运动感知计算问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动分析是视觉研究中富有挑战性的研究课题。近年来,生物视觉在运动感知方面的研究形成了相对完备的理论体系,提出人类视觉运动感知至少包含两个分离的子系统,分别加工亮度定义的一阶运动以及对比度、空间频率、时间频率等属性定义的二阶运动。
     本文着眼于从计算的角度系统地分析初级视觉一阶和二阶运动的感知原理,并建立相应的计算模型,探索新的生物学启发式运动检测算法。
     依据视觉心理学和神经生理学在一阶运动感知方面的成果,设计符合计算原则的时空分离滤波器,实现基于延迟比较原则的运动分析模块,并从理论和实践角度分析各步骤的功能意义。
     结合计算应用实际,建立基于不同决策准则的算法,设计实现完整可计算的一阶运动相关模型。利用合成和真实场景的图像序列比较不同算法间的性能,结果显示,赢者取全方式决策的算法具有良好的抗噪性和鲁棒性。
     利用时空表达及频谱分析等手段,深入分析二阶运动的本质属性,指出二阶运动实际上是调制信号在三维时空的一种表现形式,并提出其在计算上的分类观点,即按照信号调制的方式将其归纳为空间调制、时间调制和时空调制三类运动。
     基于对二阶运动现象的分析,设计通用的非线性预处理算法一纹理捕获器,实现完整的二阶运动检测模型。针对不同类型二阶运动进行的计算分析,结果显示设计的纹理捕获算法能够完成属性的变换以及信息的解调,使得后续的一阶模型能够获取足够的有效信息,并首次从计算角度辅证二阶运动由非线性感知系统加工的理论。
     最后,从一阶和二阶运动信息的存在关系出发,分析算法的适用范围,探索合理的信息融合方式以及生物学启发式算法的应用价值。
Motion analysis is a challenge for vision research. In recent years, a relatively complete theoretical system of motion perception has been established. As widely accepted in biological vision, there exist at least two distinct low-level subsystems analyzing motion:a first order system that responds to certain moving luminance patterns, and a second order system that responds to moving modulation of feature types, which are usually defined by contrast, spatial frequency, temporal frequency etc.
     From the perspective of computational analysis, we focus on the low-level motion perception mechanism, and establish the corresponding computational model to explore a new biologically inspired motion detection algorithm.
     Combination of psychology and neurophysiology outcomes, separable spatial and temporal filters in motion detector are designed, which collaborate to compute the motion based on the delay-and-comparison principle. Furthermore its compositional modules are thoroughly analyzed to reveal the functional connotation respectively.
     In consideration of computer applications, an elaborated version of the biological correlation model is proposed with different decision principle. The implementation is valided both on synthetic and real world image sequences. Preliminary experimental results show that the proposed detector with the Winner-Take-All decision has better robustness and anti-noise capability.
     In this paper, different types of second order motion are formulized and investigated in detail. We present that second order motions can be divided into three typical groups according to the modulation types:spatial modulate motion, temporal modulate motion and spatiotemporal modulate motion.
     Through the analysis of second order motion, a general nonlinear preprocessor, Texture Grabber, is proposed for detecting various types of motions. Experiments are conducted by correlation model preceded with the nonlinear processor. Preliminary analysis demonstrates that the proposed detector can capture effective information from different types of second order motions. The computational results are consistent with the previous suggestion that the second order motions are processed by nonlinear system.
     Finally, we discuss the relationship between first and second order motion information. Appropriate combination will obtain more reliable motion estimation, and the bio-plausible exploiture may bring some new advantage to computer vision practice.
