发育期大鼠高级视皮层活动对初级视皮层突触可塑性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     探讨发育期大鼠高级视皮层活动对初级视皮层Ⅱ/Ⅲ层锥体神经元突触传递效能的影响及相关机制。
     方法
     1.通过对睁眼前后关键期内的大鼠的离体视皮层脑片白质和LM区细胞外刺激,V1区Ⅱ/Ⅲ层锥体神经元全细胞膜片钳记录,分别钳制在-70mv和-50mv,刺激间隔时间ISIs=0,±0.1,±0.2,±0.3,±0.4,±0.5,±1,±2ms,观察随着白质和LM区刺激的时间隔及钳制电位的不同,V1区Ⅱ/Ⅲ层锥体神经元兴奋性突触后电流(EPSCs)的变化,分析计算加和指数(SI)。
     2.睁眼初期(P14-16)大鼠离体视皮层脑片在单纯白质刺激、白质联合LM区间隔2ms刺激、白质联合LM区间隔0.1ms刺激,V1区Ⅱ/Ⅲ层锥体神经元EPSCs的变化,比较LTP/LTD诱发率异同。
     3.采用脑片膜片钳全细胞记录技术观察视皮层Ⅱ/Ⅲ层锥体神经元对Ⅳ层双极电极刺激的反应。将全细胞膜电位钳制在0mv从而电学分离抑制性突触后电流(IPSCs),比较不同天龄组双脉冲刺激(刺激间隔40ms)诱导的IPSCs短时程突触可塑性的变化。将全细胞膜电位钳制在Cl-平衡电位以上不同水平获得IPSCs电流-电压曲线,并计算得到抑制性电导(gi),观察gi的发育性变化及其与IPSCs双脉冲易化间的关系。通过计算各天龄组双脉冲刺激诱发IPSCs的变异系数(CV)及不同钳制电位水平IPSCs的双脉冲系数(PPR)结合各天龄阶段双脉冲刺激诱导的△gi的变化,研究生后早期大鼠视皮层短时程突触可塑性的可能机制。
     结果
     1.在静息电位水平,白质(WM)和LM区同时刺激,睁眼前、睁眼早期、睁眼后期SI分别为4.65±1.28;2.90±0.44;2.54±0.33。钳制在Cl-反转电位(-50mv),SI分别为2.82±0.63;1.99±0.42;1.34±0.30。SI随着天龄增大而降低,随着钳制电压而降低。
     2.单纯白质刺激、白质联合LM区间隔2ms刺激、白质联合LM区间隔0.1ms刺激,V1区Ⅱ/Ⅲ层锥体神经元EPSCs幅值改变分别为29.59±26.28;22.93±17.05;67.28±44.94。1组和3组,2组和3组有统计学差异(P<0.05);1组和2组无统计学差异(P>0.05)。LTP/LTD诱发率各组相比,1组(55.0%)和3组(88.2.0%),2组(50.0%)和3组有统计学差异(P<0.05);1组和2组无统计学差异(P>0.05)。
     3.(1)在所有3组中IPSCs对双脉冲刺激均表现出双脉冲易化(PPF)现象,Omv水平各组PPR值分别为2.41±0.72(A组)、1.62±0.83(B组)、0.19±0.79(C组)。
     (2)gi的水平随着天龄的增加而不断升高,各组分别为:1.48±0.78nS(A组)、2.05±0.84nS(B组)、5.67±2.22nS(C组)。(3)双脉冲刺激使各天龄组IPSCs的CV值均出现降低,各组CV降低指数分别为:-2.09±0.46(A组)、-1.90±0.58(B组)、-0.29±0.18(C组)。各组IPSCs的双脉冲系数(PPR)均表现出电压依赖性,即随着钳制电位的正向升高而降低,双脉冲刺激诱导的△gi分别为-0.31±0.21nS(A组)、1.13±0.53nS(B组)、1.43±0.38nS(C组)。
     结论
     1.睁眼前后关键期内的大鼠的离体视皮层脑片白质和LM区细胞外刺激,V1区Ⅱ/Ⅲ层锥体神经全细胞膜片钳记录当ISIs=0,±0.1ms时,加和指数(SI)表现为明显的非线性加和,随着天龄的增大而降低。随着刺激间隔时间(ISIs)的延长,SI在1上下波动,基本表现为线性加和。整个曲线呈现典型的“钟形”。
     2.白质联合LM区刺激在小于0.1ms时可提高视皮质Ⅱ/Ⅲ层锥体神经元LTP/LTD的诱发率提示高级视皮层对初级视皮层的可塑性可产生影响。
     3.大鼠出生早期视皮层Ⅱ/Ⅲ层锥体神经元抑制性突触联系随着发育不断成熟并得到加强,同时其短时程可塑性能力逐渐降低。生后早期尤其是睁眼后最初几天抑制性突触联系的大量建立促发了经验依赖的视皮层可塑性关键期的开始。抑制性突触后电流PPF的电压依赖性提示视皮层抑制性回路的成熟存在突触后机制,而PPF的突触前机制在睁眼及睁眼后最初几天表现更为突出。睁眼前PPR值与△gi的分离提示突触后GABA受体可能存在较睁眼后更为显着地双脉冲诱导的失敏现象。IPSCs双脉冲易化机制可能参与了大鼠生后早期经验依赖的视皮层发育过程。
     4.睁眼初期大鼠初级视皮层Ⅱ/Ⅲ层锥体神经元的IPSCs的短时程易化可能是LTD诱发率高的原因。
Objective
     To explore the influences of higher cortical areas activity to primary visual cortex on synaptic plasticity in developing rats.
     Methods
     1. To examine the spatiotemporal interactions between the WM inputs and LM inputs under clamp voltages at-70mv and-50mv respectively, the responses to concurrent activation at various interstimulus intervals (ISIs) of any two inputs were recorded. The ISIs used were0,±0.1,±0.2,±0.3,±0.4,±0.5,±1,±2ms and ISIs were analysised.
     2. Compare the LTP/LTD induction rates between stimulate wm alone,wm and LM with ISIs=±2ms, wm and LM with ISIs=0,±0.1ms in cortex brain slices of P14-16rats.
