基于多光子吸收效应的激光脉冲平滑技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光脉冲时间调制严重威胁聚变驱动器的运行安全甚至使点火失败,必须消除或有效抑制。谱域的抑制方法技术难度高或依赖于光谱的精确测量并仅适用于特定光谱,限制了在实际激光装置中的广泛使用。因此,能够在实际中灵活应用的脉冲时间调制平滑方法的研究具有重要意义。
     本论文提出了基于多光子吸收效应平滑脉冲调制的新方法,开展了多光子吸收效应脉冲匀滑特性的研究,分析了多光子吸收材料参数对平滑效果的影响,论证了多光子吸收应用于整形脉冲时域调制平滑的可行性。
     基于描述激光与多光子吸收体相互作用的耦合方程,系统研究了时空调制超高斯脉冲与多光子吸收体相互作用的动力学过程,获得了多光子吸收体脉冲时空平滑的主要物理规律。多光子吸收具有强度依赖性,相当于时空上强度分辨的透过率函数,能够有效平滑脉冲时空调制。伴随多光子吸收发生的激发态吸收能够降低脉冲空间调制但造成脉冲时间波形后沿塌陷,并减弱对时间调制的平滑作用。设计并开展了双光子吸收脉冲平滑的实验,验证了双光子吸收机制具有显著的脉冲平滑效果,并观测到了由激发态吸收导致脉冲后沿塌陷的现象。
     脉冲平滑应用要求多光子吸收体的输出光束质量高、时空调制平滑能力强、能量透过率高。为获得多光子吸收平滑时空脉冲的最优表现并观察各参数的影响趋势,系统分析了多光子吸收截面、单重态三重态第一激发态吸收截面、单重态第一激发态驰豫时间以及参与多光子吸收过程的光子数对平滑效果和透过率的影响。
     研究并论证了多光子吸收体平滑整形脉冲时间调制的可行性。建立了整形脉冲的时间波形预整形方法,以解决整形脉冲轮廓畸变的问题。将耦合方程简化为超越方程,并根据此方程以输出脉冲时间波形反演输入时间波形,通过预整形校正整形脉冲的轮廓畸变。定义了整形脉冲调制程度表征参数,利用该参数对整形脉冲调制的平滑效果进行了讨论。本论文的研究是对基于新型功能材料、新原理新机制的新型激光器件的一种探索,也是将激光脉冲精确控制向时域扩展的一种尝试。
Amplitude modulation might damage the optics, adversely affects the laser performance and eventually would make the inertial confinement fusion (ICF) failed, and thus needs to be eliminated or efficiently controlled. By spectrum resolved transfer functions of traditional elements, amplitude modulation could be alleviated effectively to a certain extent. However, these components just act on specific spectrum structure and the spectrum is usually complex. Meanwhile these components are costly for precision manufacture and accuracy control, and hence restrict these technologies for practical applications. Therefore, a flexible amplitude modulation suppressing method aiming at complex spectrum and practical applications is urgently demanding.
     Suppression of amplitude modulation in time domain based on nonlinear absorption effect is proposed. The smoothing characteristics of multiphoton absorption are investigated. The effects of several parameters of multiphoton absorber on smoothing are analysed, the feasibility of modulation suppressing effect of two-photon absorber on shaped pulse is also demonstrated.
     The theoretical model coupling the propagation equation with the rate equations is employed to study the dynamics of nonlinear absorbers interacting with spatiotemporal modulation pulse, and the main smoothing rules are abtained. Spatiotemporal modulation can be alleviated simultaneously by two-photon absorption because of its intensity dependent characteristic. The following excited stateabsorption can suppress spatial modulation but induce temporal distortion, and reduce the suppressing temporal modulation effect. The modulation smoothing effect of two-photon absorption is demonstrated experimently. The temporal shape distortion caused by the excited state absorption is also observed. In comparison with traditional methods in spectrum domain, this approach needs no detailed spectrum structure, leading to convenient design and manufacture in practice.