引文
[1]胡俊,王廷平.图像序列运动检测算法的研究及其应用.武汉大学学报:自然科学版,2000,46(005):613-616
    [2]王亮,胡卫明,谭铁牛.人运动的视觉分析综述.计算机学报,2002,25(003):225-237
    [3]张文涛,李晓峰.高速密集视频目标场景下的运动分析.电子学报,2000,28(010):114-1117
    [4]姚远程,马上.一种视频图像中运动目标检测方法研究.电子科技大学学报,2006,35(004):458-460
    [5]田鹤,陈剑波.视频监控系统中基于MPFG编码域的运动检测方法.计算机工程,2002,28(()10):164-166
    [6]王栓,艾海舟,何克忠.基于差分图象的多运动目标的检测与跟踪.中国图象图形学报,1999,4(6):470-475
    [7]杜友田,陈峰,徐文立等.基于视觉的人的运动识别综述.电子学报,2007,35(001):84-90
    [8]张天序,曹杨,刘进等.基于不变矩的前视红外图像机场目标识别.华中科技大学学报:自然科学版,2007,35(001):17-19
    [9]张天序.成像自动目标识别.第一版.武汉:湖北科学技术出版社,2004:209-259
    [10]杨新,郭丰俊.一种基于梯度算子的图像匹配算法.电子学报,1999,27(010):30-33
    [11]李波,郑锦,李景颉等.基于累积光流的运动对象检测.高技术通讯,2006,16(011):1101-1106
    [12]侯志强,韩崇昭.基于像素灰度归类的背景重构算法.软件学报,2005,16(009):1568-1576
    [13]王晓卫,宁固.一种改进的基于光流的运动目标的检测算法.武汉大学学报: 信息科学版,2003,28(3):351-353
    [14]Barron J L, Fleet D J, Beauchemin S S. Performance of optical flow techniques. International Journal of Computer Vision,1994,12(1):43-77
    [15]Beauchemin S S, Barron J L. The Computation of Optical Flow. ACM Computing Surveys,1995,27(3):433-467
    [16]Fleet D J, Jepson A D. Computation of component image velocity from local phase information. International Journal of Computer Vision,1990,5(1):77-104
    [17]Heeger D J. Optical flow using spatiotemporal filters. International Journal of Computer Vision,1988,1(4):279-302
    [18]Horn B K P, Schunck B G Determining Optical Flow. Artificial Intelligence,1981, 17:185-203
    [19]Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision. In: Patrick J Hayes ed. Proceedings of the 7th International Joint Conference on Artificial Intelligence. Vancouver. August 1981. Vancouver:William Kaufmann,1981:121-130
    [20]Anandan P. Measuring visual motion from image sequences. Electronic Doctoral Dissertations for UMass Amherst,1987
    [21]Anandan P. A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision,1989,2(3):283-310
    [22]范学刚,王正志,黄教民.一个基于生物视觉的单目运动方向检测模型.中国图象图形学报,2008,13(1):1-8
    [23]王爱群,郑南宁.并行分层二维多速度运动检测模型.自动化学报,1999,25(001):73-81
    [24]Lu Z L, Sperling G. Three-systems theory of human visual motion perception: review and update. Journal of the Optical Society of America A,2001,18(9): 2331-2370
    [25]Exner S. Experimentelle Untersuchung der einfachsten psychischen Processe. Pflugers Archiv European Journal of Physiology,1875,11:403-432.
    [26]http://www.physpharm.find.uwo.ca/undergrad/sensesweb/
    [27]W. Reichardt. Autocorrelation, a principle for the evaluation of sensory information by the central nervous system, in Sensory Communication, W. A. Rosenblith, ed. (Wiley, New York,1961)
    [28]Barlow H B, Levick W R. The mechanism of directionally selective units in rabbit's retina. The Journal of Physiology,1965,178(3):477-540
    [29]Barlow H B, Hill R M, Levick W R. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. The Journal of Physiology,1964, 173(3):377-407
    [30]Hubel D H, Wiesel T N. Receptive fields of single neurones in the cat's striate cortex. The Journal of Physiology,1959,148(3):574-591
    [31]Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology,1962,160(1): 106-154
    [32]Ferster D. Spatially opponent excitation and inhibition in simple cells of the cat visual cortex. Journal of Neuroscience,1988,8(4):1172-1180
    [33]DeAngelis G C, Ohzawa I, Freeman R D. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. Ⅰ. General characteristics and postnatal development. Journal of Neurophysiology,1993,69(4):1091-1117
    [34]Albus K, Wolf W. Early post-natal development of neuronal function in the kitten's visual cortex:a laminar analysis. The Journal of Physiology,1984,348(1):153-185
    [35]Derrington A M, Fuchs A F. The development of spatial-frequency selectivity in kitten striate cortex. The Journal of Physiology,1981,316(1):1-10
    [36]Daugman J G. Two-dimensional spectral analysis of cortical receptive field profiles. Vision Research,1980,20(10):847-856
    [37]Adelson E H, Bergen J R. Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A,1985,2(2):284-299