     3. A short-term (inter-stimuli interval of40ms) paired-pulse stimuli was delivered to the layer IV of slices to evoke postsynaptic currents of pyramidal neurons of layer Ⅱ/Ⅲ. Inhibitory postsynaptic currents (IPSCs) were recorded under different clamp voltages though whole-cell patch clamp technique. Inhibitory input conductance (gi) calculated from their current-voltage fitting curves were used for analysis of their developmental changes and effect of paired-pulse stimuli. The changes of coefficient of variance (CV) between the postsynaptic currents induced by paired-pulse stimuli in different groups were compared.
     Results
     1. At the resting membrane potential, when two inputs were driven simultaneously, the SI of the three groups were4.65±1.28;2.90±0.44;2.54±0.33. At the-50mv membrane potential,the SI were2.82±0.63;1.99±0.42;1.34±0.30respectively.The SI decreased with the growth.
     2. The changes of amplitude of EPSCs were29.59±26.28;22.93±17.05;67.28±44.94respectively when stimulate wm alone,wm and LM with ISIs=±2ms, win and LM with ISIs=0,±0.1ms in cortex brain slices of P14-16rats.The average amplitude of the wm and LM with ISIs=0,±0.1ms was significantly larger than that of the other groups(p<0.05),and the LTP/LTD induction rates was significantly larger than that of the other groups(p<0.05).
     3. The IPSCs showed that PPF decreased with ages2.41±0.72(A group),1.62±0.83(B group),0.19±0.79(C group); while the gi level increased ages1.48±0.78nS(A group),2.05±0.84nS(B group),5.67±2.22nS(C group).The CV value was reduced significantly with ages-2.09±0.46(A group),-1.90±0.58(B group),-0.29±0.18(C group).
     Conclusions
     1.When WM inputs and LM input were driven simultaneously on the rat slices around critical period, the evoked EPSCs were larger than the mathematical summation of the two individual EPSCs. The SI decreased with the growth and the positive changes of clamp voltage.
     2.Higher visual areas activity can affect Primary visual cortex on synaptic plasticity in developing rats,it can improve the LTP/LTD induction rates.
     3.In the postnatal early period of rat, the inhibitory synaptic circuitry was strengthened and matured with the visual cortex development, but its short-term plasticity decreased with the time. In the first several days after open eyes, the presynaptic mechanism of IPSCs-PPF is in the dominant status. The short-term plasticity reflected by PPF may participates in the experience dependent visual cortical development of rats.
     4. LTD induction maybe connected with the PPF of IPSCs during the postnatal early period.
引文
[1]Hubel DH, Wiesel TN. Shape and arrangement of columns in cat's striate cortex [J]. J Physiol,1963,165:559-568.
    [2]Wiesel TN, Hubel DH. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens [J]. J Neurophysiol, 1965,28(6):1029-1040.
    [3]Kiorpes L, Kiper DC, O'Keefe LP, et al. Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia [J]. J Neurosci,1998,18(16):6411-6424.
    [4]Barnes GR, Hess RF, Dumoulin SO, et al. The cortical deficit in humans with strabismic amblyopia [J]. J Physiol,2001,533(Pt 1):281-297.
    [5]Imamura K, Richter H, Fischer H, et al. Reduced activity in the extrastriate visual cortex of individuals with strabismic amblyopia [J]. Neurosci Lett, 1997,225(3):173-176.
    [6]Lerner Y, Pianka P, Azmon B, et al. Area-specific amblyopic effects in human occipitotemporal object representations [J]. Neuron,2003,40(5):1023-1029.
    [7]Lamme VA, Super H, Spekreijse H. Feedforward, horizontal, and feedback processing in the visual cortex [J]. Curr Opin Neurobiol,1998,8(4):529-535.
    [8]Desimone R, Duncan J. Neural mechanisms of selective visual attention [J]. Annu Rev Neurosci,1995,18:193-222.
    [9]Lee TS, Yang CF, Romero RD, et al. Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency [J]. Nat Neurosci,2002,5(6):589-597.
    [10]Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory:an evaluation of the hypothesis [J]. Annu Rev Neurosci,2000,23:649-711.
    [11]Kaplan MP, Wilcox KS, Dichter MA. Differences in multiple forms of short-term plasticity between excitatory and inhibitory hippocampal neurons in culture [J]. Synapse,2003,50(1):41-52.
    [12]Domenici L, Harding GW, Burkhalter A. Patterns of synaptic activity in forward and feedback pathways within rat visual cortex [J]. J Neurophysiol, 1995,74(6):2649-2664.
    [13]Coogan TA, Burkhalter A. Hierarchical organization of areas in rat visual cortex [J]. J Neurosci,1993,13(9):3749-3772.
    [14]Rockland KS, Pandya DN. Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey [J]. Brain Res, 1979,179(1):3-20.
    [15]Rosenquist AC, Ciaramitaro VM, Durmer JS, et al. Ibotenic acid lesions of the superior colliculus produce longer lasting deficits in visual orienting behavior than aspiration lesions in the cat [J]. Prog Brain Res,1996,112:117-130.
    [16]Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex [J]. Cereb Cortex,1991,1(1):1-47.
    [17]Johnson RR, Burkhalter A. Evidence for excitatory amino acid neurotransmitters in forward and feedback corticocortical pathways within rat visual cortex [J]. Eur J Neurosci,1994,6(2):272-286.
    [18]Johnson RR, Burkhalter A. Microcircuitry of forward and feedback connections within rat visual cortex [J]. J Comp Neurol,1996,368(3):383-398.
    [19]Zipser K, Lamme VA, Schiller PH. Contextual modulation in primary visual cortex [J]. J Neurosci,1996,16(22):7376-7389.
    [20]Johnson RR, Burkhalter A. A polysynaptic feedback circuit in rat visual cortex [J]. J Neurosci,1997,17(18):7129-7140.
    [21]Shao Z, Burkhalter A. Different balance of excitation and inhibition in forward and feedback circuits of rat visual cortex [J]. J Neurosci, 1996,16(22):7353-7365.
    [22]Dong H, Shao Z, Nerbonne JM, et al. Differential depression of inhibitory synaptic responses in feedforward and feedback circuits between different areas of mouse visual cortex [J]. J Comp Neurol,2004,475(3):361-373.
    [23]Thomas HC, Espinoza SG. Relationships between interhemispheric cortical connections and visual areas in hooded rats [J]. Brain Res, 1987,417(2):214-224.
