高频听力损失对豚鼠低频区时间分辨率的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨声信号参数对客观检测听觉时间分辨率的影响及高频听力损失对豚鼠低频区时间分辨率的影响。
     方法:分别在豚鼠下丘和听皮层埋植电极,电极埋植后动物休息至少一周。在间隔检测中,以四种不同带宽的噪声标记间隔,记录清醒及两种剂量的苯巴比妥麻醉下的间隔诱发反应,比较清醒状态下四种间隔标记信号的频谱对间隔阈值、阈上间隔诱发反应潜伏期和幅值的影响以及苯巴比妥麻醉下的改变;以12 kHz纯音持续暴露30小时造成豚鼠高频听力损失,评估两种间隔标记信号(信号频谱在豚鼠短纯音阈值无改变的频率范围内)的间隔阈值、潜伏期和幅值在纯音暴露前后的动态变化。在调制检测中,根据正弦调幅纯音诱发的清醒动物多频稳态反应幅值和调制频率的关系绘制出时间调制转换函数,在此函数中计算出截止频率,评估信号频率和强度对正常豚鼠下丘和听皮层截止频率的影响;在高频听力损失的豚鼠中,比较下丘和听皮层低频区(短纯音阈值正常)的截止频率在纯音暴露前后的改变。
     结果:间隔检测实验中,随着间隔标记信号带宽的增加,清醒动物的间隔阈值逐渐降低,阈上间隔诱发反应的潜伏期缩短,幅值升高;苯巴比妥使间隔阈值升高,阈上间隔诱发反应的潜伏期延长,幅值降低,其中对听皮层的影响要比对下丘的影响大;对于高频听力损失的豚鼠,与声暴露前相比,暴露后豚鼠下丘低频段的间隔阈值升高,阈上间隔诱发反应潜伏期延长,幅值降低,听皮层也表现为同样的趋势,但没有下丘的变化显著。在听力正常动物的调制检测实验中,正弦调幅信号的频率对下丘截止频率的影响有统计学意义,强度对其截止频率的影响则无统计学意义,频率和强度对听皮层截止频率的影响均无统计学意义;高频听力损失的豚鼠,与声暴露前相比,暴露后豚鼠下丘低频段的截止频率降低,而听皮层的截止频率则几乎无改变。
     结论:间隔标记信号带宽的增加可以改善系统的时间分辨率;而苯巴比妥则使系统的时间分辨率降低;间隔检测和调制检测两种方法均表明,高频听力损失后,下丘低频段的时间分辨率降低,而听皮层的变化则不显著。
Objective:To explore the effect of sound signal parameters on auditory temporal resolution in objective measurements and the effect of high frequency hearing loss on temporal resolution in low frequency region of guinea pigs.
     Methods: The electrodes were implanted in inferior colliculus (IC) and auditory cortex (AC) of guinea pigs. The animals were allowed to rest at least one week. In the gap detection test, noises with four different bandwidths were used to mark gap. We recorded the gap evoked response in awake and anesthetized animals by two doses of pentobarbital anesthesia. The results were compared among the four bandwidths noises and between awake condition and under pentobarbital anesthesia. In another group of guinea pigs, the animals were exposed to tone of 12 kHz for 30 hours continuously to result in high frequency hearing loss. We compared the gap threshold, supra-gap-threshold response latency and amplitude under two different bandwidths before and after acoustic trauma. In modulation detection test, we plotted temporal modulation transfer function with the auditory steady state response amplitude changed with modulation frequency and calculated cut-off frequency. The effect of signal frequency and intensity on the cut-off frequency of IC and AC were evaluated in normal awake animals. In the same group of high frequency hearing loss guinea pigs, we compared the cut-off frequency in low frequency region in IC and AC of guinea pigs before and post acoustic trauma.
     Results: The gap threshold decreased, the latency of supra-gap-threshold evoked response shortened and the amplitude of supra-gap-threshold evoked response increased with the bandwidth of gap mark signals increased. Within each gap mark signals, the effect of pentobarbital anesthesia on gap evoked response was opposite to that of gap marker bandwidth increase and the anesthesia effect was larger on AC than on IC. In high frequency hearing loss guinea pigs, the gap threshold increased, the latency of supra-gap-threshold evoked response elongated and the amplitude of supra-gap-threshold evoked response decreased under two different bandwidths noises compared to those before tone exposure in IC. The same trends were seen in AC too, but the changes were not statistically significant. In the modulation detection test studied in normal guinea pigs, the effect of signal frequency on cut-off frequency of IC was significant, while the intensity had no effect. The effects of signal frequency and intensity on cut-off frequency of AC were not significant. In guinea pigs with high frequency hearing loss, the cut-off frequencies of IC in low frequency regions decreased compared to those before acoustic trauma, while those of AC changed little.
     Conclusion: The auditory temporal resolution improved with the increases of bandwidth of gap mark signals, while decreased under pentobarbital anesthesia. The temporal resolution of IC in low frequency region decreased in high frequency hearing loss guinea pigs measured with gap detection and modulation detection, while the changes were not significant in AC.
引文
1 Irvine DR, Rajan R. Injury- and use-related plasticity in the primary sensory cortex of adult mammals: possible relationship to perceptual learning. Clin Exp Pharmacol Physiol JT - Clinical and experimental pharmacology & physiology, 1996,23:939-47.
    2 Tierney TS, Russell FA, Moore DR. Susceptibility of developing cochlear nucleus neurons to deafferentation-induced death abruptly ends just before the onset of hearing. J Comp Neurol, 1997,378:295-306.
    3 Moore DR. Trophic influences of excitatory and inhibitory synapses on neurones in the auditory brain stem. Neuroreport, 1992,3:269-72.
    4 Kitzes LM, Kageyama GH, Semple MN, et al. Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea. J Comp Neurol, 1995,353:341-63.
    5 Nordeen KW, Killackey HP, Kitzes LM. Ascending auditory projections to the inferior colliculus in the adult gerbil, Meriones unguiculatus. J Comp Neurol, 1983,214:131-43.
    6 Moore DR, King AJ, McAlpine D, et al. Functional consequences of neonatal unilateral cochlear removal. Prog Brain Res, 1993,97:127-33.
    7 Moore DR, King AJ, McAlpine D, et al. Functional consequences of neonatal unilateral cochlear removal. Prog Brain Res JT - Progress in brain research, 1993,97:127-33.