    [38]Van Santen J P H, Sperling G. Elaborated reichardt detectors. Journal of the Optical Society of America A,1985,2(2):300-320
    [39]Watson A B, Ahumada J A J. Model of human visual-motion sensing. Journal of the Optical Society of America A,1985,2(2):322-341
    [40]Heeger D J. Model for the extraction of image flow. Journal of the Optical Society of America A,1987,4:1455-1471
    [41]Hildreth E C, Ullman S. The measurement of visual motion. Cambridge MA USA: MIT Press,1982
    [42]Poggio T, Reichardt W. Visual control of orientation behaviour in the fly. Quarterly Reviews of Biophysics,1976,9(3):311-375
    [43]Van Santen J P H, Sperling G Temporal covariance model of human motion perception. Journal of the Optical Society of America A,1984,1(5):451-473
    [44]Biilthoff H, Little J, Poggio T. A parallel algorithm for real-time computation of optical flow. Nature,1989,337(6207):549-553
    [45]Fleet D J, Jepson A D. Computation of normal velocity from local phase information. In Procecding on Computer Vsion and Pattern Recognition,1989. 379-386
    [46]Zanker J M. On the elementary mechanism underlying secondary motion processing. Philosophical Transactions:Biological Sciences,1996,351(1348):1725-1736
    [47]Zanker J M, Srinivasan M V, Egelhaaf M. Speed tuning in elementary motion detectors of the correlation type. Biological cybernetics,1999,80(2):109-116
    [48]Nowlan S J, Sejnowski T J. Filter selection model for motion segmentation and velocity integration. Journal of the Optical Society of America A,1994,11(12): 3177-3200
    [49]R Moreno-Diaz Jr, A Quesada-Arencibia, J C Rodriguez Rodriguez. On the Evolution of Formal Models and Artificial Neural Architectures for Visual Motion Detection. Lecture Notes in Computer Science,2005,3562:479-488
    [50]Edward H. Adelson, James R. Bergen. The extraction of Spatio-temporal energy in human and machine vision, From Proceedings from the Workshop on Motion: Representation and Analysis Charleston, SC,1986:151-155
    [51]Barron J L, Fleet D J, Beauchemin S S. Performance of optical flow techniques. International Journal of Computer Vision,1994,12(1):43-77
    [52]Chubb C, Sperling G Drift-balanced random stimuli:a general basis for studying non-Fourier motion perception. Journal of the Optical Society of America A,1988, 5(11):1986-2007
    [53]Henning G B, Hertz B G, Broadbent D E. Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency. Vision Research,1975,15:887-897
    [54]Sperling G. Movement perception in computer-driven visual displays. Behavior Research Methods & Instrumentation,1976,8:224-230
    [55]Lelkevs A M M, Koenderw J J. Illusory motion in visual displays. Vision Research, 1984,24:1083-1090
    [56]Regan D, Beverley K I. Figure-ground segregation by motion contrast and by luminance contrast. Journal of the Optical Society of America A,1984,1(5): 433-442
    [57]Petersik J T, Hicks K I, Pantle A J. Apparent movement of successively generated subjective figures. Perception,1978,7(4):371-383
    [58]Albright T D. Form-cue invariant motion processing in primate visual cortex. Science,1992,255(5048):1141-1143
    [59]Chaudhuri A V I, Albright T D. Neuronal responses to edges defined by luminance vs. temporal texture in macaque area VI. Visual Neuroscience,1997,14:949-962
    [60]Zanker J M. Theta motion:a paradoxical stimulus to explore higher order motion extraction. Vision Research,1993,33:553-553
    [61]Smith A T, Ledgeway T. Separate detection of moving luminance and contrast modulations:fact or artifact? Vision Research,1997,37(1):45-62
    [62]Ledgeway T. Adaptation to second-order motion results in a motion aftereffect for directionally-ambiguous test stimuli. Vision Research,1994,34(21):2879-2889
    [63]Ledgeway T, Smith A T. Evidence for separate motion-detecting mechanisms for first-and second-order motion in human vision. Vision Research,1994,34(20): 2727-2740