    [24]Montero VM. Retinotopy of cortical connections between the striate cortex and extrastriate visual areas in the rat [J]. Exp Brain Res.1993.94(1):1-15.
    [25]Miller B, Chou L, Finlay BL. The early development of thalamocortical and corticothalamic projections [J]. J Comp Neurol,1993,335(1):16-41.
    [26]Barone P, Dehay C, Berland M, et al. Developmental remodeling of primate visual cortical pathways [J]. Cereb Cortex,1995,5(1):22-38.
    [27]Barone P, Dehay C, Berland M, et al. Role of directed growth and target selection in the formation of cortical pathways:prenatal development of the projection of area V2 to area V4 in the monkey [J]. J Comp Neurol, 1996,374(1):1-20.
    [28]Yoshimura Y, Sato H, Imamura K, et al. Properties of horizontal and vertical inputs to pyramidal cells in the superficial layers of the cat visual cortex [J]. J Neurosci,2000,20(5):1931-1940.
    [29]Gordon JA, Stryker MP. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse [J]. J Neurosci, 1996,16(10):3274-3286.
    [30]Yoshimura Y, Kimura F, Tsumoto T. Estimation of single channel conductance underlying synaptic transmission between pyramidal cells in the visual cortex [J]. Neuroscience,1999,88(2):347-352.
    [31]Stratford KJ, Tarczy-Hornoch K, Martin KA, et al. Excitatory synaptic inputs to spiny stellate cells in cat visual cortex [J]. Nature, 1996,382(6588):258-261.
    [32]Thomson AM. Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro [J]. J Physiol,1997,502 (Pt1):131-147.
    [33]Cash S, Yuste R. Linear summation of excitatory inputs by CA1 pyramidal neurons [J]. Neuron,1999,22(2):383-394.
    [34]Larkum ME, Zhu JJ, Sakmann B. A new cellular mechanism for coupling inputs arriving at different cortical layers [J]. Nature, 1999,398(6725):338-341.
    [35]Hirsch JA, Gilbert CD. Synaptic physiology of horizontal connections in the cat's visual cortex [J]. J Neurosci,1991,11 (6):1800-1809.
    [36]Ts'o DY, Gilbert CD. The organization of chromatic and spatial interactions in the primate striate cortex [J]. J Neurosci,1988,8(5):1712-1727.
    [37]Gilbert CD, Wiesel TN. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex [J]. J Neurosci, 1989,9(7):2432-2442.
    [38]Dudek SM, Bear MF. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade [J]. Proc Natl Acad Sci U S A,1992,89(10):4363-4367.
    [39]Mulkey RM, Malenka RC. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus [J]. Neuron,1992,9(5):967-975.
    [40]Malenka RC. Synaptic plasticity in the hippocampus:LTP and LTD [J]. Cell, 1994,78(4):535-538.
    [41]Markram H, Lubke J, Frotscher M, et al. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs [J]. Science, 1997,275(5297):213-215.
    [42]Bi GQ, Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type [J]. J Neurosci,1998,18(24):10464-10472.
    [43]Song S, Miller KD, Abbott LF. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity [J]. Nat Neurosci, 2000,3(9):919-926.
    [44]Jarvis SE, Zamponi GW. Interactions between presynaptic Ca2+ channels, cytoplasmic messengers and proteins of the synaptic vesicle release complex [J]. Trends Pharmacol Sci,2001,22(10):519-525.
    [45]Chi P, Greengard P, Ryan TA. Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies [J]. Neuron,2003,38(1):69-78.
    [46]Su Q, Mochida S, Tian JH, et al. SNAP-29:a general SNARE protein that inhibits SNARE disassembly and is implicated in synaptic transmission [J]. Proc Natl Acad Sci U S A,2001,98(24):14038-14043.
    [47]Nikonenko I. Jourdain P. Muller D. Presynaptic remodeling contributes to activity-dependent synaptogenesis [J]. J Neurosci,2003,23(24):8498-8505.
    [48]Bon CL, Garthwaite J. Exogenous nitric oxide causes potentiation of hippocampal synaptic transmission during low-frequency stimulation via the endogenous nitric oxide-cGMP pathway [J]. Eur J Neurosci, 2001,14(4):585-594.
    [49]Benowitz LI, Routtenberg A. GAP-43:an intrinsic determinant of neuronal development and plasticity [J]. Trends Neurosci,1997,20(2):84-91.
    [50]郭新华,李清君.不同类型的谷氨酸受体在脊髓痛觉过敏产生中的作用及其信号转导机制[J].河北医科大学学报,2005,(03):218-220.
    [51]Caleo M, Lodovichi C, Maffei L. Effects of nerve growth factor on visual cortical plasticity require afferent electrical activity [J]. Eur J Neurosci, 1999,11(8):2979-2984.
    [52]Kleinschmidt A, Bear MF, Singer W. Blockade of "NMDA" receptors disrupts experience-dependent plasticity of kitten striate cortex [J]. Science, 1987,238(4825):355-358.
    [53]Catalano SM, Chang CK, Shatz CJ. Activity-dependent regulation of NMDAR1 immunoreactivity in the developing visual cortex [J]. J Neurosci, 1997,17(21):8376-8390.
    [54]Chen L, Cooper NG, Mower GD. Developmental changes in the expression of NMDA receptor subunits (NR1, NR2A, NR2B) in the cat visual cortex and the effects of dark rearing [J]. Brain Res Mol Brain Res, 2000,78(1-2):196-200.
    [55]Roberts EB, Ramoa AS. Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret [J]. J Neurophysiol,1999,81 (5):2587-2591.
    [56]Shi SH, Hayashi Y, Petralia RS, et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation [J]. Science, 1999,284(5421):1811-1816.
    [57]Hayashi Y, Shi SH, Esteban JA, et al. Driving AMPA receptors into synapses by LTP and CaMKII:requirement for GluR1 and PDZ domain interaction [J]. Science,2000,287(5461):2262-2267.
    [58]Esteban JA, Shi SH, Wilson C, et al. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity [J]. Nat Neurosci, 2003,6(2):136-143.
    [59]王昌鹏,阴正勤,秦伟,等.大鼠视觉发育可塑性关键期终止前后后视皮层神经元AMPA受体GluR2亚基表达的变化[J].眼科新进展,2008,(07):481-485.
