. C. Mo, 1983, Seasonal and geographical variation of blocking. Mon. Wea. Rev., 111,388-402.
    66. Shutts, G. J., 1983, The propagation of eddies in diffiuent jet streams, eddy vorticity forcing of blocking flow fields. Quart. J. R. Meteor Soc., 109, 737-761.
    67. Thompson D.W.J. and J.M. Wallace, 1998, The arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297-1300.
    68. Thompson D.W.J. and J.M. Wallace, 2000, Annular Modes in the E(?)tratropical Circulation. Part Ⅰ: Month-to-month variability. J. of Climate, 13, 1000-1016.
    69. Tibaldi, S., and F. Molteni, 1990, On the operational predictability of blocking. Tellus, 42A, 343-365.
    70. Treidl, R.A. ; Birch, E.C.; Sajecki, P., 1981, Blocking action in the Northern Hemisphere: A climatological Study. Atmosphere-Ocean, 19(1): 1-23.
    71. Trenberth, K. E. and D.A. Paolino, 1981, Characteristic patterns of variability of sea level pressure in the Northern Hemisphere.Monthly Weather Review, 109,1169-1189
    72. Tsou,C. S. and Smith, P. J., 1990, The role of synoptic/planetary-scale interactions during the development of a blocking anticyclone, Tellus, 42A, 174-193.
    73. Walker, G. T., and E. W. Bliss, 1932, World Weather V. Mem. Roy. Meteor. Soc., 4, No. 36, 53-84.
    74. Wallace and Hsu,1983 "Ultra-Long Waves and Two-Dimensional Rossby Waves." Journal of the Atmospheric Sciences, 40, 2211-2219.
    75. Wallace, J. M., and D. S. Gutzler, 1981, Teleconnections in the geopotential height field during the Northern Hemi-sphere winter. Mon. Wca. Rev., 109, 784-812.
    76. Wallace, J.-M., 2000, North Atlantic Oscillation/Northern Hemisphere annular mode: One
    
    phenomenon, two paradigms. Quart. J. R. Met. Soc., 126, 791-805.
    77. Wiedenmann, J.M., A.R. Lupo, Ⅰ.Ⅰ. Mokhov, and E. Tikhonova, 2002, The Climatology of Blocking Anticyclones for the Northern and Southern Hemisphere: Block Intensity as a Diagnostic. Journal of Climate, 15, 3459-3473.
    78.高守亭、朱文妹、董敏,1998,大气低频变一种的波流相互作用,气象学报,56(6),665~680。
    79.李双林、纪立人、倪允琪,2001,夏季乌拉尔地区大气环流持续异常,科学通报,46(9),753~757。
    80.陆日宇,2001,夏季东北亚阻塞形势维持是的天气尺度波,大气科学,25(3),289~302。
    81.罗德海,1999,《大气中大尺度包络孤立子理论与阻塞环流》,气象出版社。
    82.刘平,1999,副热带、西太副高年际变化特征及其与海表温度异常的联系,中科院大气所博士论文
    83.吴国雄、刘辉、陈飞、赵宇澄,1994,时变涡动输送和阻高形成——1980年夏中国的持续异常天气,气象学报,第三期,308~319。
    84.叶笃正 陈隆勋 孙淑清,1961 纬向式环流型生成和崩溃时期中各种物理量输送及能量转换的变化 (一) 气象学报第31卷 第三期 246~247
    85.叶笃正 陈隆勋 孙淑清,1962 纬向式环流型生成和崩溃时期中各种物理量输送及能量转换的变化 (二) 气象学报第31卷 第四期 289~302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700