空时四维天线阵的理论分析与信号处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代电子技术的飞速发展,阵列天线——作为广泛应用于各种无线系统的传感器,通常工作在非常复杂的电磁环境当中。为了能够有效地抑制从天线副瓣进入系统的各种干扰,无线系统通常要求阵列天线具有很低的副瓣电平。然而,较高的激励幅度动态范围比以及苛刻的误差精度要求导致很难在常规相控阵中实现低或超低副瓣。如果在常规相控阵中引入新的一维自由度——时间自由度,对天线阵列的辐射和接收信号进行周期性的时间调制,所构成的四维天线阵则能够在较低的激励幅度动态范围比的情况下获得低/超低副瓣方向图。此外,由于时间自由度的引入,四维天线阵还表现出许多常规天线阵所不具有的新的特性。本文的研究内容主要有:四维天线阵的理论分析、设计与优化,四维天线阵中的信号分析和信号处理以及在雷达系统中的应用基础研究。本文主要分为五个部分进行讨论。
     1.回顾四维天线阵的相关研究背景。首先介绍了常规天线阵综合低副瓣方向图的方法,并说明常规天线阵在抑制副瓣电平时所遇到的困难和局限性。其次,介绍了四维天线阵的基本原理,包括“单向/双向相位中心运动”和“可变口径尺寸”三种常见的时间调制方式,及其综合低或超低副瓣方向图和各种赋形波束的方法以及四维天线阵的边带辐射抑制问题。
     2.将时间调制技术扩展应用至非等间距的直线阵和矩形平面天线阵,并在较低的激励幅度动态范围比的情况下抑制天线阵的副瓣电平。同时,利用差分进化(Differential Evolution,DE)算法对四维天线阵的边带辐射进行抑制。
     3.基于四维天线阵的基本原理研究了时间调制对四维天线阵幅度和相位加权的影响,并提出四维天线阵中的相位加权技术。该技术通过合理设计时间调制参数,可以在不采用移相器的情况下实现波束的电扫描。此外,还可以利用该技术进行各种赋形波束(如:平顶波束和余割平方波束)的综合。由于不需使用移相器,该技术可以极大地降低天线阵馈电系统的复杂度,从而降低天线阵成本。
     4.将广泛应用于常规天线阵的阵列信号处理技术应用于四维天线阵,实现四维天线阵中的信源个数估计、信号来波方向估计和自适应波束形成。首先,利用时间调制技术能够在四维天线阵中实现同时多波束的性质并结合相关阵列信号处理算法,由多波束的接收数据实现四维天线阵中信源个数的估计和远场信号来波方向的估计,其性能优于常规天线阵。其次,利用时间加权代替幅度和相位加权或者利用波束空间的方法将自适应波束形成算法应用于四维天线阵,实现对干扰信号和噪声的有效抑制。
     5.针对四维天线阵中的信号传输进行研究,并提出将四维天线阵应用于脉冲多普勒雷达的系统方案。结合脉冲多普勒雷达的工作体制,对四维天线阵传输信号的时域波形、频谱以及由于时间调制所导致的平均功率损失进行相关研究。
     本文对四维天线阵的阵列设计和信号处理进行了系统而深入的研究,并通过部分实验结果以及仿真结果验证了在四维天线阵中方向图综合和阵列信号处理的方法,以及所表现出的优于常规天线阵的性能。本文的研究工作表明了四维天线阵在实际工程应用中具有极大的优势和潜力,必将在未来的研究和工程应用中得到推广。
With the rapid development of modern electronic technology, antenna arrays which act as the sensors for various wireless systems usually operate in very complex electromagnetic environment. In order to effectively suppress interferences received by the sidelobes of antenna arrays, low sidelobe levels (SLLs) are generally required in wireless systems. However, it is difficult for conventional antenna arrays to achieve low/ultra-low sidelobes due to the quite high dynamic range ratios of amplitude excitations and stringent requirements on various error tolerances. If an additional degree of design freedom, time, is introduced into conventional phased arrays, thus forming the four-dimensional (4-D) antenna arrays, the low/ultra-low sidelobes can be realized with lower dynamic range ratios of amplitude excitations by the time modulation. Furthermore, due to the introduction of time freedom, there are some new properties in 4-D antenna arrays which can not be obtained in conventional antenna arrays. The studies of this thesis are mainly concentrated on the theoretical analysis, design and optimization, signal analysis and processing, and applications in radar systems of the 4-D antenna arrays. The thesis is composed of the following five parts.