     Different from traditional optical limiters, high beam quality, efficient amplitude modulation suppressing capability and high energy transmission are the general requirments in beam smoothing applications. In order to assess the ultimate performance of TPA on amplitude modulation suppressing and to see trends, the effects of several parameters such as ESA cross section, relaxation time of first singlet excited state, TPA cross section, molecules consentration and the photon numbers on the temporal pulse shape, modulation suppressing efficiency and transmittance are quantitatively analysised in detail.
     The feasibility of modulation suppressing effect of two photon absorber on shaped pulse is studied. In order to eliminate the contour distortion of shaped pulse, we propose an analytic method to preshape the input pulse. By defining a characterization parameter for shaped pulse modulation, the modulation suppressing effect of two photon absorption on shaped pulse is evaluated. This thesis is an exploration of new laser element based on new material and new mechanism, also a try to expand the laser pulse control technology to time domain.
引文
[1]经桶谦,陈俊徉.动高乐原理与技术[M].北京:国防工业出版社,2006
    [2]Pfalzner S格,崔旭东泽.惯性约束聚变导论[M].北京:原子能出版社,2011
    [3]Hahn O, Strassmann F. Uber den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle[J]. Naturwissenschaften,1939; 27(1):11-15
    [4]Burbidge E M, Burbidge G R, Fowler W A, et al.. Synthesis of the elements in stars[J]. Rev. Mod. Phys.,1957; 29(4):547-650
    [5]Atzeni S, Meyer-Ter-Vehn I. The Physics of Inertial Fsuion[M]. New York:Oxford University Press, 2004
    [6]Lawson J D. Some criteria for a power producing thermonuclear reactor[J]. Proceedings of the Physical Society,1957; 70(1):6-10
    [7]Basov N G, Krokhin O N. Conditions for heating up of a plasma by the radiation from an optial generator[A]. In:Proceedings of the 3rd Conference On Quantum Electronics[C], Paris,1963, New York:Columbi a Universit y Press,1964:1373-1377
    [8]Dawson J M. On the Production of Plasma by Giant Pulse Lasers[J]. Phys. Fluids,1964; 7(7): 981-987
    [9]Wang G C. Suggestion of Neutron Generation with Powerful lasers[J]. Chinese Journal of Lasers, 1987; 14(11):641-645
    [10]Bodner S E. Critical elements of high gain laser fusion[J]. J. Fusion Energ.,1981; 1(3):221-240
    [11]黄小东.ICF驱动器前端系统关键技术研究[D].博士学位论文.济南:山东大学,2010
    [12]Hunt J T, Manes K R, Murray J R, et al.. Laser design basis for the National Ignition Facility[J]. 1994:5
    [13]Andre M L. Status of the LMJ project[A]. In:Solid State Lasers for Application to Inertial Confinement Fusion:Second Annual International Conference[C], Paris, France,1997, SPIE,38-42
    [14]Treadwell P A. Four-dimensional treatment of frequency conversion and the effect of smoothing by spectral dispersion[A]. In:Nonlinear Frequency Generation and Conversion:Materials, Devices, and Applications Ⅵ[C], San Jose, CA, USA,2007, SPIE,64550M-64558M
    [15]Peng H, Zhang X M, Wei X, et al.. Status of the SG-Ⅲ solid state laser project[A]. In:Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion[C], Monterey, CA, USA,1999, SPIE,25-33
    [16]Bodner S E, Colombant D G, Gardner J H, et al.. Direct-drive laser fusion:Status and prospects[J]. Phys. Plasmas,1998; 5(5):1901-1918
    [17]Lindl J D. Inertial Confinement Fusion:The Quest for Ignition and Energy Gain Using Indirect Drive[M]. New York:Springer-Verlag,1998
    [18]张钧,常铁强.激光核聚变靶物理基础[M].北京:国防工业出版社,2004
    [19]Skupsky S, Craxton R S. Irradiation uniformity for high-compression laser-fusion experiments[J]. Phys. Plasmas,1999; 6(5):2157-2163
    [20]Rothenberg J E, Auerbach J M, Moran B D, et al.. Implementation of smoothing by spectral dispersion on Beamlet and NIF[A]. In:Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion[C], Monterey, CA, USA,1999, SPIE.970-979
    [21]袁强.冲击点火激光驱动器总体与相关技术研究[Z].内部资料,2012.
