车用高功率密度永磁同步电机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着气候变暖和能源问题的日益严重,全球范围内掀起了新能源汽车开发热潮。永磁同步电机效率高、调速性能好等一系列优点受到广泛关注。作为新能源汽车的动力核心部件,其好坏直接决定整车性能。本文在辽宁省科技攻关计划项目—永磁交流牵引电动机的共性关键技术及产品研发的支持下,通过理论分析和实验对车用高效、高功率密度永磁同步牵引电机空载铁耗、负载杂散损耗、热管理以及电机设计计算等关键技术问题展开深入分析研究。
     首先,对正弦波电压供电和变频器供电下的车用永磁同步电机磁场特性进行了详细分析。在此基础上,采用有限元方法对永磁同步电机在正弦波电压供电和变频器供电下的空载铁耗进行了分析计算和实验测试。给出了采用有限元方法计算的铁耗修正系数。通过实验测试得到了变频器供电后空载铁耗增加率与供电电压调制比的关系。在计算和实验的基础上,提出了一种综合考虑气隙磁密谐波幅值、电机极槽配合的电机空载铁耗最小化的气隙磁密优化判据ironloss_index。运用该优化判据,对不同极槽配合的极弧因数和转子外圆进行了详细分析,给出了不同极槽配合下的最优极弧因数和8极48槽结构转子外圆最优辅助槽位置。
     其次,针对负载杂散损耗分布复杂,难于准确计算的问题,从定子、转子和永磁体三方面对车用永磁同步电机的负载杂散损耗进行了理论分析和有限元求解,并通过实验给出了计算结果的修正系数。从定子磁动势着手,给出了定子负载杂散损耗和转子涡流损耗解析表达式。重点分析了定子磁动势各次时间谐波和空间谐波对转子损耗的影响。直接从麦克斯韦方程出发推导了永磁体涡流损耗解析计算表达式,为永磁体涡流损耗的抑制提供了依据。通过负载杂散损耗的实验测试,给出了有限元计算的修正系数和负载杂散损耗与电机输入功率的比例关系以及时间谐波电流所产生的杂散损耗随负载的变化关系。采用推导的永磁体涡流损耗解析表达式结合有限元方法对分段法抑制永磁体涡流损耗进行了详细分析,给出了普遍适用的分段规律。设计了一种永磁体涡流损耗测试装置,对不同尺寸的永磁体测试结果验证了所得结论的正确性。
     再次,在损耗计算基础上,采用流体场和温度场相结合的方式对车用永磁同步电机冷却系统和热管理进行详细分析。根据车用电机的安装和尺寸特点,确定了周向螺旋结构最适合车用永磁同步电机。运用流体场软件分析得到了水道散热系数与水流速度的关系。同时采用流体场对机内空气流动特性进行了详细分析,得到了空气流速分布。在此基础上,对20kW样机进行了稳态和瞬态温度场分析计算,给出了一种实时修正电机损耗的瞬态温度场计算流程图和损耗修正公式。测试结果验证了温度场计算结果的正确性。给出了允许短时过载时间随热负荷的变化关系。
     最后,结合车用永磁同步电机的控制方法对永磁同步电机的电磁设计计算方法以及参数配合对高效区范围、弱磁性能的影响进行了详细分析。对车用永磁同步电机的转子结构形式、极槽配合和空载反电动势的选择进行了研究,最终设计制造了转子结构为“V一”型和“V”型,额定功率20kW,4500r/min,峰值功率40kW,功率密度大于1.5kW/kg,高效区比例>80%的两台车用永磁同步电机样机,并进行了全面的实验测试。测试结果与计算结果误差较小,验证了分析和计算方法的正确性。
With global climate warming and energy issue becoming increasingly severe, a globalupsurge of new energy vehicles development has emerged. Because of the high efficiency,good speed control performance and other advantages, the permanent magnet synchronousmotors (PMSM) is concerned widespread. As the key component of the power of newenergy vehicles, the PMSM directly determines the vehicle performance. The researchwork of this thesis is supported by the Liaoning province Engineering Research Centerfunded projects permanent magnet AC traction motor common key technologies andproduct development. Through theoretical analysis and experiment test, the no load ironloss, stray load loss, thermal management, motor design and calculation technologies andsome other key technical issues of high efficiency, high power density PMSM for electricvehicles(EVs) application are analyzed in-depth.