     1. The research background of the 4-D antenna arrays is reviewed. First, the methods of synthesizing low sidelobe patterns in conventional antenna arrays are introduced, which is to illuminate the difficulties and limitations of conventional antenna arrays on the suppression of SLLs. Next, basic theories of the 4-D antenna arrays are reviewed, including the“unidirectional/bidirectional phase center motion”and“variable aperture sizes”time modulation modes, the methods of synthesizing low/ultra-low sidelobe patterns, shaped patterns, and the suppression of sideband radiation in the 4-D antenna arrays.
     2. The time modulation technology is extended and applied to unequally spaced linear arrays and rectangular planar arrays to suppress the SLLs with lower dynamic range ratios of amplitude excitations. Moreover, the differential evolution algorithm is adopted to minimize the sideband radiation in the 4-D antenna arrays.
     3. Based on the theory of the 4-D antenna arrays, the influences of time modulation on amplitude and phase weighting are studied, and a type of phase weighting technique in the 4-D antenna arrays is proposed. By appropriately designing time modulation parameters, the electronic beam steering can be realized in 4-D antenna arrays without using phase shifters. In addition, various shaped patterns such as flat-top pattern and cosecant-squared pattern can also be synthesized by the proposed technique. Due to the fact that phase shifters are not used in the antenna arrays, this technique can be used to simplify the complexity of feed network and reduce the cost of antenna arrays.
     4. The array signal processing technologies which are widely used in conventional antenna arrays are applied to the 4-D antenna arrays to realize the estimation of source numbers, direction of arrival of far-field signals and adaptive beamforming. Firstly, multiple beams can be obtained in 4-D antenna arrays by using the time modulation technique. Based on the data received by the multiple beams, the source number and the direction of arrival can be determined by relative array signal processing methods, which show better performances as compared to those of conventional antenna arrays. Secondly, by using time weighting instead of amplitude/ phase weighting or using the beamspace methods, adaptive beamforming algorithm can be applied to 4-D antenna arrays to suppress interference signals and noises effectively.
     5. The signal transimission in 4-D antenna arrays is studied, and the application of the 4-D antenna arrays to the pulsed Doppler radar is proposed. With the operation system of the pulsed Doppler radar, the waveform in time domain, spectrum, and average power losses caused by the time modulation are studied.
     The design and signal processing in the 4-D antenna array are studied systematically and deeply in this thesis. The simulated and some measured results validate the methods of pattern synthesis or signal processing in the 4-D antenna arrays, which show better performance as compared to conventional antenna arrays. The studies of this thesis demonstrate that the 4-D antenna array has great predominance and potential in practical engineering, and it will be extended in future research and engineering application.
引文
[1]谢处方,邱文杰.天线原理与设计.西安:西北电讯工程学院出版社, 1985.
    [2]汪茂光,吕善伟,刘瑞祥.阵列天线分析与综合.成都:电子科技大学出版社, 1989.
    [3] Mailloux R J. Phased array antenna handbook. London: Artech House, 1993.
    [4] Villeneuve A T. Taylor patterns for discrete arrays. IEEE Trans. Antennas Propagat, Oct. 1984, 32(10): 1089-1093.
    [5] Haupt R L. Thinned arrays using genetic algorithms. IEEE Trans. Antennas Propagat., July 1994, 42(7): 993-999.
    [6] Haupt R L. Genetic algorithm applications for phased arrays. ACES J., Nov. 2006, 21(3): 325-336.
    [7] Yan K K, Lu Y. Sidelobe reduction in array-pattern synthesis using genetic algorithm. IEEE Trans. Antennas Propagat., July 1997, 45(7): 1117-1121.