    [22]Lindl J D, Amendt P, Berger R L, et al.. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys. Plasmas,2004; 11(2):339-491
    [23]Skupsky S, Kessler T J. Speckle-free phase plate (diffuser) for far-field applications[J]. J. Appl. Phys.,1993; 74(7):4310-4316
    [24]Kato Y. Mima K, Miyanaga N, et al.. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Phys. Rev. Lett.,1984; 53(11):1057-1060
    [25]Stevenson R M, Norman M J, Bett T H, et al.. Binary-phase zone plate arrays for the generation of uniform focal profiles[J]. Opt. Lett.,1994; 19(6):363-365
    [26]Lin Y, Kessler T J, Lawrence G N. Distributed phase plates for super-Gaussian focal-plane irradiance profiles[J]. Opt. Lett.,1995; 20(7):764-766
    [27]Neauport J, Ribeyre X. Daurios J, et al.. Design and optical characterization of a large continuous phase plate for Laser Integration Line and laser Megajoule facilities[J]. Appl. Optics,2003; 42(13): 2377-2382
    [28]Dixit S N, Lawson J K, Manes K R, et al.. Kinoform phase plates for focal plane irradiance profile control[J]. Opt. Lett.,1994; 19(6):417-419
    [29]Deng X M, Liang X C, Chen Z Z, et al.. Uniform illumination of large targets using a lens array [J]. Appl. Optics,1986; 25(3):377-381
    [30]Tan Q, He Q, Yan Y, et al.. Spatial-frequency spectrum analysis of the performance of diffractive optical element for beam smoothing[J]. Optik-International Journal for Light and Electron Optics, 2002; 113(4):163-166
    [31]Lehmberg R H, Chan Y. Near-field nonuniformities in angularly multiplexed KrF fusion lasers with induced spatial incoherence[J]. Appl. Optics,2005; 44(14):2805-2817
    [32]Lehmberg R H, Schmitt A J, Bodner S E. Theory of induced spatial incoherence[J]. J. Appl. Phys., 1987; 62(7):2680-2701
    [33]Veron D, Ayral H, Gouedard C, et al.. Optical spatial smoothing of Nd-glass laser beam[J]. Opt. Commun.,1988; 65(1):42-46
    [34]Videau L, Boscheron ACL, Gamier J C, et al.. Recent results of optical smoothing on the Phebus Laser[J]. Proceedings of SPIE,1997; 3047:757-762
    [35]Nakano H, Kanabe T, Yagi K, et al.. Amplification and propagation of partially coherent amplified spontaneous emission from Nd:glass[J]. Opt. Commun.,1990; 78(2):123-127
    [36]Nakano H, Tsubakimoto K, Miyanaga N, et al.. Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system[J]. J. Appl. Phys.,1993; 73(5):2122-2131
    [37]Boehly T R, Mccrory R L, Verdon C P, et al.. Inertial confinement fusion experiments with OMEGA-A 30-kJ,60-beam UV laser[J]. Fusion Eng. Des.51999; 44(1):35-42
    [38]Tsubakimoto K, Nakatsuka M, Nakano H. et al.. Suppression of interference speckles produced by a random phase plate, using a polarization control plate[J]. Opt. Commun.,1992; 91(1-2):9-12
    [39]Skupsky S. Short R W, Kessler T, et al.. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. J. Appl. Phys.,1989; 66(8):3456-3462
    [40]Lin Y, Kessler T J, Lawrence G N. Distributed phase plates for super-Gaussian focal-plane irradiance profiles[J]. Opt. Lett.,1995; 20(7):764-766
    [41]Neauport J, Ribeyre X, Daurios J, et al.. Design and Optical Characterization of a Large Continuous Phase Plate for Laser Integration Line and Laser Megajoule Facilities[J]. Appl. Optics,2003; 42(13): 2377-2382