     Firstly, the magnetic field characteristics of PMSM when fed from sine voltage andconverters are analyzed in details. On this basis, the finite element method (FEM) isadopted to calculate and analyze the no load iron loss when fed from sinusoidal voltageand converters, and then the experimental test is carried out. The iron loss correction factorof FEM calculation result is presented. The relationship between the no load iron lossincremental ratio and supply voltage modulation ratio is obtained by experiment. Based onthe calculation and test results, an optimization criterion which minimize the no load ironloss named ironloss_index and comprehensive consider the harmonic amplitude of air-gapflux density, pole slot combinations is proposed. Using this optimization criterion, the pole arc factor and rotor cylindrical of different pole slot combination is analyzed in details, andthen the optimal pole arc factor of different pole slot combination and the optimal groovesposition on rotor cylindrical of 8 poles 48 slots structure is given.
     Secondly, because of distribution complexand difficult to accurately calculation, thetheoretical analysis and FEM calculation of the stray load loss of the PMSM for EVsapplication is presented from the stator, rotor and magnets. The correction factor of thecalculated results is obtained based on the test results. Commence from the stator magneticmotive force (MMF), the analytical expression of stator stray load loss and rotor eddycurrent loss is presented. The influence of the time and spatial harmonics of stator MMF onrotor loss are mainly analyzed. An magnets eddy current loss analytical expression isderived directly from the basic equation of electromagnetic field,and it provides thetheoretical basis for loss reduction. Through the stray load loss test results, the correctionfactor of stray load loss FEM calculation results is obtained, the proportional relationshipof stray load loss to motor input power and the relationship between the stray load lossgenerated by current time harmonics and load torque are also given. Combination with theanalytical expression and FEM, The magnet eddy current loss suppression technology ---magnet segmentation is investigated, and then a common segmentation law is obtained. Atest device is designed for magnet eddy current loss test, the eddy current loss test resultsof different size magnets verified the validity of the results.
     Thirdly, based on the iron loss calculated results, the cooling system and thermalmanagement are analyzed in details combination the fluid field and temperature field.According to motor installation environment and size characteristics, the spiral structure isdetermined as the suitable cooling structure. The relationship between the thermalcoefficient of water channel and water speed is obtained through the fluid calculation. Theair flow characteristic in the motor is analyzed through the fluid field analysis, and the airflow speed distribution is obtained. On this basis, the steady-state and transient temperature field of 20kW prototype is analyzed; a real-time correction flow chart of motor losses intransient temperature and their correction formulation are given. The temperature testresults verified the correctness of the calculation results. According to the experimentresults, the permitted time of short-time overload with the thermal-load is obtained.
     Finally, combination the control method of PMSM for EVs application and motordesign technology, the electromagnetic design and calculated method is analyzed. Theinfluence of parameter coordination to efficiency and field weakening performance are alsopresented. Then, the rotor structure, pole slot combination and no load back-EMF arestudied. At last,two PMSM prototypes for EVs which rotor structure is "V一" type and"V" type are designed, manufactured and comprehensive tested. The rated data of thesetwo prototypes is rated power 20kW, rated speed 4500r/min, peak power 40kW, powerdensity greater than 1.5kW/kg, high efficiency area ratio greater than 80%. The gapbetween the test results and analysis results is small, and the correctness of analysis andcalculation method is verified.
引文
[1] C. C. Chan, Alain Bouscayrol, Keyu Chen. Electric, Hybrid, and Fuel-Cell Vehicles : Architecturesand Modeling. IEEE transactions on vehicular technology, 2010, 59(2):589~688.
    [2] C. C. Chan. The State of the Art of Electric, Hybrid and Fuel Cell Vehicles. Proceedings of theIEEE, 2007, 95(4): 704~718.
    [3] Z. Q. Zhu, C. C. Chan. Electrical Machine Topologies and Technologies for Electric, Hybrid, andFuel Cell Vehicles. IEEE Vehicle Power and Propulsion Conference (VPPC), September 3~5, 2008,Harbin, China: 751~755.
    [4] K. T. Chau, C. C. Chan, Chunhua Liu. Overview of Permanent-Magnet Brushless Drives forElectric and Hybrid Electric Vehicles. IEEE Transactions on Industrial Electronics, 2006, 55(6):2246~2257.