    [8] Ares F J, Rodriguez J A, Villanueva E, Rengarajan S R. Genetic algorithms in the design and optimization of antenna array patterns. IEEE Trans. Antennas Propagat., Mar. 1999, 47(3): 506-510.
    [9] Mongon V R, Artuzi Jr. W A, Descardeci J R. Tilt angle and side-lobe level control of microwave antenna arrays. Microwave Opt. Technol. Lett., Apr. 2002, 33(1): 12-14.
    [10] Murino V, Trucco A, Regazzoni C S. Synthesis of unequally spaced arrays by simulated annealing. IEEE Trans. Signal Process., Jan. 1996, 44(1): 119-122.
    [11] Cardone G, Cincotti G, Pappalardo M. Design of wide-band arrays for low side-lobe level beam patterns by simulated annealing. IEEE Trans. Ultrason., Ferroelectr., Freq. Control, Aug. 2002, 49(8): 1050-1059.
    [12] Quevedo-Teruel O, Rajo-lglesias E. Ant colony optimization in thinned array synthesis with minimum sidelobe level. IEEE Antennas Wireless Propagat. Lett., 2006, 5: 349-352.
    [13] Rajo-lglesias E, Quevedo-Teruel O. Linear array synthesis using an ant-colony-optimization-based algorithm. IEEE Antennas Propagat. Mag., Apr. 2007, 49(2): 70-79.
    [14] Khodier M M, Christodoulou C G. Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Trans. Antennas Propagat., Aug. 2005, 53(8): 2674-2679.
    [15] Bevelacqua P J, Balanis C A. Minimum sidelobe levels for linear arrays. IEEE Trans. Antennas Propagat., Dec. 2007, 55(12): 3442-3449.
    [16] Schrank H E. Low sidelobe phased array antennas. IEEE Antennas Propagat. Soc. Newsletter, Apr. 1983, 25(2): 4-9.
    [17] Kummer W H, Villeneuve A T, Fong T S, Terrio F G. Ultra-low sidelobes from time-modulated arrays. IEEE Trans. Antennas Propagat., Nov. 1963, 11(5): 633-639.
    [18] Bickmore R W. Time versus space in antenna theory. Microwave scanning antennas, 1966, III.
    [19] Lewis B L, Evins J B. A new technique for reducing radar response to signals entering antenna sidelobes. IEEE Trans. on Antennas Propagat., Nov. 1983, 31(6): 993-996.
    [20] Yang S, Gan Y B, Qing A. Sideband suppression in time-modulated linear arrays by the differential evolution algorithm. IEEE Antennas and Wireless Propagat. Lett., 2002, 1: 173-175.
    [21] Yang S, Gan Y B, Qing A. Moving phase center antenna arrays with optimized static excitations. Microwave Opt. Technol. Lett., July 2003, 38(1): 83-85.
    [22] Yang S, Gan Y B, Tan P K. A new technique for power-pattern synthesis in time-modulated linear arrays. IEEE Antennas Wireless Propagat. Lett., 2003, 2: 285-287.
    [23] Yang S, Gan Y B, Tan P K. Evaluation of directivity and gain for time modulated linear antenna arrays. Microwave Opt. Technol. Lett., July 2004, 42(2): 167-171.
    [24] Yang S, Gan Y B, Tan P K. Comparative study of low sidelobe time modulated linear arrays with different time schemes. J. Electromagn. Waves Appl., Nov. 2004, 18(11): 1443-1458.
    [25] Yang S. Study of low sidelobe time modulated linear antenna arrays at millimeter-waves. Int. J. Infrared Milli. Waves, Mar. 2005, 26(3): 443-456.
    [26] Yang S, Gan Y B, Tan P K. Linear antenna arrays with bidirectional phase center motion. IEEE Trans. Antennas Propagat., May. 2005, 53(5): 1829-1835.
    [27] Yang S, Gan Y B, Qing A, Tan P K. Design of a uniform amplitude time modulated linear array with optimized time sequences. IEEE Trans. Antennas Propagat., Jul. 2005, 53(7): 2337-2339.