    [60]Malenka RC, Nicoll RA. Long-term potentiation-a decade of progress? [J]. Science,1999,285(5435):1870-1874.
    [61]Koester HJ, Sakmann B. Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials [J]. Proc Natl Acad Sci U S A,1998,95(16):9596-9601.
    [62]Nishiyama M, Hong K, Mikoshiba K, et al. Calcium stores regulate the polarity and input specificity of synaptic modification [J]. Nature, 2000,408(6812):584-588.
    [63]Hirsch JA, Gilbert CD. Long-term changes in synaptic strength along specific intrinsic pathways in the cat visual cortex [J]. J Physiol,1993,461:247-262.
    [64]Wang XF, Daw NW. Long term potentiation varies with layer in rat visual cortex [J]. Brain Res,2003,989(1):26-34.
    [65]Sah P, Nicoll RA. Mechanisms underlying potentiation of synaptic transmission in rat anterior cingulate cortex in vitro [J]. J Physiol, 1991,433:615-630.
    [66]Hirsch JC, Crepel F. Use-dependent changes in synaptic efficacy in rat prefrontal neurons in vitro [J]. J Physiol,1990,427:31-49.
    [67]Thomson AM, Bannister AP. Postsynaptic pyramidal target selection by descending layer III pyramidal axons:dual intracellular recordings and biocytin filling in slices of rat neocortex [J]. Neuroscience, 1998,84(3):669-683.
    [68]Luhmann HJ, Prince DA. Postnatal maturation of the GABAergic system in rat neocortex [J]. J Neurophysiol,1991,65(2):247-263.
    [69]Liu Y, Zhang LI, Tao HW. Heterosynaptic scaling of developing GABAergic synapses:dependence on glutamatergic input and developmental stage [J]. J Neurosci,2007,27(20):5301-5312.
    [70]金洲,蔡一平,李东升.大鼠初级视皮层第Ⅱ/Ⅲ层侧向突触联系长时程增强的发育调控[J].生理学报,2009,61(5):458-468.
    [71]Cannon MW, Fullenkamp SC. Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations [J]. Vision Res,1991,31(11):1985-1998.
    [72]高朋芬,刘应兵,范惠民.大鼠视觉发育可塑性关键期视皮层LTP的研究[J].中国神经科学杂志,2002,(04):699-703.
    [73]Teyler TJ. Comparative aspects of hippocampal and neocortical long-term potentiation [J]. J Neurosci Methods,1989,28(1-2):101-108.
    [74]Reyes A, Sakmann B. Developmental switch in the short-term modification of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat neocortex [J]. J Neurosci,1999,19(10):3827-3835.
    [75]Zucker RS, Regehr WG. Short-term synaptic plasticity [J]. Annu Rev Physiol, 2002,64:355-405.
    [76]Castro-Alamancos MA, Connors BW. Distinct forms of short-term plasticity at excitatory synapses of hippocampus and neocortex [J]. Proc Natl Acad Sci USA,1997,94(8):4161-4166.
    [77]Doussau F, Clabecq A, Henry JP, et al. Calcium-dependent regulation of rab3 in short-term plasticity [J]. J Neurosci,1998,18(9):3147-3157.
    [78]Jia F, Xie X, Zhou Y. Short-term depression of synaptic transmission from rat lateral geniculate nucleus to primary visual cortex in vivo [J]. Brain Res, 2004,1002(1-2):158-161.
    [79]Abbott LF, Varela JA, Sen K, et al. Synaptic depression and cortical gain control [J]. Science,1997,275(5297):220-224.
    [80]Rao Y, Daw NW. Layer variations of long-term depression in rat visual cortex [J]. J Neurophysiol,2004,92(5):2652-2658.
    [81]Jiang B, Trevino M, Kirkwood A. Sequential development of long-term potentiation and depression in different layers of the mouse visual cortex [J]. J Neurosci,2007,27(36):9648-9652.
    [82]Kirkwood A, Lee HK, Bear MF. Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience [J]. Nature,1995,375(6529):328-331.
    [83]Origlia N, Kuczewski N, Aztiria E, et al. Muscarinic acetylcholine receptor knockout mice show distinct synaptic plasticity impairments in the visual cortex [J]. J Physiol,2006,577(Pt 3):829-840.
    [84]Smith GB, Heynen AJ, Bear MF. Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex [J]. Philos Trans R Soc Lond B Biol Sci, 2009,364(1515):357-367.
    [85]Lien CC, Mu Y, Vargas-Caballero M, et al. Visual stimuli-induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors [J]. Nat Neurosci,2006,9(3):372-380.
    [86]Dan Y, Poo MM. Spike timing-dependent plasticity:from synapse to perception [J]. Physiol Rev,2006,86(3):1033-1048.
    [87]Meliza CD, Dan Y. Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking [J]. Neuron, 2006,49(2):183-189.
    [88]Ramoa AS, Sur M. Short-term synaptic plasticity in the visual cortex during development [J]. Cereb Cortex,1996,6(4):640-646.
    [89]Fortune ES, Rose GJ. Short-term synaptic plasticity as a temporal filter [J]. Trends Neurosci,2001,24(7):381-385.
    [90]Hensch TK. Critical period plasticity in local cortical circuits [J]. Nat Rev Neurosci,2005,6(11):877-888.
    [91]Maffei A, Nelson SB, Turrigiano GG. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation [J]. Nat Neurosci, 2004,7(12):1353-1359.
    [92]Di CG,Berardi N, Cancedda L, et al. Requirement of ERK activation for visual cortical plasticity [J]. Science,2001,292(5525):2337-2340.
    [93]Feldmeyer D, Radnikow G. Developmental alterations in the functional properties of excitatory neocortical synapses [J]. J Physiol,2009,587(Pt 9):1889-1896.
    [94]Froemke RC, Poo MM. Dan Y. Spike-timing-dependent synaptic plasticity depends on dendritic location [J]. Nature,2005,434(7030):221-225.
    [95]张卫鹏,史学锋,邢咏新,等.发育对大鼠视皮层第2和3层锥体神经元AMPA受体介导的自发兴奋性突触后电流影响的研究[J].中华眼科杂志,2009,45(8):736-741.
    [96]Harauzov A, Spolidoro M, DiCristo G, et al. Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity [J]. J Neurosci, 2010,30(1):361-371.