    8 Kitzes LM, Semple MN. Single-unit responses in the inferior colliculus: effects of neonatal unilateral cochlear ablation. J Neurophysiol, 1985,53:1483-500.
    9 Moore DR, Kowalchuk NE. Auditory brainstem of the ferret: effects of unilateral cochlear lesions on cochlear nucleus volume and projections to the inferior colliculus. J Comp Neurol, 1988,272:503-15.
    10 Moore DR, France SJ, Mcalpine D, et al. Plasticity of inferior colliculus and auditory cortexfollowing unilateral deafening in adult ferrets. In: Syka J, ed. New York,1997. 489-499.
    11 Clarey JC, Tweedale R, Calford MB. Interhemispheric modulation of somatosensory receptive fields: evidence for plasticity in primary somatosensory cortex. Cereb Cortex, 1996,6:196-206.
    12 Darian-Smith C, Gilbert CD. Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. J Neurosci, 1995,15:1631-47.
    13 Horvath M, Forster CR, Illing RB. Postnatal development of GAP-43 immunoreactivity in the auditory brainstem of the rat. J Comp Neurol, 1997,382:104-15.
    14 Suneja SK, Potashner SJ. TrkB levels in the cochlear nucleus after unilateral cochlear ablation: correlations with post-lesion plasticity. Brain Res, 2002,957:366-8.
    15 Suneja SK, Potashner SJ. TrkB levels in the cochlear nucleus after unilateral cochlear ablation: correlations with post-lesion plasticity. Brain Res JT - Brain research, 2002,957:366-8.
    16 Moore JK, Moore RY. Glutamic acid decarboxylase-like immunoreactivity in brainstem auditory nuclei of the rat. J Comp Neurol, 1987,260:157-74.
    17 Winer JA, Larue DT, Pollak GD. GABA and glycine in the central auditory system of the mustache bat: structural substrates for inhibitory neuronal organization. J Comp Neurol, 1995,355:317-53.
    18 Kang E, Lee DS, Kang H, et al. Neural changes associated with speech learning in deaf children following cochlear implantation. Neuroimage, 2004,22:1173-81.
    19 Ahn SH, Oh SH, Lee JS, et al. Changes of 2-deoxyglucose uptake in the rat auditory pathway after bilateral ablation of the cochlea. Hear Res JT - Hearing research, 2004,196:33-8.
    20 Harrison RV, Nagasawa A, Smith DW, et al. Reorganization of auditory cortex after neonatal high frequency cochlear hearing loss. Hear Res, 1991,54:11-9.
    21 Robertson D, Irvine DR. Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol, 1989,282:456-71.
    22 Rajan R, Irvine DR. Absence of plasticity of the frequency map in dorsal cochlear nucleus of adultcats after unilateral partial cochlear lesions. J Comp Neurol, 1998,399:35-46.
    23 Rajan R, Irvine DR. Absence of plasticity of the frequency map in dorsal cochlear nucleus of adult cats after unilateral partial cochlear lesions. J Comp Neurol JT - The Journal of comparative neurology, 1998,399:35-46.
    24 Kaltenbach JA, Czaja JM, Kaplan CR. Changes in the tonotopic map of the dorsal cochlear nucleus following induction of cochlear lesions by exposure to intense sound. Hear Res, 1992,59:213-23.
    25 Mazelova J, Popelar J, Syka J. Auditory function in presbycusis: peripheral vs. central changes. Exp Gerontol JT - Experimental gerontology, 2003,38:87-94.
    26 Ouagazzal AM, Reiss D, Romand R. Effects of age-related hearing loss on startle reflex and prepulse inhibition in mice on pure and mixed C57BL and 129 genetic background. Behav Brain Res, 2006,172:307-15.
    27 Henry KR, Chole RA. Genotypic differences in behavioral, physiological and anatomical expressions of age-related hearing loss in the laboratory mouse. Audiology, 1980,19:369-83.
    28 Willott JF. Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57BL/6 and CBA mice. J Neurophysiol, 1986,56:391-408.
    29 Willott JF, Aitkin LM, McFadden SL. Plasticity of auditory cortex associated with sensorineural hearing loss in adult C57BL/6J mice. J Comp Neurol, 1993,329:402-11.
    30 Willott JF, Parham K, Hunter KP. Comparison of the auditory sensitivity of neurons in the cochlear nucleus and inferior colliculus of young and aging C57BL/6J and CBA/J mice. Hear Res, 1991,53:78-94.
    31 Allen PD, Burkard RF, Ison JR, et al. Impaired gap encoding in aged mouse inferior colliculus at moderate but not high stimulus levels. Hear Res JT - Hearing research, 2003,186:17-29.
    32 Palombi PS, Caspary DM. Physiology of the aged Fischer 344 rat inferior colliculus: responses to contralateral monaural stimuli. J Neurophysiol JT - Journal of neurophysiology,1996,76:3114-25.
    33 Caspary DM, Milbrandt JC, Helfert RH. Central auditory aging: GABA changes in the inferior colliculus. Exp Gerontol, 1995,30:349-60.
    34 Caspary DM, Holder TM, Hughes LF, et al. Age-related changes in GABA(A) receptor subunit composition and function in rat auditory system. Neuroscience, 1999,93:307-12.
    35 Milbrandt JC, Caspary DM. Age-related reduction of [3H]strychnine binding sites in the cochlear nucleus of the Fischer 344 rat. Neuroscience, 1995,67:713-9.
    36 Lutman ME, Gatehouse S, Worthington AG. Frequency resolution as a function of hearing threshold level and age. J Acoust Soc Am, 1991,89:320-8.
    37 Pearson JD, Morrell CH, Gordon-Salant S, et al. Gender differences in a longitudinal study of age-associated hearing loss. J Acoust Soc Am JT - The Journal of the Acoustical Society of America, 1995,97:1196-205.
    38 Strouse A, Ashmead DH, Ohde RN, et al. Temporal processing in the aging auditory system. J Acoust Soc Am JT - The Journal of the Acoustical Society of America, 1998,104:2385-99.
    39 Palmer CV, Nelson CT, Lindley GA 4th. The functionally and physiologically plastic adult auditory system. J Acoust Soc Am JT - The Journal of the Acoustical Society of America, 1998,103:1705-21.
    40 Silman S, Gelfand SA, Silverman CA. Late-onset auditory deprivation: effects of monaural versus binaural hearing aids. J Acoust Soc Am, 1984,76:1357-62.