    [28] Yang S, Nie Z. Mutual coupling compensation in time modulated linear antenna arrays. IEEE Trans. Antennas Propagat., Dec. 2005, 53(12): 4182-4185.
    [29] Yang S, Nie Z. Millimeter-wave low sidelobe time modulated linear arrays with uniform amplitude excitations. Int. J. Infrared Milli. Waves, July 2007, 28(7): 531-540.
    [30] Zhu X, Yang S, Nie Z. Full-wave simulation of time modulated linear antenna arrays in frequency domain. IEEE Trans Antennas Propagat., May 2008, 56(5): 1479-1482.
    [31]朱小文.时间调制天线阵列理论与应用研究.电子科技大学硕士学位论文, 2007.
    [32]杨仕文,朱小文,聂在平.四维天线阵的频域全波分析.电波科学学报, 2008, 23(2): 221-224.
    [33] Chen Y, Yang S, Nie Z. Synthesis of optimal sum and difference patterns from time modulated hexagonal planar arrays. Int. J. Infrared Millim. Waves, Oct. 2008, 29(10): 933-945.
    [34] Yang S, Chen Y, Nie Z. Multiple patterns from time-modulated linear antenna arrays. Electromagnetics, 2008, 28(8): 562-571.
    [35] Chen Y, Yang S, Nie Z. Synthesis of satellite footprint patterns from time-modulated planar arrays with very low dynamic range ratios. Int. J. Numer. Modell. Electron. Networks Devices Fields, 2008, 21(6): 493-506.
    [36] Fondevila J, Brégains J C, Ares F, Moreno E. Optimizing uniformly excited linear arrays through time modulation. IEEE Antennas Wireless Propagat. Lett., 2004, 3: 298-301.
    [37] Fondevila J, Brégains J C, Ares F, Moreno E. Application of time modulation in the synthesis of sum and difference patterns by using linear arrays. Microwave. Opt. Technol. Lett., May 2006, 48(5): 829-832.
    [38] Brégains J C, Fondevila J, Franceschetti G, Ares F. A first insight into the analysis of signal transmission and power losses in time-modulated linear arrays. IEEE Antenna Propagat. Symp., Jul. 2005, 1B: 831-834.
    [39] Brégains J C, Fondevila J, Franceschetti G, Ares F. Signal radiation and power losses of time-modulated arrays. IEEE Trans Antennas Propagat., June 2008, 56(6): 1799-1804.
    [40] Shanks H E. A new technique for electronic scanning. IEEE Trans. Antennas Propagat., Mar. 1961, 9(2): 162-166.
    [41] Tennant A, Chambers B. A two-element time-modulated array with direction-finding properties. IEEE Antennas Wireless Propagat. Lett., 2007, 6: 64-65.
    [42] Tennant A, Chambers B. Time-switched array analysis of phase-switched screens. IEEE Trans. Antennas Propagat., March 2009, 57(3): 808-812.
    [43] Jaeckle W G. Antenna synthesis by weighted Fourier coefficients. IEEE Trans. Antennas Propagat. May 1964, 12(3): 369-370.
    [44] Woodward P M. Amethod for calculating the field over a plane aperture required to produce a given polar diagram. Inst. Elec. Eng. J., 1947, 93: 1554-1558.
    [45] Stutzman W L, Coffey E L. Radiation pattern synthesis of planar antennas using the iterative sampling method. IEEE Trans. Antennas Propagat., Nov. 1975, 23(6): 764-769.
    [46] Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimization, 1997, 11(4): 341-359.
    [47] Haupt R L. An introduction to genetic algorithm for electromagnetics. IEEE Antennas Propagat. Mag., 1995, 37(2): 7-15.
    [48] Altshuler E E, Linden D S. Design of a loaded monopole having hemispherical coverage using a genetic algorithm. IEEE Trans. Antennas Propagat., Jan. 1997, 45(1): 1-4.
    [49] Altshuler E E. Design of a vehicular antenna for GPS/IRIDIUM using a genetic algorithm. IEEE Trans. Antennas Propagat., Jun. 2000, 48(6): 968-972.