    [97]Fagiolini M, Fritschy J M, Low K, et al. Specific GABAA circuits for visual cortical plasticity [J]. Science,2004,303(5664):1681-1683.
    [98]Murphy KM, Beston BR, Boley PM, et al. Development of human visual cortex:a balance between excitatory and inhibitory plasticity mechanisms [J]. Dev Psychobiol,2005,46(3):209-221.
    [99]Kameyama K, Sohya K, Ebina T, et al. Difference in binocularity and ocular dominance plasticity between GABAergic and excitatory cortical neurons [J]. J Neurosci,2010,30(4):1551-1559.
    [100]Hensch TK, Fagiolini M, Mataga N, et al. Local GABA circuit control of experience-dependent plasticity in developing visual cortex [J]. Science, 1998,282(5393):1504-1508.
    [101]Jang HJ, Cho KH, Kim HS, et al. Age-dependent decline in supragranular long-term synaptic plasticity by increased inhibition during the critical period in the rat primary visual cortex [J]. J Neurophysiol,2009,101(1):269-275.
    [102]Choi SY, Morales B, Lee HK, et al. Absence of long-term depression in the visual cortex of glutamic Acid decarboxylase-65 knock-out mice [J]. J Neurosci,2002,22(13):5271-5276.
    [103]Southwell DG, Froemke RC, Alvarez-Buylla A, et al. Cortical plasticity induced by inhibitory neuron transplantation [J]. Science, 2010,327(5969):1145-1148.
    [104]Fleidervish IA, Gutnick MJ. Paired-pulse facilitation of IPSCs in slices of immature and mature mouse somatosensory neocortex [J]. J Neurophysiol, 1995,73(6):2591-2595.
    [105]Morales B, Choi SY, Kirkwood A. Dark rearing alters the development of GABAergic transmission in visual cortex [J]. J Neurosci, 2002,22(18):8084-8090.
    [106]Kleschevnikov AM, Sokolov MV, Kuhnt U, et al. Changes in paired-pulse facilitation correlate with induction of long-term potentiation in area CA1 of rat hippocampal slices [J]. Neuroscience,1997,76(3):829-843.
    [107]Heinen K, Bosman LW, Spijker S, et al. GABAA receptor maturation in relation to eye opening in the rat visual cortex [J]. Neuroscience, 2004,124(1):161-171.
    [108]Montgomery JM, Madison DV. Discrete synaptic states define a major mechanism of synapse plasticity [J]. Trends Neurosci,2004,27(12):744-750.
    [109]Jiang L, Sun S, Nedergaard M, et al. Paired-pulse modulation at individual GABAergic synapses in rat hippocampus [J]. J Physiol,2000,523 Pt 2:425-439.
    [110]Saez 1, Friedlander MJ. Plasticity between neuronal pairs in layer 4 of visual cortex varies with synapse state [J]. J Neurosci,2009,29(48):15286-15298.
    [111]Madronal N, Gruart A, Delgado-Garcia JM. Differing presynaptic contributions to LTP and associative learning in behaving mice [J]. Front Behav Neurosci,2009,3:7.
    [112]Bramham CR. LTP not equal Learning:Lessons from Short-Term Plasticity [J]. Front Behav Neurosci,2010,4:3.
    [113]Blatow M, Caputi A, Burnashev N, et al. Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals [J]. Neuron, 2003,38(1):79-88.
    [114]Kravchenko MO, Moskalyuk AO, Fedulova SA, et al. Calcium-dependent changes of paired-pulse modulation at single GABAergic synapses [J]. Neurosci Lett,2006,395(2):133-137.
    [115]Jiang XY, Abrams TW. Use-dependent decline of paired-pulse facilitation at Aplysia sensory neuron synapses suggests a distinct vesicle pool or release mechanism [J]. J Neurosci,1998,18(24):10310-10319.
    [116]Wang JH, Kelly PT. Regulation of synaptic facilitation by postsynaptic Ca2+/CaM pathways in hippocampal CA1 neurons [J]. J Neurophysiol, 1996,76(1):276-286.
    [117]Wang JH, Kelly PT. Attenuation of paired-pulse facilitation associated with synaptic potentiation mediated by postsynaptic mechanisms [J]. J Neurophysiol,1997,78(5):2707-2716.
    [1]Hubel DH, Wiesel TN. Shape and arrangement of columns in cat's striate cortex [J]. J Physiol,1963,165:559-568.
    [2]Wiesel TN, Hubel DH. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens [J]. J Neurophysiol, 1965,28(6):1029-1040.
    [3]Kiorpes L, Kiper DC, O'Keefe LP, et al. Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia [J]. J Neurosci.1998.18(16):6411-6424.
    [4]Kiorpes L, McKee SP. Neural mechanisms underlying amblyopia [J]. Curr Opin Neurobiol,1999,9(4):480-486.
    [5]Kiorpes L MJA. Neural limitations on visual development in primates[M]//Chalupa LM WJS. The Visual Neurosciences. Cambridge:MIT Press,2003.
    [6]Levitt JB, Schumer RA, Sherman SM, et al. Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys [J]. J Neurophysiol,2001,85(5):2111-2129.
    [7]Blasdel GG. Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex [J]. J Neurosci,1992,12(8):3115-3138.
    [8]Blasdel GG. Orientation selectivity, preference, and continuity in monkey striate cortex [J]. J Neurosci,1992,12(8):3139-3161.
    [9]Schmidt KE, Singer W, Galuske RA. Processing deficits in primary visual cortex of amblyopic cats [J]. J Neurophysiol,2004,91(4):1661-1671.
    [10]Yoshioka T, Blasdel GG, Levitt JB, et al. Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive regions in macaque monkey striate cortex [J]. Cereb Cortex, 1996,6(2):297-310.
    [11]Tychsen L, Wong AM, Burkhalter A. Paucity of horizontal connections for binocular vision in V1 of naturally strabismic macaques:Cytochrome oxidase compartment specificity [J]. J Comp Neurol,2004,474(2):261-275.
    [12]Mori T, Matsuura K, Zhang B, et al. Effects of the duration of early strabismus on the binocular responses of neurons in the monkey visual cortex (VI) [J]. Invest Ophthalmol Vis Sci,2002,43(4):1262-1269.
    [13]Malach R, Amir Y, Harel M, et al. Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex [J]. Proc Natl Acad Sci U S A, 1993,90(22):10469-10473.