    [64]Ledgeway T, Smith A T. The perceived speed of second-order motion and its dependence on stimulus contrast. Vision Research,1995,35(10):1421-1434
    [65]Ledgeway T, Smith A T. Changes in perceived speed following adaptation to first-order and second-order motion. Vision Research,1997,37(2):215-224
    [66]Ledgeway T, Hess R F. The spatial frequency and orientation selectivity of the mechanisms that extract motion-defined contours. Vision Research,2006,46(4): 568-578
    [67]Schofield A J, Ledgeway T, Hutchinson C V Asymmetric transfer of the dynamic motion aftereffect between first-and second-order cues and among different second-order cues. Journal of Vision,2007,7(8):1-10
    [68]Derrington A M, Badcock D R. Separate detectors for simple and complex grating patterns? Vision Research,1985,25(12):1869-1878
    [69]Burton G J. Evidence for nonlinear response process in the visual system from measurements on the thresholds of spatial beat frequencies. Vision Research,1973, 13:1211-1255
    [70]Fleet D J, Langley K. Computational analysis of non-Fourier motion. Vision Research,1994,34:3057-3079
    [71]Johnston A, McOwan P W, Buxton H. A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells. Proceedings:Biological Sciences,1992:297-306
    [72]Johnston A, Clifford C W G Perceived motion of contrast-modulated gratings: predictions of the multi-channel gradient model and the role of full-wave rectification. Vision Research,1995,35(12):1771-1783
    [73]Johnston A, Benton C P. Speed discrimination thresholds for first-and second-order bars and edges. Vision Research,1997,37(16):2217-2226
    [74]Johnston A, McOwan P W, Benton C P. Robust velocity computation from a biologically motivated model of motion perception. Proceedings of the Royal Society B:Biological Sciences,1999,266(1418):509
    [75]Johnston A, McOwan P W, Benton C P. Robust velocity computation from a biologically motivated model of motion perception. Proceedings of the Royal Society B:Biological Sciences,1999,266(1418):509-518
    [76]Benton C P, Johnston A, McOwan P W. Computational modelling of interleaved first-and second-order motion sequences and translating 3f+ 4f beat patterns. Vision Research,2000,40(9):1135-1142
    [77]Benton C P, Johnston A. A new approach to analysing texture-defined motion. Proceedings of the Royal Society of London-B-Biological Sciences,2001, 268(1484):2435-2444
    [78]Benton C P, Johnston A, McOwan P W, et al. Computational modeling of non-Fourier motion:further evidence for a single luminance-based mechanism. Journal of the Optical Society of America A,2001,18(9):2204-2208
    [79]Benton C P. Gradient-based analysis of non-Fourier motion. Vision Research,2002, 42(26):2869-2877
    [80]Benton C P. A role for contrast-normalisation in second-order motion perception. Vision Research,2004,44(1):91-98
    [81]Victor J D, Conte M M. Coherence and transparency of moving plaids composed of Fourier and non-Fourier gratings. Perception & psychophysics,1992,52(4): 403-414
    [82]Baker C L. Central neural mechanisms for detecting second-order motion. Current Opinion in Neurobiology,1999,9(4):461-466
    [83]Sperling G, Lu Z L. A systems analysis of visual motion perception. High-level motion processing:Computational, neurobiological, and psychophysical perspectives,1998:153-183
    [84]Smith A T. The detection of second-order motion. Visual detection of motion,1994: 145-176
    [85]Baker Jr C L, Mareschal I. Processing of second-order stimuli in the visual cortex. Progress in brain research,2001,134:1-21
    [86]Clifford C W G, Vaina L M. A computational model of selective deficits in first and second-order motion processing. Vision Research,1999,39(1):113-130
    [87]Chubb C, Olzak L, Derrington A. Second-order processes in vision: introduction. J. Opt. Soc. Am. A,2001,18:2175-2178
    [88]Mather G. First-order and second-order visual processes in the perception of motion and tilt. Vision Research,1991,31(1):161-167