    [42]Skupsky S, Short R W, Kessler T, et al.. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. J. Appl. Phys.,1989; 66(8):3456-3462
    [43]耿远超.宽带脉冲传输过程中FM-to-AM效应的产生原冈及控制方法研究[D].硕十学位论文.中国工程物理研究院,2010
    [44]Smith J R, Murray J F, Kyrazis D T, et al.. Acoustic damage to large-aperture optics:Revision 1 [J]. 1989:17
    [45]Kyrazis D T, Weiland T L. Determination of SBS-induced damage limits in large fused silica optics for intense, time-varying laser pulses[A]. In:Laser-Induced Damage in Optical Materials:1990[C], Boulder, CO, USA,1991, SPIE,469-477
    [46]Pitts J H. Structural damage and analysis of the Nova final focusing lenses[A]. In:1989,5
    [47]Lim H, Ilday F, Wise F W. Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser[J]. Opt. Lett.,2003; 28(8):660-662
    [48]Lin C, Lee B, Lin P. Broad-band superluminescent diodes fabricated on a substrate with asymmetric dual quantum wells[J]. Ieee Photonic. Tech. L.,1996; 8(11):1456-1458
    [49]李辉,王玉霞,李梅等.高功率850nm宽光谱大光腔超辐射发光二极管[J].中国激光.2006(05)
    [50]Liu K, Digonnet M J F, Shaw H J, et al..10 mW superfluorescent single-mode fiber source at 1.064 um[J]. Electron. Lett.,1987; 23(24):1320-1321
    [51]Hanna D C, Perry I R, Smart R G, et al.. Efficient superfluorescent emission at 974 nm and 1040 ran from an Yb-doped fiber[J]. Opt. Commun.,1989; 72(3):230-234
    [52]Wilcox R B. A tunable, single frequency, fiber ring at 1053 nm[R]. CA.:Lawrence Livermore National Lab.,1997.
    [53]Jolly A, Gleyze J F, Luce J, et al.. Front-end sources of the LIL-LMJ fusion lasers:progress report and prospects[J]. Opt. Eng.,2003; 42(5):1427-1438
    [54]黄小东.ICF激光驱动器前端系统关键技术研究[D].博士学位论文.山东大学,2010
    [55]Rothenberg J E, Browning D F, Wilcox R B. Issue of FM to AM conversion on the National Ignition Facility[A]. In:Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion[C], Monterey, CA, USA,1999, SPIE,51-61
    [56]车雅良.ICF激光驱动器前端系统脉冲整形技术研究[D].硕士学位论文.电子科技大学,2008
    [57]张颖.小宽带光谱色散平滑脉冲传输特性研究[Z].内部资料,2012.
    [58]Xu D, Wang J, Li M, et al.. Weak etalon effect in wave plates can introduce significant FM-to-AM modulations in complex laser systems[J]. Opt. Express,2010; 18(7):6621-6627
    [59]梁铨廷.物理光学[M].第3版,北京:电子工业出版社,2008:129-130
    [60]Wisoff P J, Bowers M W, Erbert G V, et al.. NIF injection laser system[A]. In:Optical Engineering at the Lawrence Livermore National Laboratory Ⅱ:The National Ignition Facility[C], San Jose, Ca, USA,2004, SPIE,146-155
    [61]Bayramian A J, Armstrong J P, Beach R J, et al.. Activation of a Temporal, Spectral, and Spatially-Shaped Front End for the Mercury Laser[A]. In:Advanced Solid-State Photonics[C],2005, Optical Society of America, B38
    [62]Cao H, Lu X, Li L, et al.. Compensation of FM-to-AM conversion in high-power lasers[J]. Appl. Optics,2011; 50(20):3609-3614
    [63]Dawson J W, Liao Z, Mitchell S, et al.. Fiber laser front ends for high-energy short pulse lasers [A]. In:Fiber Lasers II:Technology, Systems, and Applications[C], San Jose, CA, United States,2005, SPIE,37-44
    [64]Wilcox R, Browning D, Penko F, et al.. Development System Performance Issues of the NIF Master Oscillator and Pulse Forming Network[A]. In:Third Annual International Conference on Solid State Lasers for Application (SSLA) to Inertial Confinement Fusion (ICF)[C], Monterey, California,1998,
    [65]胡东霞.SGⅢ装置基频光时间调制分析[Z].内部资料,2011.