    41 Gatehouse S. Apparent auditory deprivation effects of late onset: the role of presentation level. J Acoust Soc Am, 1989,86:2103-6.
    42 Silman S, Gelfand SA, Silverman CA. Late-onset auditory deprivation: effects of monaural versus binaural hearing aids. J Acoust Soc Am JT - The Journal of the Acoustical Society of America, 1984,76:1357-62.
    43 Robinson K, Gatehouse S. Changes in intensity discrimination following monaural long-term useof a hearing aid. J Acoust Soc Am, 1995,97:1183-90.
    44 Henderson D, Salvi RJ. Effects on noise exposure on the auditory functions. Scand Audiol Suppl JT - Scandinavian audiology. Supplementum, 1998,48:63-73.
    45 Liberman MC, Kiang NY. Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity. Acta Otolaryngol Suppl, 1978,358:1-63.
    46 Willott JF, Turner JG, Sundin VS. Effects of exposure to an augmented acoustic environment on auditory function in mice: roles of hearing loss and age during treatment. Hear Res JT - Hearing research, 2000,142:79-88.
    47 Syka J, Popelar J. Noise impairment in the guinea pig. I. Changes in electrical evoked activity along the auditory pathway. Hear Res, 1982,8:263-72.
    48 Salvi RJ, Saunders SS, Gratton MA, et al. Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma. Hear Res, 1990,50:245-57.
    49 Bilak M, Kim J, Potashner SJ, et al. New growth of axons in the cochlear nucleus of adult chinchillas after acoustic trauma. Exp Neurol JT - Experimental neurology, 1997,147:256-68.
    50 Salvi RJ,Powers NL,Saunders SS,Boettcher FA,Colck AE. Enhancement of evoked response amplitude and single unit activity after noise exposure. In: Sancer A,Henderson D,Salvi RJ,Hamernik R, ed. Noise-Induced Hearing Loss. 156-171.
    51 Bilak M, Kim J, Potashner SJ, et al. New growth of axons in the cochlear nucleus of adult chinchillas after acoustic trauma. Exp Neurol, 1997,147:256-68.
    52 Salvi RJ, Wang J, Ding D. Auditory plasticity and hyperactivity following cochlear damage. Hear Res, 2000,147:261-74.
    53 Boettcher FA, Salvi RJ. Functional changes in the ventral cochlear nucleus following acute acoustic overstimulation. J Acoust Soc Am, 1993,94:2123-34.
    54 Wang J, Salvi RJ, Powers N. Plasticity of response properties of inferior colliculus neuronsfollowing acute cochlear damage. J Neurophysiol, 1996,75:171-83.
    55 Kim JJ, Gross J, Morest DK, et al. Quantitative study of degeneration and new growth of axons and synaptic endings in the chinchilla cochlear nucleus after acoustic overstimulation. J Neurosci Res JT - Journal of neuroscience research, 2004,77:829-42.
    56 Muly SM, Gross JS, Morest DK, et al. Synaptophysin in the cochlear nucleus following acoustic trauma. Exp Neurol JT - Experimental neurology, 2002,177:202-21.
    57 van Praag H, Kempermann G, Gage FH. Neural consequences of environmental enrichment. Nat Rev Neurosci JT - Nature reviews. Neuroscience, 2000,1:191-8.
    58 Lister JJ, Roberts RA. Effects of age and hearing loss on gap detection and the precedence effect: narrow-band stimuli. J Speech Lang Hear Res, 2005,48:482-93.
    59 Hamann I, Gleich O, Klump GM, et al. Age-dependent changes of gap detection in the Mongolian gerbil (Meriones unguiculatus). J Assoc Res Otolaryngol, 2004,5:49-57.
    60 Dent ML, Klump GM, Schwenzfeier C. Temporal modulation transfer functions in the barn owl (Tyto alba). J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2002,187:937-43.
    61 Klump GM, Okanoya K. Temporal modulation transfer functions in the European starling (Sturnus vulgaris): I. Psychophysical modulation detection thresholds. Hear Res, 1991,52:1-11.
    62 Smith NA, Trainor LJ, Shore DI. The development of temporal resolution: between-channel gap detection in infants and adults. J Speech Lang Hear Res, 2006,49:1104-13.
    63 Werner LA. Forward masking among infant and adult listeners. J Acoust Soc Am, 1999,105:2445-53.
    64 Poth EA, Boettcher FA, Mills JH, et al. Auditory brainstem responses in younger and older adults for broadband noises separated by a silent gap. Hear Res, 2001,161:81-6.
    65 Guo Y, Burkard R. Onset and offset responses from inferior colliculus and auditory cortex to paired noisebursts: inner hair cell loss. Hear Res, 2002,171:158-166.
    66 Gerull G, Mrowinski D, Thoma J. Diagnosis of abnormal hearing adaptation by brainstem potentials.Scand Audiol, 1982,11:205-9.
    67 Boettcher FA, Mills JH, Swerdloff JL, et al. Auditory evoked potentials in aged gerbils: responses elicited by noises separated by a silent gap. Hear Res, 1996,102:167-78.
    68 Popov VV, Supin AYa. Detection of temporal gaps in noise in dolphins: evoked-potential study. J Acoust Soc Am, 1997,102:1169-76.
    69 Walton JP, Frisina RD, Ison JR, et al. Neural correlates of behavioral gap detection in the inferior colliculus of the young CBA mouse. J Comp Physiol [A], 1997,181:161-76.
    70 Eggermont JJ. Neural correlates of gap detection in three auditory cortical fields in the Cat. J Neurophysiol, 1999,81:2570-81.
    71 Fitzgibbons PJ, Wightman FL. Gap detection in normal and hearing-impaired listeners. J Acoust Soc Am, 1982,72:761-5.
    72 Formby C, Muir K. Modulation and gap detection for broadband and filtered noise signals. J Acoust Soc Am, 1988,84:545-50.
    73 Eddins DA, Hall JW 3rd, Grose JH. The detection of temporal gaps as a function of frequency region and absolute noise bandwidth. J Acoust Soc Am, 1992,91:1069-77.
    74 Glasberg BR, Moore BC, Bacon SP. Gap detection and masking in hearing-impaired and normal-hearing subjects. J Acoust Soc Am, 1987,81:1546-56.