    [50] Vasconcelos J A, Ramirez J A, Takahashi R H C, Saldanha R R. Improvements in genetic algorithm. IEEE Trans. Magn., Sep. 2001, 37(5): 3414-3417.
    [51]王小平,曹立明.遗传算法——理论、应用与软件实现.西安:西安交通大学出版社, 2002.
    [52] Storn R. System design by constraint adaptation and differential evolution. IEEE Trans. Evol. Comput., Apr. 1999, 3(1): 22-34.
    [53] Qing A. Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy. IEEE Trans. Antenna Propagat., Jun. 2003, 51(6): 1251-1262.
    [54] Yang S, Gan Y B, Qing A. Antenna array pattern nulling using a differential evolution algorithm. Int. J. RF Microwave Computer-Aided Eng., 2004, 14(1): 57-63.
    [55] Chen Y, Yang S, Nie Z. The application of a modified differential evolution strategy to some array pattern synthesis problems. IEEE Trans. Antennas Propagat., Jul. 2008, 56(7): 1919-1927.
    [56] Rocha-Alicano C, Covarrubias-Rosales D, Brizuela-Rodriguez C, Differential evolution algorithm applied to sidelobe level reduction on a planar array. Int. J. Electron. Commun., 2007, 61: 286-290.
    [57] Kurup D G, Himdi M, Rydberg A. Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm. IEEE Trans. Antenna Propagat., Sep. 2003, 51(9): 2210-2217.
    [58] Li J, Guo J. Optimization technique using differential evolution for Yagi-Uda antennas. J. Electromagn. Waves Appl., 2009, 23(4): 449-461.
    [59] Michalski K A. Electromagnetic imaging of circular-cylindrical conductors and tunnels using differential evolution algorithm. Microwave Opt. Technol. Lett., Oct. 2000, 27(5): 330-334.
    [60] Shahoei H, Ghafoori-Fard H, Rostami A. A novel design methodology of multiclad single mode optical fiber for broadband optical networks. Prog. Electromagn. Res., 2008, 80: 253-275.
    [61] Panduro M A, Del Rio Bocio C. Design of beam-forming networks for scannable multi-beam antenna arrays using CORPS. Prog. Electromagn. Res., 2008, 84: 173-188.
    [62] Unz H. Linear arrays with arbitrarily distributed elements. IEEE Trans. Antennas Propagat., Mar. 1960, 8(2): 222-223.
    [63] Chen K, He Z, Han C. A modified real GA for the sparse linear array synthesis with multiple constraints. IEEE Trans. Antennas Propagat., Jul. 2006, 54(7): 2169-2173.
    [64] Kumar B P, Branner G R. Design of unequally spaced arrays for performance improvement. IEEE Trans. Antennas Propagat., Mar. 1999, 47(3): 511-523.
    [65] Trucco A, Murino V. Stochastic optimization of linear sparse arrays. IEEE J. Ocean. Eng., Jul. 1999, 24(3): 291-299.
    [66] Lomml A, Massa A, Stortl E, Trucco A. Sidelobe reduction in sparse linear arrays by genetic algorithms. Microwave Opt. Technol. Lett., Feb 2002, 32(3): 194-196.
    [67] O’Neill D J. Element placement in thinned arrays using genetic algorithms. OCEANS '94. 'Oceans Engineering for Today's Technology and Tomorrow's Preservation.' Proceedings, Sep. 1994, 2: 13-16.
    [68]张浩斌,杜建春,聂在平.稀疏阵列天线综合的遗传算法优化.微波学报, 2006, 22(6): 48-51.
    [69]王玲玲,方大纲.运用遗传算法中和稀疏阵列.电子学报, 2003, 31(12A): 2135-2138.
    [70] Tseng F T, Cheng D K. Optimum scannable planar arrays with an invariant sidelobe level. Proc. IEEE, Nov. 1968, 56(11): 1771-1778.
    [71] Kim Y U, Elliott R S. Extensions of the Tseng-Cheng pattern synthesis technique. J. Electromagn. Waves Appl., 1988, 2(3/4): 255-268.