    [14]Kozma P, Kiorpes L. Contour integration in amblyopic monkeys [J]. Vis Neurosci,2003,20(5):577-588.
    [15]Levi DM. Visual processing in amblyopia:human studies [J]. Strabismus, 2006.14(1):11-19.
    [16]Barnes GR, Hess RF, Dumoulin SO, et al. The cortical deficit in humans with strabismic amblyopia [J]. J Physiol,2001,533(Pt 1):281-297.
    [17]Imamura K, Richter H, Fischer H, et al. Reduced activity in the extrastriate visual cortex of individuals with strabismic amblyopia [J]. Neurosci Lett, 1997,225(3):173-176.
    [18]Lerner Y, Pianka P, Azmon B, et al. Area-specific amblyopic effects in human occipitotemporal object representations [J]. Neuron,2003,40(5):1023-1029.
    [19]Mansouri B, Allen HA, Hess RF. Detection, discrimination and integration of second-order orientation information in strabismic and anisometropic amblyopia [J]. Vision Res,2005,45(18):2449-2460.
    [20]Simmers AJ, Bex PJ. The representation of global spatial structure in amblyopia [J]. Vision Res,2004,44(5):523-533.
    [21]Levi D, Saarinen J. Perception of mirror symmetry in amblyopic vision [J]. Vision Res,2004,44(21):2475-2482.
    [22]Sharma V, Levi DM, Klein SA. Undercounting features and missing features: evidence for a high-level deficit in strabismic amblyopia [J]. Nat Neurosci, 2000,3(5):496-501.
    [23]Hegde J, Van Essen DC. Strategies of shape representation in macaque visual area V2 [J]. Vis Neurosci,2003,20(3):313-328.
    [24]Smith MA, Bair W, Movshon JA. Signals in macaque striate cortical neurons that support the perception of glass patterns [J]. J Neurosci, 2002,22(18):8334-8345.
    [25]Rittenhouse CD, Shouval HZ, Paradiso MA, et al. Monocular deprivation induces homosynaptic long-term depression in visual cortex [J]. Nature, 1999,397(6717):347-350.
    [26]Sawtell NB, Frenkel MY, Philpot BD, et al. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex [J]. Neuron,2003,38(6):977-985.
    [27]Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, et al. Prior experience enhances plasticity in adult visual cortex [J]. Nat Neurosci,2006,9(1):127-132.
    [28]Levi DM. Perceptual learning in adults with amblyopia:a reevaluation of critical periods in human vision [J]. Dev Psychobiol,2005,46(3):222-232.
    [29]El MMK, Chakravarthy U, Hart PM. Amblyopia:is visual loss permanent? [J]. Br J Ophthalmol,2000,84(9):952-956.
    [30]Chino YM, Kaas JH,3rd SEL, et al. Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina [J]. Vision Res, 1992,32(5):789-796.
    [31]Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens [J]. J Physiol,1970,206(2):419-436.
    [32]Maffei L, Berardi N, Domenici L, et al. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats [J]. J Neurosci,1992,12(12):4651-4662.
    [33]Frenkel MY, Bear MF. How monocular deprivation shifts ocular dominance in visual cortex of young mice [J]. Neuron,2004,44(6):917-923.
    [34]Kaneko M, Stellwagen D, Malenka RC, et al. Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex [J]. Neuron,2008,58(5):673-680.
    [35]Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits [J]. Science,1996,274(5290):1133-1138.
    [36]Froemke RC, Dan Y. Spike-timing-dependent synaptic modification induced by natural spike trains [J]. Nature,2002,416(6879):433-438.
    [37]Fregnac Y, Shulz D, Thorpe S, et al. A cellular analogue of visual cortical plasticity [J]. Nature,1988,333(6171):367-370.
    [38]Meliza CD, Dan Y. Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking [J]. Neuron, 2006,49(2):183-189.
    [39]Heynen AJ, Yoon BJ, Liu CH, et al. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation [J]. Nat Neurosci,2003,6(8):854-862.
    [40]Frenkel MY, Sawtell NB, Diogo AC, et al. Instructive effect of visual experience in mouse visual cortex [J]. Neuron,2006,51(3):339-349.
    [41]Jiang B, Trevino M, Kirkwood A. Sequential development of long-term potentiation and depression in different layers of the mouse visual cortex [J]. J Neurosci,2007,27(36):9648-9652.
    [42]Desai NS, Cudmore RH, Nelson SB, et al. Critical periods for experience-dependent synaptic scaling in visual cortex [J]. Nat Neurosci, 2002,5(8):783-789.
    [43]Marino J, Schummers J, Lyon DC, et al. Invariant computations in local cortical networks with balanced excitation and inhibition [J]. Nat Neurosci, 2005,8(2):194-201.
    [44]Quinlan EM, Philpot BD, Huganir RL, et al. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo [J]. Nat Neurosci,1999,2(4):352-357.
    [45]Tongiorgi E, Ferrero F, Cattaneo A, et al. Dark-rearing decreases NR2A N-methyl-D-aspartate receptor subunit in all visual cortical layers [J]. Neuroscience,2003,119(4):1013-1022.
    [46]Chen WS, Bear MF. Activity-dependent regulation of NR2B translation contributes to metaplasticity in mouse visual cortex [J]. Neuropharmacology, 2007,52(1):200-214.
    [47]He HY, Hodos W, Quinlan EM. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex [J]. J Neurosci, 2006,26(11):2951-2955.
    [48]Philpot BD, Weisberg MP, Ramos MS, et al. Effect of transgenic overexpression of NR2B on NMDA receptor function and synaptic plasticity in visual cortex [J]. Neuropharmacology,2001,41(6):762-770.
    [49]Fagiolini M, Katagiri H, Miyamoto H, et al. Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling [J]. Proc Natl Acad Sci USA,2003,100(5):2854-2859.
    [50]Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity [J].Annu Rev Neurosci,2002,25:103-126.
    [51]Liu CH, Heynen AJ, Shuler MG, et al. Cannabinoid receptor blockade reveals parallel plasticity mechanisms in different layers of mouse visual cortex [J]. Neuron,2008,58(3):340-345.
    [52]Crozier RA, Wang Y, Liu CH, et al. Deprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex [J]. Proc Natl Acad Sci U S A,2007,104(4):1383-1388.