    75 Green DM, Forrest TG. Temporal gaps in noise and sinusoids. J Acoust Soc Am, 1989,86:961-70.
    76 Shailer MJ, Moore BC. Detection of temporal gaps in bandlimited noise: effects of variations in bandwidth and signal-to-masker ratio. J Acoust Soc Am, 1985,77:635-9.
    77 Leshowitz B. Measurement of the two-click threshold. J Acoust Soc Am, 1971,49:Suppl 2:462-6.
    78 Ronken DA. Monaural detection of a phase difference between clicks. J Acoust Soc Am, 1970,47:1091-9.
    79 Penner MJ. Detection of temporal gaps in noise as a measure of the decay of auditory sensation. J Acoust Soc Am, 1977,61:552-7.
    80 Moore BC, Glasberg BR. Gap detection with sinusoids and noise in normal, impaired, and electrically stimulated ears. J Acoust Soc Am, 1988,83:1093-101.
    81 Moore BC, Peters RW, Glasberg BR. Detection of temporal gaps in sinusoids: effects of frequency and level. J Acoust Soc Am, 1993,93:1563-70.
    82 Salvi RJ, Arehole S. Gap detection in chinchillas with temporary high-frequency hearing loss. J Acoust Soc Am, 1985,77:1173-7.
    83 Syka J, Rybalko N, Mazelova J, et al. Gap detection threshold in the rat before and after auditory cortex ablation. Hear Res, 2002,172:151-9.
    84 Fitzgibbons PJ. Temporal gap resolution in narrow-band noises with center frequencies from 6000-14000 Hz. J Acoust Soc Am, 1984,75:566-9.
    85 Glasberg BR, Moore BC. Effects of envelope fluctuations on gap detection. Hear Res, 1992,64:81-92.
    86 Glasberg BR, Moore BC. Psychoacoustic abilities of subjects with unilateral and bilateral cochlear hearing impairments and their relationship to the ability to understand speech. Scand Audiol Suppl, 1989,32:1-25.
    87 Moore BC, Glasberg BR, Donaldson E, et al. Detection of temporal gaps in sinusoids by normally hearing and hearing-impaired subjects. J Acoust Soc Am, 1989,85:1266-75.
    88 Shailer MJ, Moore BC. Gap detection and the auditory filter: phase effects using sinusoidal stimuli. J Acoust Soc Am, 1987,81:1110-7.
    89 Moore BC, Peters RW, Glasberg BR. Detection of temporal gaps in sinusoids by elderly subjects with and without hearing loss. J Acoust Soc Am, 1992,92:1923-32.
    90 Russell IJ, Nilsen KE. The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane. Proc Natl Acad Sci U S A, 1997,94:2660-4.
    91 Fastl H, Hesse A, Schorer E, et al. Searching for neural correlates of the hearing sensation fluctuation strength in the auditory cortex of squirrel monkeys. Hear Res, 1986,23:199-203.
    92 Palmer AR. The representation of the spectra and fundamental frequencies of steady-state single- and double-vowel sounds in the temporal discharge patterns of guinea pig cochlear-nerve fibers. J Acoust Soc Am, 1990,88:1412-26.
    93 Stabler SE, Palmer AR, Winter IM. Temporal and mean rate discharge patterns of single units in the dorsal cochlear nucleus of the anesthetized guinea pig. J Neurophysiol, 1996,76:1667-88.
    94 Viemeister NF. Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am, 1979,66:1364-80.
    95 Rance G, McKay C, Grayden D. Perceptual characterization of children with auditory neuropathy. Ear Hear, 2004,25:34-46.
    96 Rodenburg M, Verweij C, van den Brink G. Analysis of evoked responses in man elicited by sinusoidally modulated noise. Audiology, 1972,11:283-93.
    97 Bacon SP, Viemeister NF. Temporal modulation transfer functions in normal-hearing and hearing-impaired listeners. Audiology, 1985,24:117-34.
    98 Langner G, Albert M, Briede T. Temporal and spatial coding of periodicity information in the inferior colliculus of awake chinchilla (Chinchilla laniger). Hear Res, 2002,168:110-30.
    99 Shaddock Palombi P, Backoff PM, Caspary DM. Responses of young and aged rat inferior colliculus neurons to sinusoidally amplitude modulated stimuli. Hear Res, 2001,153:174-80.
    100 Eggermont JJ. Temporal modulation transfer functions in cat primary auditory cortex: separating stimulus effects from neural mechanisms. J Neurophysiol, 2002,87:305-21.
    101 Stapells DR, Linden D, Suffield JB, et al. Human auditory steady state potentials. Ear Hear, 1984,5:105-13.
    102 Purcell DW, John SM, Schneider BA, et al. Human temporal auditory acuity as assessed by envelopefollowing responses. J Acoust Soc Am, 2004,116:3581-93.
    103 Szalda K, Burkard R. The effects of nembutal anesthesia on the auditory steady-state response (ASSR) from the inferior colliculus and auditory cortex of the chinchilla. Hear Res, 2005,203:32-44.
    104 Rees A, Green GG, Kay RH. Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man. Hear Res, 1986,23:123-33.
    105 Buus S, Florentine M. Gap detection in normal and impaired listeners: The effect of level and frequency. In: Michelsen A, ed. Time Resolution in Auditory. New York:Springer-Verlag,1985. 159-70.
    106 Fitzgibbons PJ, Gordon-Salant S. Temporal gap resolution in listeners with high-frequency sensorineural hearing loss. J Acoust Soc Am, 1987,81:133-7.
    107 Moore BC, Glasberg BR, Plack CJ, et al. The shape of the ear's temporal window. J Acoust Soc Am, 1988,83:1102-16.
    108 Wang J, Fenga Y, Yin S. The effect of gap-marker spectrum on gap-evoked auditory response from the inferior colliculus and auditory cortex of guinea pigs. Int J Audiol, 2006,45:521-7.
    109 Rees A, Moller AR. Stimulus properties influencing the responses of inferior colliculus neurons to amplitude-modulated sounds. Hear Res, 1987,27:129-43.
    110 Langner G, Schreiner CE. Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J Neurophysiol, 1988,60:1799-822.
    111 Epping WJ, Eggermont JJ. Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. II. Stimulation with amplitude modulated sound. Hear Res, 1986,24:55-72.
    112 Muller-Preuss P, Flachskamm C, Bieser A. Neural encoding of amplitude modulation within the auditory midbrain of squirrel monkeys. Hear Res, 1994,80:197-208.