    [72] Haupt R L. Optimized element spacing for low sidelobe concentric ring arrays. IEEE Trans. Antenna Propagat., Jan. 2008, 56(1): 266-268.
    [73] Rivas A, Rodriguez J A, Ares F, Moreno E. Planar arrays with square lattices and circular boundaries: sum patterns from distributions with uniform amplitude or very low dynamic-range ratio. IEEE Antennas Propagat. Mag., Oct. 2001, 43(5): 90-93.
    [74] Yang S, Nie Z, Yang F. Synthesis of low sidelobe planar antenna arrays with time modulation. APMC 2005, Asia-Pacific Conference Proceedings, Dec. 2005, 3: 4-7.
    [75] Yang S, Nie Z. Time modulated planar arrays with square lattices and circular boundaries. Int. J. Numer. Modell. Electron. Networks Devices Fields, 2005, 18(6): 469-480.
    [76] Skolnik M I. Radar handbook. New York: McGraw-Hill, 1990.
    [77] Johnson R C. Antenna engineering handbook (3rd edition). New York: McGraw-Hill, 1984.
    [78] Allen J L. A theoretical limitation on the formation of lossless multiple beams in linear arrays. IRE Trans. Antenna Propagat., Jul. 1961, 9(4): 350-352.
    [79] Blass J. The multidirectional antenna: a new approach to stacked beams. IRE Int. Conv. Rec., 1960, 8: 48-50.
    [80] Rotman W, Turner R. Wide-angle microwave lens for line source application. IEEE Trans. Antennas Propagat., Nov. 1963, 11(6): 623-632.
    [81]王贵昌.四维天线阵理论与应用研究.电子科技大学硕士学位论文, 2008.
    [82] Zhou Z, Yang S, Nie Z. A novel broadband printed dipole antenna with low cross-polarization. IEEE Trans. Antenna Propagat., Nov. 2007, 55(11): 3091-3093.
    [83] Li G, Yang S, Zhao Z, Nie Z. A study of AM and FM signal reception of time modulated linear antenna arrays. Prog. Electromagn. Res. Lett., 2009, 7: 171-181.
    [84] Stutzman W L. Synthesis of shaped-beam radiation patterns using the iterative sampling method. IEEE Trans. Antennas Propagat., Jan. 1971, 19(1): 36-41.
    [85] Elliott R S, Stern G J. A new technique for shaped beam synthesis of equispaced arrays. IEEE Trans. Antennas Propagat., Oct. 1984, 32(10): 1129-1133.
    [86] Wu L, Zielinski A, Bird J. Synthesis of shaped radiation patterns using an iterative method. Radio Sci., 1995, 30(5): 1385-1392.
    [87] Akdagli A, Guney K. Shaped-beam pattern synthesis of equally and unequally spaced linear antenna arrays using a modified tabu search algorithm. Microwave Opt. Technol. Lett. Jan. 2003, 36(1): 16-20.
    [88] Akdagli A, Guney K. Touring ant colony optimization algorithm for shaped-beam pattern synthesis of linear antenna arrays. Electromagnetics, 2006, 26: 615-628.
    [89] Krim H, Viberg M. Two decades of array signal processing research. IEEE Signal Procss. Mag. Jul. 1996, 13(4): 67-94.
    [90] Simon H. Adaptive filter theory. Prentice Hall, 1996.
    [91] Burg J P. Maximum entropy spectral analysis. Proc. 37th meeting of the Annual Int. SEG Meeting, Oklahoma City, 1967.
    [92] Kay S M, Marple S L. Sources of and remedies for spectral line splitting in autoregressive spectrum analysis. Acoust., Speech, Signal Process., IEEE Int. Conf. ICASSP’79, Apr. 1979, 4: 151-154.
    [93] Efron A, Tufts D. Estimation of frequencies of multiple two-dimensional sinusoids: improved methods of linear predition. Proc. IEEE, Feb. 1986, 74(2): 369-371.