    [89]Mather G, West S. Evidence for second-order motion detectors. Vision Research, 1993,33(8):1109-1112
    [90]Mather G, Tunley H. Motion detection in interleaved random dot patterns:evidence for a rectifying nonlinearity preceding motion analysis. Vision Research,1995, 35(15):2117-2125
    [91]Mather G, Anstis S. Second-order texture contrast resolves ambiguous apparent motion. Perception-London,1995,24:1373-1382
    [92]Mather G, Murdoch L. Evidence for global motion interactions between first-order and second-order stimuli. Perception,1998,27:761-768
    [93]Mather G, Murdoch L. Second-order processing of four-stroke apparent motion. Vision Research,1999,39(10):1795-1802
    [94]Anstis S M, Smith D R R, Mather G. Luminance processing in apparent motion, Vernier offset and stereoscopic depth. Vision Research,2000,40(6):657-675
    [95]Mather G. Early motion processes and the kinetic depth effect. The Quarterly journal of experimental psychology. A. Human experimental psychology,1989, 41(1):183-198
    [96]Mather G, Moulden B. A simultaneous shift in apparent direction:Further evidence for a "distribution-shift" model of direction coding. The Quarterly Journal of Experimental Psychology,1980,32(2):325-333
    [97]Mather G, Verstraten F, Anstis S M. The motion aftereffect:A modern perspective. Mit Press,1998
    [98]Vaina L M, Cowey A. Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage. Proceedings: Biological Sciences,1996:1225-1232
    [99]Vaina L M, Makris N, Kennedy D, et al. The selective impairment of the perception of first-order motion by unilateral cortical brain damage. Visual Neuroscience,1998, 15(02):333-348
    [100]Vaina L M, Cowey A, Kennedy D. Perception of first-and second-order motion: separable neurological mechanisms? Human brain mapping,1999,7(1):67-77
    [101]Vaina L M, Soloviev S, Bienfang D C, et al. A lesion of cortical area V2 selectively impairs the perception of the direction of first-order visual motion. Neuroreport, 2000,11(5):1039-1044
    [102]Vaina L M, Soloviev S. First-order and second-order motion:neurological evidence for neuroanatomically distinct systems. Progress in Brain Research,2004:197-212
    [103]Rizzo M, Nawrot M, Sparks J D, et al. First and second-order motion perception after focal human brain lesions. Vision Research,2008,48(26):2682-2688
    [104]Nishida S, Sato T. Motion aftereffect with flickering test patterns reveals higher stages of motion processing. Vision Research,1995,35(4):477-490
    [105]Nishida S, Sato T. Positive motion after-effect induced by bandpass-filtered random-dot kinematograms. Vision Research,1992,32(9):1635-1646
    [106]Nishida S. Spatiotemporal properties of motion perception for random-check contrast modulations. Vision Research,33(5-6):633-645
    [107]Nishida S, Ashida H, Sato T. Complete interocular transfer of motion aftereffect with flickering test. Vision Research,1994,34(20):2707-2716
    [108]Nishida S, Edwards M, Sato T. Simultaneous motion contrast across space: involvement of second-order motion? Vision Research,1997,37(2):199-214
    [109]Wang Y Z, Hess R F, Baker J C L. Second-order motion perception in peripheral vision:limits of early filtering. Journal of the Optical Society of America A,1997, 14(12):3145-3154
    [110]Mareschal I, Baker Jr C L. Temporal and spatial response to second-order stimuli in cat area 18. Journal of Neurophysiology,1998,80(6):2811-2823
    [111]Baker C L. Central neural mechanisms for detecting second-order motion. Current Opinion in Neurobiology,1999,9(4):461-466
    [112]Dumoulin S O, Baker Jr C L, Hess R F, et al. Cortical specialization for processing first-and second-order motion. Cerebral Cortex,2003,13(12):1375-1385
    [113]Mareschal I, Baker Jr C L. A cortical locus for the processing of contrast-defined contours. Nature Neuroscience,1998,1(2):150-154
    [114]Smith A T, Greenlee M W, Singh K D, et al. The processing of first-and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). Journal of Neuroscience,1998,18(10):3816-3830