    113 Eggermont JJ. The magnitude and phase of temporal modulation transfer functions in cat auditory cortex. J Neurosci, 1999,19:2780-8.
    114 Gaese BH, Ostwald J. Temporal coding of amplitude and frequency modulation in the rat auditory cortex. Eur J Neurosci, 1995,7:438-50.
    115 Bacon SP, Gleitman RM. Modulation detection in subjects with relatively flat hearing losses. J Speech Hear Res, 1992,35:642-53.
    116 Eddins DA. Amplitude-modulation detection at low- and high-audio frequencies. J Acoust Soc Am, 1999,105:829-37.
    117 Dau T, Kollmeier B, Kohlrausch A. Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. J Acoust Soc Am, 1997,102:2906-19.
    118 Dau T, Kollmeier B, Kohlrausch A. Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. J Acoust Soc Am, 1997,102:2892-905.
    119 Firzlaff U, Schornich S, Hoffmann S, et al. A neural correlate of stochastic echo imaging. J Neurosci, 2006,26:785-91.
    120 Frisina RD. Subcortical neural coding mechanisms for auditory temporal processing. Hear Res, 2001,158:1-27.
    121 Murrell JC, de Groot HN, Psatha E, et al. Investigation of changes in the middle latency auditory evoked potential during anesthesia with sevoflurane in dogs. Am J Vet Res, 2005,66:1156-61.
    122 Fitzgerald RD, Lamm C, Oczenski W, et al. Direct current auditory evoked potentials during wakefulness, anesthesia, and emergence from anesthesia. Anesth Analg, 2001,92:154-60.
    123 Bobbin RP, May JG, Lemoine RL. Effects of pentobaribtal and ketamine on brain stem auditory potentials. Latency and amplitude intensity functions after intraperitoneal administration. Arch Otolaryngol, 1979,105:467-70.
    124 Drummond JC, Todd MM, Schubert A, et al. Effect of the acute administration of high dosepentobarbital on human brain stem auditory and median nerve somatosensory evoked responses. Neurosurgery, 1987,20:830-5.
    125 Church MW, Shucard DW. Pentobarbital-induced changes in the mouse brainstem auditory evoked potential as a function of click repetition rate and time postdrug. Brain Res, 1987,403:72-81.
    126 Velluti R, Pedemonte M. Differential effects of benzodiazepines on cochlear and auditory nerve responses. Electroencephalogr Clin Neurophysiol, 1986,64:556-62.
    127 Janssen R, Hetzler BE, Creason JP, et al. Differential impact of hypothermia and pentobarbital on brain-stem auditory evoked responses. Electroencephalogr Clin Neurophysiol, 1991,80:412-21.
    128 Goss-Sampson MA, Kriss A. Effects of pentobarbital and ketamine-xylazine anaesthesia on somatosensory, brainstem auditory and peripheral sensory-motor responses in the rat. Lab Anim, 1991,25:360-6.
    129 Miyazato H, Skinner RD, Cobb M, et al. Midlatency auditory-evoked potentials in the rat: effects of interventions that modulate arousal. Brain Res Bull, 1999,48:545-53.
    130 Eggermont JJ. Representation of a voice onset time continuum in primary auditory cortex of the cat. J Acoust Soc Am, 1995,98:911-20.
    131 Koht A. Anesthesia and evoked potentials: overview. Int J Clin Monit Comput, 1988,5:167-73.
    132 Sebel PS, Flynn PJ, Ingram DA. Effect of nitrous oxide on visual, auditory and somatosensory evoked potentials. Br J Anaesth, 1984,56:1403-7.
    133 Welch TM, Church MW, Shucard DW. A method for chronically recording brain-stem and cortical auditory evoked potentials from unanesthetized mice. Electroencephalogr Clin Neurophysiol, 1985,60:78-83.
    134 Pirch JH, Corbus MJ, Ebenezer I. Conditioned cortical slow potential responses in urethane anesthetized rats. Int J Neurosci, 1985,25:207-18.
    135 Sebel PS, Ingram DA, Flynn PJ, et al. Evoked potentials during isoflurane anaesthesia. Br J Anaesth,1986,58:580-5.
    136 Nicoll RA, Eccles JC, Oshima T, et al. Prolongation of hippocampal inhibitory postsynaptic potentials by barbiturates. Nature, 1975,258:625-7.
    137 Wan X, Puil E. Pentobarbital depressant effects are independent of GABA receptors in auditory thalamic neurons. J Neurophysiol, 2002,88:3067-77.
    138 Backoff PM, Palombi PS, Caspary DM. Glycinergic and GABAergic inputs affect short-term suppression in the cochlear nucleus. Hear Res, 1997,110:155-63.
    139 Calford MB, Semple MN. Monaural inhibition in cat auditory cortex. J Neurophysiol, 1995,73:1876-91.
    140 Brosch M, Schreiner CE. Time course of forward masking tuning curves in cat primary auditory cortex. J Neurophysiol, 1997,77:923-43.
    141 Jones EG, Pons TP. Thalamic and brainstem contributions to large-scale plasticity of primate somatosensory cortex. Science, 1998,282:1121-5.
    142 Moore CE, Partner A, Sedgwick EM. Cortical focusing is an alternative explanation for improved sensory acuity on an amputation stump. Neurosci Lett, 1999,270:185-7.
    143 Tegenthoff M, Ragert P, Pleger B, et al. Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. PLoS Biol, 2005,3:e362.
    144 Kaas JH, Krubitzer LA, Chino YM, et al. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science, 1990,248:229-31.
    145 Gilbert CD, Wiesel TN. Receptive field dynamics in adult primary visual cortex. Nature, 1992,356:150-2.
    146 Schwaber MK, Garraghty PE, Kaas JH. Neuroplasticity of the adult primate auditory cortex following cochlear hearing loss. Am J Otol, 1993,14:252-8.
    147 Irvine DRF, Rajan R. Plasticity in the mature auditory system. In: Manley GA, Klump GM, K?pplC, Fastl C, Oeckinghaus H, ed. Advances in hearing research. Singapore:World Scientific,1995. 3-23.
    148 Rajan R, Irvine DR, Wise LZ, et al. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J Comp Neurol, 1993,338:17-49.
    149 Kaas JH. Plasticity of sensory and motor maps in adult mammals. Annu Rev Neurosci, 1991,14:137-67.
    150 Thompson AM. Heterogeneous projections of the cat posteroventral cochlear nucleus. J Comp Neurol, 1998,390:439-53.
    151 Gonzalez-Hernandez T, Mantolan-Sarmiento B, Gonzalez-Gonzalez B, et al. Sources of GABAergic input to the inferior colliculus of the rat. J Comp Neurol, 1996,372:309-26.