    [66]Etienne M. Nonlinear Optical Spectroscopy and Imaging of Photonic Materials and Nanostructures[D]. Doctor of Philosophy Thesis. New York:The City University of New York, 2007
    [67]Leite R C C, Porto S P S, Damen T C. The thermal lens effect as a power-limiting device[J]. Appl. Phys. Lett.,1967; 10(3):100-101
    [68]Mclean D G, Sutherland R L, Brant M C, et al.. Nonlinear absorption study of a C60?toluene solution[J]. Opt. Lett.,1993; 18(11):858-860
    [69]Shirk J S, Pong R G S, Bartoli F J, et al.. Optical limiter using a lead phthalocyanine[J]. Appl. Phys. Lett.,1993; 63(14):1880-1882
    [70]Santhi A, Namboodiri V V, Radhakrishnan P, et al.. Spectral dependence of third order nonlinear optical susceptibility of zinc phthalocyanine[J]. J. Appl. Phys.,2006; 100(5):53105-53109
    [71]Sutherland R L, Brant M C, Heinrichs J, et al.. Excited-state characterization and effective three-photon absorption model of two-photon-induced excited-state absorption in organic push-pull charge-transfer chromophores[J]. J. Opt. Soc. Am. B,2005; 22(9):1939-1948
    [72]Hales J M, Cozzuol M, Screen T E O, et al.. Metalloporphyrin polymer with temporallyagile, broadband nonlinear absorption foroptical limiting in the near infrared[J]. Opt. Express,2009; 17(21):18478-18488
    [73]Venkatram N, Rao D N, Akundi M A. Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles[J]. Opt. Express,2005; 13(3):867-872
    [74]Chen P, Wu X, Sun X, et al.. Electronic Structure and Optical Limiting Behavior of Carbon Nanotubes[J]. Phys. Rev. Lett.,1999; 82(12):2548-2551
    [75]Wu P, Philip R. Laghumavarapu R B, et al.. Optical Power Limiting with Photoinduced Anisotropy of Azobenzene Films[J]. Appl. Optics,2003; 42(22):4560-4565
    [76]Potasek M J, Kim S, Mclaugiilin D. All optical power limiting[J]. J. Nonlinear Opt. Phys.,2000; 9(3):343-364
    [77]Tutt L W, Boggess T F. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials[J]. Prog. Quant. Electron.,1993; 17(4):299-338
    [78]Ajami A, Husinsky W, Liska R, et al.. Two-photon absorption cross section measurements of various two-photon initators for ultrashort laser radiation applying the Z-scan technique[J]. J. Opt. Soc. Am. B,2010; 27(11):2290-2297
    [79]Rumi M, Perry J W. Two-photon absorption:an overview of measurements and principles[J]. Advances in Optics and Photonics,2010; 2(4):451-518
    [80]Lin T C, Chung S J, Kim K S, et al.. Organics and polymers with high two-photon activities and their applications[J]. Adv. Polym. Sci.,2003; 161:157-193
    [81]Strickler J H, Webb W W. Two-photon excitation in laser scanning fluorescence microscopy[A]. In: CAN-AM Eastern'90[C], Rochester, NY, USA,1991, SPIE,107-118
    [82]Parthenopoulos D A, Rentzepis P M. Three-Dimensional Optical Storage Memory [J]. Science,1989; 245(4920):843-845
    [83]Strickler J H, Webb W W. Three-dimensional optical data storage in refractive media by two-photon point excitation[J]. Opt. Lett.,1991; 16(22):1780-1782
    [84]Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy [J]. Science,1990; 248(4951):73-76
    [85]Tutt L W, Boggess T F. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials[J]. Prog. Quant. Electron.,1993; 17(4):299-338
    [86]Perez-Ariona I, Valcarcel G J D, Roldan E. Two-photon absorption[J]. Rev. Mex. Fis.,2003; 49(1): 91-100
    [87]Mcclain W M. Two-photon molecular spectroscopy[J]. Accounts Chem. Res.,1974; 7(5):129-135