    [115]Ashida H, Lingnau A, Wall M B, et al. FMRI adaptation reveals separate mechanisms for first-order and second-order motion. Journal of neurophysiology, 2007,97(2):1319-1325
    [116]Chubb C, McGowan J, Sperling G, et al. Non-Fourier motion analysis. In Higher-order processing in the visual system, Chichester, UK, Wiley,1994,193-205
    [117]Sutter A, Sperling Q Chubb C. Measuring the spatial frequency selectivity of second-order texture mechanisms. Vision Research,1995,35(7):915-924
    [118]Morgan M J, Chubb C. Contrast facilitation in motion detection:evidence for a Reichardt detector in human vision. Vision Research,1999,39(25):4217-4231
    [119]Chubb C, Olzak L, Derrington A. Second-order processes in vision:introduction. Journal of the Optical Society of America A:Optics, Image Science, and Vision, 2001,18(9):2175-2178
    [120]Solomon J A, Chubb C, John A, et al. Stimulus contrast and the Reichardt detector. Vision Research,2005,45(16):2109-2117
    [121]Solomon J A, Sperling G Full-wave and half-wave rectification in second-order motion perception. Vision Research,1994,34(17):2239-2258
    [122]Sperling G Three stages and two systems of visual processing. Spatial vision,1989, 4(2-3):183-207
    [123]Wilson H R, Ferrera V P, Yo C. A psychophysically motivated model for two-dimensional motion perception. Visual Neuroscience,1992,9(1):79-97
    [124]Werkhoven P, Sperling G, Chubb C. The dimensionality of texture-defined motion:a single channel theory. Vision Research,1993,33:463-463
    [125]Smith A T. Correspondence-based and energy-based detection of second-order motion in human vision. Journal of the Optical Society of America A,1994,11(7): 1940-1948
    [126]Lu Z L, Sperling G The functional architecture of human visual motion perception. Vision Research,1995,35(19):2697-2722
    [127]Lu Z L, Sperling G Contrast gain control in first-and second-order motion perception. Journal of the Optical Society of America A,1996,13(12):2305-2318
    [128]Lu Z L, Sperling G Second-order reversed phi. Perception and Psychophysics,1999, 61(6):1075-1088
    [129]Zhou Y X, Baker Jr C L. A processing stream in mammalian visual cortex neurons for non-Fourier responses. Science,1993,261(5117):98-101
    [130]Zhou Y X, Baker Jr C L. Envelope-responsive neurons in areas 17 and 18 of cat. Journal of Neurophysiology,1994,72(5):2134-2150
    [131]徐鹏景,叶翔,周逸峰.猫外膝体细胞对二阶信号刺激的时间反应特性.科学通报,2007,52(11):1274-1279
    [132]陈荣,仇祝平,张杨等.一阶运动和二阶运动方向辨别的知觉学习及传递性研究.生物化学与生物物理进展,2009,36(11):1442-1450
    [133]Krekelberg B. Motion detection mechanisms. The Senses:A Comprehensive Reference. Oxford:Elsevier Inc,2008
    [134]Bradley D C, Goyal M S. Velocity computation in the primate visual system. Nature Reviews Neuroscience,2008,9(9):686-695
    [135]Ramachandran V S, Anstis S M. The perception of apparent motion. Scientific American,1986,254(6):102-109
    [136]肖莉.二阶运动感知原理与应用研究:[硕士学位论文].武汉:华中科技大学图书馆,2007
    [137]Lee T S. Image representation using 2 D Gabor wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(10):959-971
    [138]De Valois R L, Albrecht D G, Thorell L G Spatial frequency selectivity of cells in macaque visual cortex. Vision Research,1982,22(5):545-559
    [139]Clifford C W G, Langley K. Recursive implementations of temporal filters for image motion computation. Biological Cybernetics,2000,82(5):383-390
    [140]Ibbotson M R. Clifford C W G. Characterising temporal delay filters in biological motion detectors. Vision Research,2001,41(18):2311-2323
    [141]Clifford C W G, Ibbotson M R. Fundamental mechanisms of visual motion detection: models, cells and functions. Progress in Neurobiology,2002,68(6):409-437
    [142]Hamilton D B, Albrecht D G, Geisler W S. Visual cortical receptive fields in monkey and cat:spatial and temporal phase transfer function. Vision Research, 1989,29(10):1285-1290
    [143]Gilroy L A, Hock H S. Multiplicative nonlinearity in the perception of apparent motion. Vision Research,2004,44(17):2001-2007