    152 Brunso-Bechtold JK, Thompson GC, Masterton RB. HRP study of the organization of auditory afferents ascending to central nucleus of inferior colliculus in cat. J Comp Neurol, 1981,197:705-22.
    153 Zook JM, Casseday JH. Projections from the cochlear nuclei in the mustache bat, Pteronotus parnellii. J Comp Neurol, 1985,237:307-24.
    154 Saint Marie RL, Ostapoff EM, Morest DK, et al. Glycine-immunoreactive projection of the cat lateral superior olive: possible role in midbrain ear dominance. J Comp Neurol, 1989,279:382-96.
    155 Glendenning KK, Baker BN, Hutson KA, et al. Acoustic chiasm V: inhibition and excitation in the ipsilateral and contralateral projections of LSO. J Comp Neurol, 1992,319:100-22.
    156 Zhang DX, Li L, Kelly JB, et al. GABAergic projections from the lateral lemniscus to the inferior colliculus of the rat. Hear Res, 1998,117:1-12.
    157 Feliciano M, Potashner SJ. Evidence for a glutamatergic pathway from the guinea pig auditory cortex to the inferior colliculus. J Neurochem, 1995,65:1348-57.
    158 Saldana E, Feliciano M, Mugnaini E. Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J CompNeurol, 1996,371:15-40.
    159 Aitkin L, Tran L, Syka J. The responses of neurons in subdivisions of the inferior colliculus of cats to tonal, noise and vocal stimuli. Exp Brain Res, 1994,98:53-64.
    160 Semple MN, Aitkin LM, Calford MB, et al. Spatial receptive fields in the cat inferior colliculus. Hear Res, 1983,10:203-15.
    161 McFadden SL, Willott JF. Responses of inferior colliculus neurons in C57BL/6J mice with and without sensorineural hearing loss: effects of changing the azimuthal location of a continuous noise masker on responses to contralateral tones. Hear Res, 1994,78:132-48.
    162 Irvine DRF. The auditory brainstem: a review of the structure and function of auditory processing mechanisms. Berlin:Springer,1986.
    163 Casseday JH, Ehrlich D, Covey E. Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science, 1994,264:847-50.
    164 Barsz K, Benson PK, Walton JP. Gap encoding by inferior collicular neurons is altered by minimal changes in signal envelope. Hear Res, 1998,115:13-26.
    165 Harrison RV, Ibrahim D, Mount RJ. Plasticity of tonotopic maps in auditory midbrain following partial cochlear damage in the developing chinchilla. Exp Brain Res, 1998,123:449-60.
    166 Irvine DR, Rajan R, Smith S. Effects of restricted cochlear lesions in adult cats on the frequency organization of the inferior colliculus. J Comp Neurol, 2003,467:354-74.
    167 Snyder RL, Rebscher SJ, Cao KL, et al. Chronic intracochlear electrical stimulation in the neonatally deafened cat. I: Expansion of central representation. Hear Res, 1990,50:7-33.
    168 Harrison RV, Gordon DC, Nagasawa A, et al. Auditory evoked potentials in cats with neonatal high frequency hearing loss. Evidence of abnormal frequency representation in the midbrain. Acta Otolaryngol, 1993,113:31-8.
    169 Wang J, Ding D, Salvi RJ. Functional reorganization in chinchilla inferior colliculus associatedwith chronic and acute cochlear damage. Hear Res, 2002,168:238-49.
    170 Jin SH, Nelson PB. Speech perception in gated noise: the effects of temporal resolution. J Acoust Soc Am, 2006,119:3097-108.
    171 Buss S, Florentine M. Gap detection in normal and impaired listeners: The effect of level and frequency. In: Michelson A, ed. Time Resolution in Auditory Systems. Berlin:Sprinnger-Verlag,1985. 159-179.
    172 Hall JW 3rd, Grose JH, Buss E, et al. Temporal analysis and stimulus fluctuation in listeners with normal and impaired hearing. J Speech Lang Hear Res, 1998,41:340-54.
    173 Florentine M, Buus S. Temporal gap detection in sensorineural and simulated hearing impairments. J Speech Hear Res, 1984,27:449-55.
    174 Bacon SP, Moore BC. Transient masking and the temporal course of simultaneous tone-on-tone masking. J Acoust Soc Am, 1987,81:1073-7.
    175 Walton JP, Frisina RD, O'Neill WE. Age-related alteration in processing of temporal sound features in the auditory midbrain of the CBA mouse. J Neurosci, 1998,18:2764-76.
    176 McFadden SL, Woo JM, Michalak N, et al. Dietary vitamin C supplementation reduces noise-induced hearing loss in guinea pigs. Hear Res, 2005,202:200-8.
    177 Moore DR. Auditory brainstem of the ferret: long survival following cochlear removal progressively changes projections from the cochlear nucleus to the inferior colliculus. J Comp Neurol, 1994,339:301-10.
    178 Benson CG, Gross JS, Suneja SK, et al. Synaptophysin immunoreactivity in the cochlear nucleus after unilateral cochlear or ossicular removal. Synapse, 1997,25:243-57.
    179 Sie KC, Rubel EW. Rapid changes in protein synthesis and cell size in the cochlear nucleus following eighth nerve activity blockade or cochlea ablation. J Comp Neurol, 1992,320:501-8.
    180 Morest DK, Kim J, Bohne BA. Neuronal and transneuronal degeneration of auditory axons in thebrainstem after cochlear lesions in the chinchilla: cochleotopic and non-cochleotopic patterns. Hear Res, 1997,103:151-68.
    181 Morest DK, Bohne BA. Noise-induced degeneration in the brain and representation of inner and outer hair cells. Hear Res, 1983,9:145-51.
    182 Talley EM, Rosin DL, Lee A, et al. Distribution of alpha 2A-adrenergic receptor-like immunoreactivity in the rat central nervous system. J Comp Neurol, 1996,372:111-34.
    183 Morest DK. Degeneration in the brain following exposure to noise. In: Hamernik RP, Henderson D, Salvi RJ, ed. New perspectives on noise-induced hearing loss. New York:Raven Press. 87-93.