    [94] Chen Y H, Chiang C T. Kalman-based spatial domain forward-backward linear predictior for DOA estimation. IEEE Trans. Aerosp. Electron. Syst., Jan. 1995, 31(1): 474-479.
    [95] Lee W C, Park S C, Cha I W, Young D H. Adaptive spatial domain forward-backward predictors for bearing estimation. IEEE Trans. Acoust., Speech, Signal Process., Jul. 1990, 38(7): 1105-1109.
    [96]黄得双,保铮.前后向线性预测最小二乘方法实现高分辨空间谱估计方法研究.通信学报, 1992, 13(4): 25-32.
    [97] Schmidt R. O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antenna Propagat., Mar. 1986, 34(3): 276-280.
    [98] Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans. Acoust., Speech, Signal Process., May 1989, 37(5): 720-741.
    [99] Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons. IEEE Trans. Acoust., Speech, Signal Process., Dec. 1990, 38(12): 2140-2150.
    [100] Rao B D, Hari K V S. Weighted subspace methods and spatial smoothing: analysis and comparison. IEEE Trans. Signal Process., Feb. 1993, 41(2): 788-803.
    [101] Rao B D, Hari K V S. Performance analysis of Root-MUSIC. IEEE Trans. Acoust., Speech, Signal Process., Dec. 1989, 37(12): 1939-1949.
    [102] Silverstein S D, Zoltowski M D. The mathematical basis for element and fourier beam space MUSIC and Root-MUSIC algorithms. Digit. Signal Process., 1991, 1: 161-175.
    [103] Zoltowski M D, Kautz G M, Silverstein S D. Beamspace Root-MUSIC. IEEE Trans. Signal Process., Jan. 1993, 41(1): 344-364.
    [104] Zoltowski M D, Silverstein S D, Mathews C P. Beamspace Root-MUSIC for minimum redundancy linear arrays. IEEE Trans. Signal Process., Jul. 1993, 41(7): 2502-2507.
    [105] Shan T J, Wax M, Kailath T. On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. Acoust., Speech, Signal Process., Aug. 1985, 33(4): 806-811.
    [106] Pillai S U, Kwon B H. Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoust., Speech, Signal Process., Jan. 1989, 37(1): 8-15.
    [107] Pillai S U, Kwon B H. Performance analysis of MUSIC-type high resolution estimators for direction finding in correlated and coherent scenes. IEEE Trans. Acoust., Speech, Signal Process., Aug. 1989, 37(8): 1176-1189.
    [108] Du W, Kirlin R L. Improved spatial smoothing techniques for DOA estimation of coherent signals. IEEE Trans. Signal Process., May 1991, 39(5): 1208-1210.
    [109] Gabriel W F. Using spectral estimation technique in adaptive processing antenna system. IEEE Trans. Antennas Propagat., Mar. 1986, 34(3): 291-300.
    [110] Mayhan J, Niro L. Spatial spectral estimation using multiple beam antennas. IEEE Trans. Antennas Propagat., Aug. 1987, 35(8): 897-906.
    [111] Lee H, Wengrovitz M. Resolution threshold of beamspace MUSIC for two closely spaced emitters. IEEE Trans. Acoust., Speech, Signal Process., Sep. 1990, 38(9): 1545-1559.
    [112] Stoica P, Nehorai A. Comparative performance study of the element-space and beam-space MUSIC estimators. Circuits Syst. Signal Process., 1991, 10(3): 285-292.
    [113] Xu X L, Buckley K. An analysis of beam-space source localization. IEEE Trans. Signal Process., Jan. 1993, 41(1): 501-504.
    [114] Roy R, Kailath T. ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise., IEEE Trans. Acoust., Speech, Signal Process., Oct. 1986, 34(10): 1340-1342.
    [115] Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust., Speech, Signal Process., Jul. 1989, 37(7): 984-995.
    [116] Swindlehurst A L, Ottersten B, Rao R, Kailath T. Multiple invariance ESPRIT. IEEE Trans. Signal Process., Apr. 1992, 40(4): 867-881.
    [117] Haardt M, Nossek J A. Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden. IEEE Trans. Signal Process., May 1995, 43(5): 1232-1242.