    [144]Pouget A, Dayan P, Zemel R. Information processing with population codes. Nature Reviews Neuroscience,2000,1(2):125-132
    [145]Zohary E. Population coding of visual stimuli by cortical neurons tuned to more than one dimension. Biological Cybernetics,1992,66(3):265-272
    [146]Clifford C W G. Perceptual adaptation: motion parallels orientation. Trends in Cognitive Sciences,2002,6(3):136-143
    [147]Sheliga B M, Fitzgibbon E J, Miles F A. Spatial summation properties of the human ocular following response (OFR):Evidence for nonlinearities due to local and global inhibitory interactions. Vision research,2008,48(17):1758-1776
    [148]陶琳.基于光流技术的图像信息提取:[硕士学位论文].武汉:华中科技大学图书馆,2005
    [149]Lopez J, Markel M, Siddiqi N, et al. Performance of passive ranging from image flow. In: IEEE 10th International Conference on Image Processing, IEEE, Barcelona, 2003:929-932
    [150]Baker S, Scharstein D, Lewis J P, et al. A database and evaluation methodology for optical flow. In IEEE 11th International Conference on Computer Vision. IEEE Press, Rio de Janeiro,2007:1-8
    [151]Petkov N, Subramanian E. Motion detection, noise reduction, texture suppression, and contour enhancement by spatiotemporal Gabor filters with surround inhibition. Biological Cybernetics,2007,97(5):423-439
    [152]http://www-bcs.mit.edu/people/jyawang/demos/garden-layer/layer-demo. Html (07/2005); Wang and Adelson,1994
    [153]Sheliga B M, Kodaka Y, FitzGibbon E J, et al. Human ocular following initiated by competing image motions:evidence for a winner-take-all mechanism. Vision Research,2006,46(13):2041-2060
    [154]Webb B S, Ledgeway T, McGraw P V. Cortical pooling algorithms for judging global motion direction. Proceedings of the National Academy of Sciences,2007, 104(9):3532-3537
    [155]Weiss Y, Simoncelli E P, Adelson E H. Motion illusions as optimal percepts. Nature Neuroscience,2002,5(6):598-604
    [156]Shamir M. The scaling of winner-takes-all accuracy with population size. Neural computation,2006,18(11):2719-2729
    [157]Groh J M, Born R T, Newsome W T. How is a sensory map read out? Effects of microstimulation in visual area MT on saccades and smooth pursuit eye movements. Journal of Neuroscience,1997,17(11):4312-4330
    [158]Mareschal I, Baker C L. Cortical processing of second-order motion. Visual Neuroscience,1999,16(3):527-540
    [159]Rose D, Blake R. Motion Perception:From Phi to Omega. Philosophical Transactions:Biological Sciences,1998,353(1371):967-980
    [160]Blake R, Lee S H. The Role of Temporal Structure in Human Vision. Behavioral and cognitive neuroscience reviews,2005,4(1):21-42
    [161]Shapley R, Enroth-Cugell C. Visual adaptation and retinal gain controls. Progress in retinal research,1984,3:263-346
    [162]Johnson A P, Baker J C L. First-and second-order information in natural images:a filter-based approach to image statistics. Journal of the Optical Society of America A,2004,21(6):913-925
    [163]Johnson A P, Prins N, Kingdom F A A, et al. Ecologically valid combinations of first-and second-order surface markings facilitate texture discrimination. Vision Research,2007,47(17):2281-2290
    [164]Haussecker H W, Fleet D J. Computing optical flow with physical models of brightness variation. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6):661-673
    [165]Peteri R, Huskies M, Fazekas S. DynTex:A comprehensive database of Dynamic Textures. online Dynamic Texture Database. [Online]. Available:www.cwi. nl/projects/dyntex
    [166]Srinivasan M V, Davey M. Strategies for active camouflage of motion. Proceedings: Biological Sciences,1995:19-25
    [167]Mizutani A, Chahl J S, Srinivasan M V. Motion camouflage in dragonflies. Nature, 2003,423(6940):604-607
    [168]Smith A T, Scott-Samuel N E. First-order and second-order signals combine to improve perceptual accuracy. Journal of the Optical Society of America A,2001, 18(9):2267-2272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700