    184 Illing RB, Horvath M, Laszig R. Plasticity of the auditory brainstem: effects of cochlear ablation on GAP-43 immunoreactivity in the rat. J Comp Neurol, 1997,382:116-38.
    185 Illing RB, Horvath M. Re-emergence of GAP-43 in cochlear nucleus and superior olive following cochlear ablation in the rat. Neurosci Lett, 1995,194:9-12.
    186 Bledsoe SC Jr, Nagase S, Miller JM, et al. Deafness-induced plasticity in the mature central auditory system. Neuroreport, 1995,7:225-9.
    187 Leake PA, Snyder RL, Rebscher SJ, et al. Plasticity in central representations in the inferior colliculus induced by chronic single- vs. two-channel electrical stimulation by a cochlear implant after neonatal deafness. Hear Res, 2000,147:221-41.
    188 Harrison RV, Stanton SG, Ibrahim D, et al. Neonatal cochlear hearing loss results in developmental abnormalities of the central auditory pathways. Acta Otolaryngol, 1993,113:296-302.
    189 Hesse PA, Gerken GM. Amplitude--intensity functions for auditory middle latency responses in hearing-impaired subjects. Hear Res, 2002,166:143-9.
    190 Vollmer M, Leake PA, Beitel RE, et al. Degradation of temporal resolution in the auditory midbrain after prolonged deafness is reversed by electrical stimulation of the cochlea. J Neurophysiol, 2005,93:3339-55.
    191 Buss E, Hall JW 3rd, Grose JH, et al. Perceptual consequences of peripheral hearing loss: do edge effects exist for abrupt cochlear lesions?. Hear Res, 1998,125:98-108.
    192 Raggio MW, Schreiner CE. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. III. Activation patterns in short- and long-term deafness. J Neurophysiol, 1999,82:3506-26.
    193 Schreiner CE, Raggio MW. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. II. Repetition rate coding. J Neurophysiol, 1996,75:1283-300.
    194 Park TJ, Pollak GD. GABA shapes a topographic organization of response latency in the mustache bat's inferior colliculus. J Neurosci, 1993,13:5172-87.
    195 Gooler DM, Feng AS. Temporal coding in the frog auditory midbrain: the influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli. J Neurophysiol, 1992,67:1-22.
    196 Cobb FE, Jacobson GP, Newman CW, et al. Age-associated degeneration of backward masking task performance: evidence of declining temporal resolution abilities in normal listeners. Audiology, 1993,32:260-71.
    197 Gleich O, Hamann I, Klump GM, et al. Boosting GABA improves impaired auditory temporal resolution in the gerbil. Neuroreport, 2003,14:1877-80.
    198 Pouyatos B, Morel G, Lambert-Xolin AM, et al. Consequences of noise- or styrene-induced cochlear damages on glutamate decarboxylase levels in the rat inferior colliculus. Hear Res, 2004,189:83-91.
    199 Milbrandt JC, Holder TM, Wilson MC, et al. GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hear Res, 2000,147:251-60.
    200 Salvi RJ, Wang J. Evidence for rapid reorganization in inferior colliculus and cochlear nucleus. In: Syka J, ed. Acoustical Signal Processing in the Central Auditory System. London:Plenum,1997.29-42.
    201 Moore BC. Perceptual consequences of cochlear hearing loss and their implications for the design of hearing aids. Ear Hear, 1996,17:133-61.
    202 de Boer E, Bouwmeester J. Critical bands and sensorineural hearing loss. Audiology, 1974,13:236-59.
    203 Florentine M, Buus S, Scharf B, et al. Frequency selectivity in normally-hearing and hearing-impaired observers. J Speech Hear Res, 1980,23:646-69.
    204 Tyler RS, Summerfield Q, Wood EJ, et al. Psychoacoustic and phonetic temporal processing in normal and hearing-impaired listeners. J Acoust Soc Am, 1982,72:740-52.
    205 Tyler RS, Hall JW, Glasberg BR, et al. Auditory filter asymmetry in the hearing impaired. J Acoust Soc Am, 1984,76:1363-8.
    206 Turner CW, Holte LA, Relkin E. Auditory filtering and the discrimination of spectral shapes by normal and hearing-impaired subjects. J Rehabil Res Dev, 1987,24:229-38.
    207 Glasberg BR, Moore BC. Auditory filter shapes in subjects with unilateral and bilateral cochlear impairments. J Acoust Soc Am, 1986,79:1020-33.
    208 Faulkner A, Rosen S, Moore BC. Residual frequency selectivity in the profoundly hearing-impaired listener. Br J Audiol, 1990,24:381-92.
    209 Laroche C, Hetu R, Quoc HT, et al. Frequency selectivity in workers with noise-induced hearing loss. Hear Res, 1992,64:61-72.
    210 Leek MR, Summers V. Auditory filter shapes of normal-hearing and hearing-impaired listeners in continuous broadband noise. J Acoust Soc Am, 1993,94:3127-37.
    211 Sommers MS, Humes LE. Auditory filter shapes in normal-hearing, noise-masked normal, and elderly listeners. J Acoust Soc Am, 1993,93:2903-14.
    212 Summers V, Leek MR. The internal representation of spectral contrast in hearing-impaired listeners.J Acoust Soc Am, 1994,95:3518-28.
    213 Pick GF, Evans EF, Wilson JP. Frequency resolution in patients with hearing loss of cochlear origin. In: Evans EF, Wilson JP, ed. Psychophysics and Physiology of Hearing. London:Academic Press,1977. 273-281.
    214 Wightman FL, McGee T, Kramer M. Factors influencing frequency selectivity in normal and hearing -impaired listeners. In: Evans EF, Wilson JP, ed. Psychophysics and Physiology of Hearing. London:Academic Press,1977. 295-306.
    215 Plack CJ, Moore BC. Temporal window shape as a function of frequency and level. J Acoust Soc Am, 1990,87:2178-87.
    216 Harrison RV. Rate-versus-intensity functions and related AP responses in normal and pathological guinea pig and human cochleas. J Acoust Soc Am, 1981,70:1036-44.
    217 Legouix JP, Joannes M. Modifications of the nonlinearity of the cochlear microphonic responses produced by noise exposure in the guinea pig. Hear Res, 1984,14:39-44.
    218 Oxenham AJ, Plack CJ. A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. J Acoust Soc Am, 1997,101:3666-75.
    219 Neely ST, Gorga MP, Dorn PA. Cochlear compression estimates from measurements of distortion-product otoacoustic emissions. J Acoust Soc Am, 2003,114:1499-507.