    [88]Rumi M, Perry J W. Two-photon absorption:an overview of measurements and principles[J]. Advances in Optics and Photonics,2010; 2(4):451-518
    [89]Lepkowicz R S. Study of the excited-state absorption properties of polymethine molecules[D]. degree of Doctor of Philosophy Thesis. Florida:University of Central Florida,2004
    [90]Kleinschmidt J, Rentsch S, Tottleben W, et al.. Measurement of strong nonlinear absorption in stilbenechloroform solution, explained by the superposition of two-photon absorption and one-photon absorption from the excited state[J]. Chem. Phys. Lett.,1974; 24:133-135
    [91]Lewis G N, Lipkin D, Magel T T. Reverse photochemical processes in rigid media. A study of the phosphorescent state[J]. J. Am. Chem. Soc,1941; 63:3005-3018
    [92]Kafalas P, Masters J I, Murray E M E. Photosensitive Liquid used as a Nondestructive Passive Q-Switch in a Ruby Laser[J]. J. Appl. Phys.,1964; 35(8):2349-2350
    [93]Soffer B H, Mcfarland B B. Frequency locking and dye spectral hole burning in Q-spoiled lasers[J]. Appl. Phys. Lett.,1966; 8(7):166-169
    [94]Decker C D. Excited state absorption and laser emission from infrared laser dyes optically pumped at 532 nm[J]. Appl. Phys. Lett.,1975; 27(11):607-609
    [95]Fisher M M, Veyret B, Weiss K. Non-linear absorption and photoionization in the pulsed laser photolysis of anthracene[J]. Chem. Phys. Lett.,1974; 28(1):60-65
    [96]Harter D, Band Y, Ippen E. Theory of mode-locked lasers containing a reverse saturable absorber [J]. IEEE J. Quantum Electron.; 21(8):1219-1228
    [97]Band Y B, Harter D J, Bavli R. Optical pulse compressor composed of saturable and reverse saturable absorbers[J]. Chem. Phys. Lett.,1986; 126(3-4):280-284
    [98]Harter D J, Shand M L, Band Y B. Power/energy limiter using reverse saturable absorption[J]. J. Appl. Phys.,1984; 56(3):865-868
    [99]Giuliano C, Hess L. Nonlinear absorption of light:Optical saturation of electronic transitions in organic molecules with high intensity laser radiation[J]. IEEE J. Quantum Electron.,1967; 3(8): 358-367
    [100]Kim S, Mclaughlin D, Potasek M. Propagation of the electromagnetic field in optical-limiting revers-saturable absorbers[J]. Phys. Rev. A,2000; 61:25801
    [101]Boyed R W. Nonlinear optics[M]. Elsevier,2008
    [102]叶佩弦.非线性光学[M].中国科学技术出版社,1999
    [103]郭硕鸿.电动力学[M].北京:高等教育出版社,2008
    [104]阿戈沃著,贾东方译.非线性光纤光学原理及应用[M].电子工业出版社,2002
    [105]Brabec T, Krausz F. Nonlinear Optical Pulse Propagation in the Single-Cycle Regime[J], Phys. Rev. Lett.,1997; 78(17):3282-3285
    [106]Parilov E, Potasek M J. Generalized theoretical treatment and numerical method of time-resolved radially dependent laser pulses interacting with multiphoton absorbers[J]. J. Opt. Soc. Am. B,2006; 23(9):1894-1910
    [107]Scully M O, Zubairy M S. Quantum optics[M]. Cambridge university press,1997:161-164
    [108]李福利.高等激光物理学[M].北京:高等教育出版社,2006:31
    [109]徐克尊.高等原子分子物理学[M].北京:科学出版社,2006:123-128
    [110]褚圣麟.原子物理学[M].北京:高等教育出版社,2006:164-165
    [111]Li C, Si J, Yang M, et al.. Excited-state nonlinear absorption in multi-energy-level molecular systems[J]. Phys. Rev. A,1995; 51(1):569-575
    [112]Gao Y W, Potasek M J. Effects of excited-state absorption on two-photon absorbing materials[J]. Appl. Opt.,2006; 45(11):2521-2528
    [113]Potasek M J, Arend M F, Gao Y W. Dynamics of a multilevel molecular absorber interacting with a train of optical pulses[J]. J. Opt. Soc. Am. B,2007; 24(4):839-848