    [118] Eriksson A, Stoica P. Optimally weighted ESPRIT for direction estimation. Signal Process., 1994, 38(2): 223-229.
    [119] Hua Y, Sarkar T K. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. Acoust., Speech, Signal Process., May 1990, 38(5): 814-824.
    [120] Hua Y, Sarkar T K. On SVD for estimating generalized eigenvalues of singular matrix pencil in noise. IEEE Trans. Signal Process., Apr. 1991, 39(4): 892-900.
    [121] Rao B D, Hari K V S. Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise. IEEE Trans. Acoust., Speech, Signal Process., Dec. 1989, 40(12): 1990-1995.
    [122] Stoica P, Nehorai A. Performance comparison of subspace rotation and MUSIC methods for direction estimation. IEEE Trans. Signal Process., Feb. 1991, 39(2): 446-453.
    [123] Ottersten B, Viberg M, Kailath T. Performance analysis of the total least squares ESPRIT algorithm. IEEE Trans. Signal Process., May 1991, 39(5): 1122-1135.
    [124]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法,北京:清华大学出版社, 2004.
    [125] Capon J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, Aug. 1969, 57(8): 1408-1418.
    [126] Hirakawa M, Tsuji H, Sano A. Computationally efficient DOA estimation based on linear prediction with Capon method. 2001 IEEE Int. Conf. Acoust. Speech, Signal Process., May 2001, 5: 3009-3012.
    [127] Kumaresan R, Tufts D W. Estimating the angles of arrival of multiple plane waves. IEEE Trans. Aerosp. Electron. Syst., Jan. 1983, 19(1): 134-139.
    [128] Bartlett M S, A note on the multiplying factors for variousχ2 approximations. J. Roy. Stat. Soc., 1963, 16: 122-148.
    [129] Lawley D N. Tests of significance of the latent roots of the covariance and correlation matrices. Biometrica, 1956, 43: 128-136.
    [130] Wax M, Kailath T. Detection of signals by information theoretic criteria. IEEE Trans. Acoust., Speech, Signal Process., Apr. 1985, 33(2): 387-392.
    [131] Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control., Dec. 1974, 19(6): 716-723.
    [132] Rissanen J. Modeling by shortest data description. Automatica, 1978, 14: 465-471.
    [133] Chen W G, Wong K M, Reilly J P. Detection of number of signals: a predicted eigen-threshold approach. IEEE Trans. Signal Process., May 1991, 39(5): 1088-1098.
    [134] Wu Q, Fuhrmann D R. A parametric method for determining the number of signals in narrow-band direction finding. IEEE Trans. Signal Process., Aug. 1991, 39(8): 1848-1857.
    [135] Wu H T, Yang J, Chen F K. Source number estimation using transformed gerschgorin radii. IEEE Trans. Signal Process., Jun. 1995, 43(6): 1325-1333.
    [136] Zhao L C, Krishnaiah P R, Bai Z D, Remarks on certain criteria for detection of numbers of signals. IEEE Trans. Acoust., Speech, Signal Process., Jan. 1987, 35(1):129-132.
    [137] Gabriel W F. Adaptive arrays-An introduction. Proc. IEEE, Feb. 1976, 64(2): 239-272.
    [138]龚耀寰.自适应滤波-时域自适应滤波和智能天线.北京:电子工业出版社, 2003.
    [139] Widrow B, Mantey P E, Griffiths L J, Goode B B. Adaptive antenna systems, Proc. IEEE, Dec. 1967, 55(12): 2143-2159.
    [140] Reed I S, Mallett J D, Brennan L E. Rapid convergence rate in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst., Nov. 1974, 10(6): 853-863.
    [141] Jeon S, Wang Y, Qian Y, Itoh T. A novel smart antenna system implementation for broad-band wireless communications. IEEE Trans. Antennas Propagat., May 2002, 50(5): 600-606.
    [142]杨万海.雷达系统建模与仿真.西安:西安电子科技大学出版社, 2007.
    [143] Monis G V. Airborne pulsed Doppler radar. London: Artech House, 1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700