    220 Saunders JC, Chabora JT. Effects of appetitive drive on evoked potentials in cochlear nucleus and auditory cortex in cats. J Comp Physiol Psychol, 1969,69:355-61.
    221 Gerken GM. Alteration of central auditory processing of brief stimuli: a review and a neural model. J Acoust Soc Am, 1993,93:2038-49.
    222 Gerken GM, Saunders SS, Paul RE. Hypersensitivity to electrical stimulation of auditory nuclei follows hearing loss in cats. Hear Res, 1984,13:249-59.
    223 Popelar J, Syka J, Berndt H. Effect of noise on auditory evoked responses in awake guinea pigs.Hear Res, 1987,26:239-47.
    224 Hunter KP, Willott JF. Effects of bilateral lesions of auditory cortex in mice on the acoustic startle response. Physiol Behav, 1993,54:1133-9.
    225 Saunders JC. Cochlear nucleus and auditory cortex activity during threshold discriminations in cats. Electroencephalogr Clin Neurophysiol, 1971,30:73-8.
    226 Gerken GM. Electrical stimulation of the subcortical auditory system in behaving cat. Brain Res, 1970,17:483-97.
    227 Gerken GM. Enhancement of the medial geniculate evoked response in conscious cat. Electroencephalogr Clin Neurophysiol, 1973,34:509-19.
    228 Gerken G, Simhadri-Sumithra R, Bhat HHV. Increase in central auditory responsiveness during continuous tone stimulation or following hearing loss. In: Salvi RJ, Hamernik RP, Henderson D, Colletti V, ed. New York:Plenum Press,1986. 195-212.
    229 Jastreboff PJ. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res, 1990,8:221-54.
    230 Muhlnickel W, Elbert T, Taub E, et al. Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci U S A, 1998,95:10340-3.
    231 Wallhausser-Franke E, Braun S, Langner G. Salicylate alters 2-DG uptake in the auditory system: a model for tinnitus?. Neuroreport, 1996,7:1585-8.
    232 Schlauch RS, Wier CC. A method for relating loudness-matching and intensity-discrimination data. J Speech Hear Res, 1987,30:13-20.
    233 Turner CW, Zwislocki JJ, Filion PR. Intensity discrimination determined with two paradigms in normal and hearing-impaired subjects. J Acoust Soc Am, 1989,86:109-15.
    234 Florentine M, Reed CM, Rabinowitz WM, et al. Intensity perception. XIV. Intensity discrimination in listeners with sensorineural hearing loss. J Acoust Soc Am, 1993,94:2575-86.
    235 Stillman JA, Zwislocki JJ, Zhang M, et al. Intensity just-noticeable differences at equal-loudness levels in normal and pathological ears. J Acoust Soc Am, 1993,93:425-34.
    236 Schroder AC, Viemeister NF, Nelson DA. Intensity discrimination in normal-hearing and hearing-impaired listeners. J Acoust Soc Am, 1994,96:2683-93.
    237 Buus S, Florentine M, Zwicker T. Psychometric functions for level discrimination in cochlearly impaired and normal listeners with equivalent-threshold masking. J Acoust Soc Am, 1995,98:853-61.
    238 Baer T, Moore BC, Marriage J. Detection and intensity discrimination of brief tones as a function of duration by hearing-impaired listeners. Hear Res, 2001,159:74-84.
    239 Philibert B, Collet L, Vesson JF, et al. Intensity-related performances are modified by long-term hearing aid use: a functional plasticity?. Hear Res, 2002,165:142-51.
    240 van Schijndel NH, Houtgast T, Festen JM. Effects of degradation of intensity, time, or frequency content on speech intelligibility for normal-hearing and hearing-impaired listeners. J Acoust Soc Am, 2001,110:529-42.
    241 Buus S, Florentine M. Gap detection in normal and impaired listeners: The effect of level and frequency. In: Michelson A, ed. Time Resolution in Auditory System. Berlin:Springer-Verlag,1985. 159-179.
    242 Fitzgibbons PJ, Gordon-Salant S. Minimum stimulus levels for temporal gap resolution in listeners with sensorineural hearing loss. J Acoust Soc Am, 1987,81:1542-5.
    243 Peters RW, Moore BC, Glasberg BR. Effects of level and frequency on the detection of decrements and increments in sinusoids. J Acoust Soc Am, 1995,97:3791-9.
    244 Jesteadt W, Bilger RC, Green DM, et al. Temporal acuity in listeners with sensorineural hearing loss. J Speech Hear Res, 1976,19:357-70.
    245 Formby C. Differential sensitivity to tonal frequency and to the rate of amplitude modulation of broad-band noise by hearing-impaired listeners [Ph.D]. St. Louis:Washington University, 1982.
    246 Lamore PJ, Verweij C, Brocaar MP. Reliability of auditory function tests in severely hearing-impaired and deaf subjects. Audiology, 1984,23:453-66.
    247 Moore BC, Shailer MJ, Schooneveldt GP. Temporal modulation transfer functions for band-limited noise in subjects with cochlear hearing loss. Br J Audiol, 1992,26:229-37.
    248 Plack CJ, Moore BC. Decrement detection in normal and impaired ears. J Acoust Soc Am, 1991,90:3069-76.
    249 Roberts RA, Lister JJ. Effects of age and hearing loss on gap detection and the precedence effect: broadband stimuli. J Speech Lang Hear Res, 2004,47:965-78.
    250 Snell KB. Age-related changes in temporal gap detection. J Acoust Soc Am, 1997,101:2214-20.
    251 Lutman ME. Degradations in frequency and temporal resolution with age and their impact on speech identification. Acta Otolaryngol Suppl, 1990,476:120-5; discussion 126.
    252 Moore BC, Glasberg BR, Alcantara JI, et al. Effects of slow- and fast-acting compression on the detection of gaps in narrow bands of noise. Br J Audiol, 2001,35:365-74.
    253 Vollmer M, Snyder RL, Leake PA, et al. Temporal properties of chronic cochlear electrical stimulation determine temporal resolution of neurons in cat inferior colliculus. J Neurophysiol, 1999,82:2883-902.
    254 Moore BC, Glasberg BR. Temporal modulation transfer functions obtained using sinusoidal carriers with normally hearing and hearing-impaired listeners. J Acoust Soc Am, 2001,110:1067-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700