    [53]Daw NW, Reid SN, Beaver CJ. Development and function of metabotropic glutamate receptors in cat visual cortex [J]. J Neurobiol,1999,41(1):102-107.
    [54]Wang XF, Daw NW. Long term potentiation varies with layer in rat visual cortex [J]. Brain Res,2003,989(1):26-34.
    [55]Rao Y, Daw NW. Layer variations of long-term depression in rat visual cortex [J]. J Neurophysiol,2004,92(5):2652-2658.
    [56]Dolen G, Bear MF. Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome [J]. J Physiol,2008,586(6):1503-1508.
    [57]Taha S, Hanover JL, Silva AJ, et al. Autophosphorylation of alphaCaMKII is required for ocular dominance plasticity [J]. Neuron,2002,36(3):483-491.
    [58]Taha SA, Stryker MP. Ocular dominance plasticity is stably maintained in the absence of alpha calcium calmodulin kinase II (alphaCaMKII) autophosphorylation [J]. Proc Natl Acad Sci U S A, 2005,102(45):16438-16442.
    [59]Hensch TK. Critical period plasticity in local cortical circuits [J]. Nat Rev Neurosci,2005,6(11):877-888.
    [60]Hensch TK, Fagiolini M. Excitatory-inhibitory balance and critical period plasticity in developing visual cortex [J]. Prog Brain Res,2005,147:115-124.
    [61]Jiang B, Huang ZJ, Morales B, et al. Maturation of GABAergic transmission and the timing of plasticity in visual cortex [J]. Brain Res Brain Res Rev, 2005,50(l):126-133.
    [62]Di CG, Chattopadhyaya B, Kuhlman SJ, et al. Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity [J]. Nat Neurosci,2007,10(12):1569-1577.
    [63]Maya VJF, Sale A, Viegi A, et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex [J]. Science,2008,320(5874):385-388.
    [64]Mataga N, Mizuguchi Y, Hensch TK. Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator [J]. Neuron. 2004,44(6):1031-1041.
    [65]Sale A, Maya VJF, Medini P, et al. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition [J]. Nat Neurosci,2007,10(6):679-681.
    [66]Guimaraes A, Zaremba S, Hockfield S. Molecular and morphological changes in the cat lateral geniculate nucleus and visual cortex induced by visual deprivation are revealed by monoclonal antibodies Cat-304 and Cat-301 [J]. J Neurosci,1990,10(9):3014-3024.
    [67]Pizzorusso T, Medini P, Berardi N, et al. Reactivation of ocular dominance plasticity in the adult visual cortex [J]. Science,2002,298(5596):1248-1251.
    [68]Oray S, Majewska A, Sur M. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation [J]. Neuron, 2004,44(6):1021-1030.
    [69]Mitchell DE, Murphy KM, Kaye MG. The permanence of the visual recovery that follows reverse occlusion of monocularly deprived kittens [J]. Invest Ophthalmol Vis Sci,1984,25(8):908-917.
    [70]Bear MF. Bidirectional synaptic plasticity:from theory to reality [J]. Philos Trans R Soc Lond B Biol Sci,2003,358(1432):649-655.
    [71]Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system [J]. Nat Rev Neurosci,2004,5(2):97-107.
    [72]Turrigiano GG, Leslie KR, Desai NS, et al. Activity-dependent scaling of quantal amplitude in neocortical neurons [J]. Nature, 1998,391(6670):892-896.
    [73]Maffei A, Turrigiano GG. Multiple modes of network homeostasis in visual cortical layer 2/3 [J].J Neurosci,2008,28(17):4377-4384.
    [74]Kilman V, van RMC, Turrigiano GG. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neocortical synapses [J]. J Neurosci, 2002,22(4):1328-1337.
    [75]Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha [J]. Nature,2006,440(7087):1054-1059.
    [76]Rutherford LC, Nelson SB, Turrigiano GG. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses [J]. Neuron,1998,21(3):521-530.
    [77]Maffei A, Nataraj K, Nelson SB, et al. Potentiation of cortical inhibition by visual deprivation [J]. Nature,2006,443(7107):81-84.
    [78]Holtmaat AJ, Trachtenberg JT, Wilbrecht L, et al. Transient and persistent dendritic spines in the neocortex in vivo [J]. Neuron,2005,45(2):279-291.
    [79]Grutzendler J, Kasthuri N, Gan WB. Long-term dendritic spine stability in the adult cortex [J]. Nature,2002,420(6917):812-816.
    [80]Lee WC, Huang H, Feng G, et al. Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex [J]. PLoS Biol,2006,4(2):e29.
    [81]Stettler DD, Yamahachi H, Li W, et al. Axons and synaptic boutons are highly dynamic in adult visual cortex [J]. Neuron,2006,49(6):877-887.
    [82]McGee AW, Yang Y, Fischer QS, et al. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor [J]. Science, 2005,309(5744):2222-2226.
    [83]Malenka RC, Bear MF. LTP and LTD:an embarrassment of riches [J]. Neuron, 2004,44(1):5-21.
    [84]Monyer H, Burnashev N, Laurie DJ, et al. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors [J]. Neuron,1994,12(3):529-540.
    [85]Carmignoto G, Vicini S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex [J]. Science, 1992,258(5084):1007-1011.
    [86]Pham TA, Graham SJ, Suzuki S, et al. A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB [J]. Learn Mem,2004,11 (6):738-747.
    [87]Fagiolini M, Hensch TK. Inhibitory threshold for critical-period activation in primary visual cortex [J]. Nature,2000,404(6774):183-186.
    [88]Lamme VA, Super H, Spekreijse H. Feedforward, horizontal, and feedback processing in the visual cortex [J]. Curr Opin Neurobiol,1998,8(4):529-535.
    [89]Desimone R, Duncan J. Neural mechanisms of selective visual attention [J]. Annu Rev Neurosci,1995,18:193-222.
    [90]Lee TS, Yang CF, Romero RD, et al. Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency [J]. Nat Neurosci,2002,5(6):589-597.
    [91]McAdams CJ, Maunsell JH. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4 [J]. J Neurosci, 1999,19(1):431-441.
    [92]Motter BC. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli [J]. J Neurophysiol,1993,70(3):909-919.
    [93]Crist RE, Li W, Gilbert CD. Learning to see:experience and attention in primary visual cortex [J]. Nat Neurosci,2001,4(5):519-525.