    [114]Khoo I C, Diaz A. Multiple-time-scale dynamic studies of nonlinear transmission of pulsed lasers in a multiphoton-absorbing organic material[J]. J. Opt. Soc. Am. B,2011; 28(7):1702-1710
    [115]Belanger P A. Beam propagation and the ABCD ray matrices[J]. Opt. Lett,1991; 16(4):196-198
    [116]Parent A, Morin M, Lavigne P. Propagation of super-Gaussian field distributions[J]. Opt. Quant. Electron..1992; 24:S1071-S1079
    [117]Cao H, Lu X, Li L, et al.. Compensation of FM-to-AM conversion in high-power lasers[J]. Appl. Optics,2011; 50(20):3609-3614
    [118]Wisoff P J, Bowers M W, Erbert G V, et al.. NIF Injection Laser System[J]. Proceedings of SPIE, 2004;5341:146
    [119]Waxer L J, Kelly J H, Rothenberg J, et al.. Precision spectral sculpting for narrow-band amplification of broadband frequency-modulated pulses[J]. Opt. Lett.,2002; 27(16):1427-1429
    [120]Peng Z, Liu Y, Yao L, et al.. Improvement of the switching frequency of a liquid-crystal spatial light modulator with optimal cell gap[J]. Opt. Lett.,2011; 36(18):3608-3610
    [121]Vidal S, Luce J, Penninckx D. Compensation of phase-to-amplitude modulation conversion in a complete frequency conversion system with an all-fiber system[J]. Opt. Lett.,2011; 36(17): 3494-3496
    [122]Haque S A, Nelson J. Toward Organic All-Optical Switching[J]. Science,2010; 327:1466-1467
    [123]Porras M A. Experimental investigation on aperture-diffracted laser beam characterization[J]. Opt. Commun.,1994; 109(1):5-9
    [124]张翔.基于体布拉格光栅的角选择滤波与光束控制研究[D].博士学位论文.武汉:华中科技大学,2011
    [125]Wang W, Han W, Wang F, et al.. Comparison of efficient third-harmonic generation between phase modulated broadband and narrowband lasers[J]. J. Opt. Soc, Am. B,2011; 28(3):475-482
    [126]Steve Hocquet. Denis Penninckx, Bordenave E. FM-to-AM conversion in high-power lasers[J]. Appl. Optics,2008; 47(18):3338-3349
    [127]Perry J W, Mansour K, Marder S R, et al.. Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines[J]. Opt. Lett.,1994; 19(9):625-627
    [128]Wang D Y, Zhan C L, Chen Y, et al.. Large optical power limiting induced by three-photon absorption of two stilbazolium-like dyes[J]. Chem. Phy. Lett,2003:369:621-626
    [129]Kobyakov A, Hagan D J, Van Stryland E W. Analytical approach to dynamics of reverse saturable absorbers[J]. J. Opt. Soc. Am. B,2000; 17(11):1884-1893
    [130]Li C, Zhang L, Yang M, et al.. Dynamic and steady-state behaviors of reverse saturable absorption in metallophthalocyanine[J]. Phys. Rev. A,1994; 49(2):1149-1157
    [131]Shang X, Liu Y, Tang G, et al.. Optical nonlinearities of hypocrellin A with the excitation of nanosecond pulses[J]. J. Opt. Soc. Am. B,1998; 15(5):1502-1511
    [132]Hughes S, Burzler J M, Kobayashi T. Modeling of picosecond-pulse propagation for optical limiting applications in the visible spectrum[J]. J. Opt. Soc. Am. B,1997; 14(11):2925-2929
    [133]Xia T, Hagan D J, Dogariu A, et al.. Optimization of optical limiting devices based on excited-state absorption[J]. Appl. Optics,1997; 36(18):4110-4122
    [134]Kovsh D I, Yang S, Hagan D J, et al.. Nonlinear Optical Beam Propagation for Optical Limiting[J]. Appl. Optics,1999; 38(24):5168-5180
    [135]Kirkpatrick S M, Naik R R, Stone M O. Nonlinear Saturation and Determination of the Two-Photon Absorption Cross Section of Green Fluorescent Protein[J]. J. Phys. Chem. B,2001; 105(14): 2867-2873
    [136]费业泰.误差理论与数据处理[M].北京:机械工业出版社,2010:]62-165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700