    [94]Li W, Piech V, Gilbert CD. Contour saliency in primary visual cortex [J]. Neuron,2006,50(6):951-962.
    [95]Roelfsema PR, Khayat PS, Spekreijse H. Subtask sequencing in the primary visual cortex [J]. Proc Natl Acad Sci U S A,2003,100(9):5467-5472.
    [96]Roelfsema PR, Lamme VA, Spekreijse H. Object-based attention in the primary visual cortex of the macaque monkey [J]. Nature, 1998,395(6700):376-381.
    [97]Slotnick SD, Thompson WL, Kosslyn SM. Visual mental imagery induces retinotopically organized activation of early visual areas [J]. Cereb Cortex, 2005,15(10):1570-1583.
    [98]Buckner RL, Wheeler ME. The cognitive neuroscience of remembering [J]. Nat Rev Neurosci,2001,2(9):624-634.
    [99]Wunderlich K, Schneider KA, Kastner S. Neural correlates of binocular rivalry in the human lateral geniculate nucleus [J]. Nat Neurosci, 2005,8(11):1595-1602.
    [100]Polonsky A, Blake R, Braun J, et al. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry [J]. Nat Neurosci,2000,3(11):1153-1159.
    [101]Tong F, Nakayama K, Vaughan JT, et al. Binocular rivalry and visual awareness in human extrastriate cortex [J]. Neuron,1998,21(4):753-759.
    [102]Angelucci A, Levitt JB, Walton EJ, et al. Circuits for local and global signal integration in primary visual cortex [J]. J Neurosci,2002,22(19):8633-8646.
    [103]Shmuel A, Korman M, Sterkin A, et al. Retinotopic axis specificity and selective clustering of feedback projections from V2 to V1 in the owl monkey [J]. J Neurosci,2005,25(8):2117-2131.
    [104]Lamme VA. The neurophysiology of figure-ground segregation in primary visual cortex [J]. J Neurosci,1995,15(2):1605-1615.
    [105]Hupe JM, James AC, Girard P, et al. Feedback connections act on the early part of the responses in monkey visual cortex [J]. J Neurophysiol, 2001,85(1):134-145.
    [106]Bair W, Cavanaugh JR, Movshon JA. Time course and time-distance relationships for surround suppression in macaque V1 neurons [J]. J Neurosci, 2003,23(20):7690-7701.
    [107]Pascual-Leone A, Walsh V. Fast backprojections from the motion to the primary visual area necessary for visual awareness [J]. Science, 2001,292(5516):510-512.
    [108]Gold JI, Shadlen MN. Representation of a perceptual decision in developing oculomotor commands [J]. Nature,2000,404(6776):390-394.
    [109]Martinez A, DiRusso F, Anllo-Vento L, et al. Putting spatial attention on the map:timing and localization of stimulus selection processes in striate and extrastriate visual areas [J]. Vision Res,2001,41(10-11):1437-1457.
    [110]Martinez A, Anllo-Vento L, Sereno MI, et al. Involvement of striate and extrastriate visual cortical areas in spatial attention [J]. Nat Neurosci, 1999,2(4):364-369.
    [111]Sherman SM. Thalamic relays and cortical functioning [J]. Prog Brain Res, 2005,149:107-126.
    [112]Shao Z, Burkhalter A. Different balance of excitation and inhibition in forward and feedback circuits of rat visual cortex [J]. J Neurosci, 1996.16(22):7353-7365.
    [113]Gilbert CD, Sigman M, Crist RE. The neural basis of perceptual learning [J]. Neuron,2001,31(5):681-697.
    [114]Rockland KS, Pandya DN. Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey [J]. Brain Res, 1979,179(1):3-20.
    [115]Rosenquist AC, Ciaramitaro VM, Durmer JS, et al. Ibotenic acid lesions of the superior colliculus produce longer lasting deficits in visual orienting behavior than aspiration lesions in the cat [J]. Prog Brain Res,1996,112:117-130.
    [116]Coogan TA, Burkhalter A. Hierarchical organization of areas in rat visual cortex [J]. J Neurosci,1993,13(9):3749-3772.
    [117]Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex [J]. Cereb Cortex,1991,1(1):1-47.
    [118]Johnson RR, Burkhalter A. Evidence for excitatory amino acid neurotransmitters in forward and feedback corticocortical pathways within rat visual cortex [J]. Eur J Neurosci,1994,6(2):272-286.
    [119]Johnson RR, Burkhalter A. Microcircuitry of forward and feedback connections within rat visual cortex [J]. J Comp Neurol,1996,368(3):383-398.
    [120]Arieli A, Sterkin A, Grinvald A, et al. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses [J]. Science, 1996,273(5283):1868-1871.
    [121]Petersen CC, Hahn TT, Mehta M, et al. Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex [J]. Proc Natl Acad Sci U SA,2003,100(23):13638-13643.
    [122]Haider B, Duque A, Hasenstaub AR, et al. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition [J]. J Neurosci,2006,26(17):4535-4545.
    [123]Zipser K, Lamme VA, Schiller PH. Contextual modulation in primary visual cortex [J]. J Neurosci,1996,16(22):7376-7389.
    [124]Johnson RR, Burkhalter A. A polysynaptic feedback circuit in rat visual cortex [J]. J Neurosci,1997,17(18):7129-7140.
    [125]Varela JA, Song S, Turrigiano GG, et al. Differential depression at excitatory and inhibitory synapses in visual cortex [J]. J Neurosci, 1999,19(11):4293-4304.
    [126]Shu Y, Hasenstaub A, McCormick DA. Turning on and off recurrent balanced cortical activity [J]. Nature,2003,423(6937):288-293.
    [127]Chance FS, Abbott LF, Reyes AD. Gain modulation from background synaptic input [J]. Neuron,2002,35(4):773-782.
    [128]Barone P, Dehay C, Berland M, et al. Developmental remodeling of primate visual cortical pathways [J]. Cereb Cortex,1995,5(1):22-38.
    [129]Barone P, Dehay C, Berland M, et al. Role of directed growth and target selection in the formation of cortical pathways:prenatal development of the projection of area V2 to area V4 in the monkey [J]. J Comp Neurol, 1996,374(1):1-20.
    [130]Gordon JA, Stryker MP. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse [J]. J Neurosci, 1996,16(10):3274-3286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700