    [5]唐任远.现代永磁电机理论与设计.北京:机械工业出版社,2005.
    [6]温旭辉.电动汽车电动机驱动技术及其发展.微电机通讯, 2010(12): 2~3.
    [7] http://www.afdc.energy.gov/afdc/data/vehicles.html#afv_hev/ HEV sales by model.xls
    [8]张红亮.永磁同步电机铁心损耗与暂态温度场研究: (博士学位论文).哈尔滨:哈尔滨工业大学, 2010.
    [9]黄国治,傅丰礼.Y2系列三相异步电动机技术手册.北京:机械工业出版社,2004.
    [10]杨菲.永磁电机温升计算及冷却系统设计: (硕士学位论文).沈阳:沈阳工业大学,2007.
    [11]胡淑环.永磁电机热计算研究: (硕士学位论文).沈阳:沈阳工业大学,2009.
    [12]庄艳.永磁伺服电动机电磁场与温度场耦合计算及冷却系统设计:(硕士学位论文).沈阳:沈阳工业大学, 2011.
    [13] Ayman M. EL-Refaie, Nathan C. Harris, Thomas M. Jahns, et al. Thermal Analysis of MultibarrierInterior PM Synchronous Machine Us ing Lumped Parameter Model. IEEE Transactions on EnergyConversion, 2004, 19(2):303~309.
    [14]李子健.电动车用水冷感应电机温度场及其水冷系统的研究:(硕士学位论文).哈尔滨:哈尔滨工业大学, 2008.
    [15]朱巍.电动车用高功率密度永磁同步电机热管理系统的研究:(硕士学位论文).哈尔滨:哈尔滨工业大学, 2010.
    [16] R. H. Staunton, C. W. Ayers, J. Chiasson, et al. Evaluation of 2004 Toyota Prius Hybrid ElectricDrive System. ORNL/TM-2006-423, UT-Battelle, LLC, Oak Ridge National Laboratory, OakRidge, Tennessee, May, 2006.
    [17] J. S. Hsu, C. W. Ayers, C. L. Coomer, R. H. Wiles, et al. Report on Toyota/Prius Motor TorqueCapability, Torque Property, No-Load Back-EMF, and Mechanical Losses, ORNL/TM-2004/185,UT-Battelle, LLC, Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 2004.
    [18] J. S. Hsu, C. W. Ayers, C. L. Coomer. Report on toyota/prius motor design and manufacturingassessment. ORNL/TM-2004/137, UT-Battelle, LLC, Oak Ridge National Laboratory, Oak Ridge,Tennessee, July,2004.
    [19] Mitch Olszewski. Oak Ridge National Laboratory Annual Progress Report for the PowerElectronics and Electric Machinery Program. ORNL/TM-2010/204, UT-Battelle, LLC, Oak RidgeNational Laboratory, Oak Ridge, Tennessee, October,2010.
    [20] T. A. Burress, C. L. Coomer, S. L. Campbell, et al. Evaluation of the 2007 Toyota Camry HybridSynergy Drive System, ORNL/TM- 2007/190, UT-Battelle, Oak Ridge National Laboratory, OakRidge, Tennessee, Revised April 2008.
    [21] J. S. Hsu, S. C. Nelson, P. A. Jallouk. Evaluation of 2005 Honda Accord Hybrid Electric DriveSystem, ORNL/TM-2006-535, UT-Battelle, LLC, Oak Ridge National Laboratory, OakRidge,Tennessee, September 2006.
    [22] T A Burress ,C L Coomer, S L Campbell, et al. Evaluation of the 2008 lexus ls600 hhybridsynergy drive system, ORNL/TM- 2008/185, UT-Battelle, Oak Ridge National Laboratory, OakRidge, Tennessee, Revised,January 2009.
    [23] https://app3.infoc.nedo.go.jp/informations/koubo/kaiken/AA5/nedopressorder. 2010-09-28.9793389689/setsumei.pdf
    [24]代颖.电动车驱动用永磁同步电机的研究:(硕士学位论文).哈尔滨:哈尔滨工业大学,2004.
    [25] J. S. Hsu T. A. Burress, S. T. Lee, R. H. Wiles, et al. 16000-rpm Interior Permanent MagnetReluctance Machine with Brushless Field Excitation. ORNL/TM- 2007/167, UT-Battelle, OakRidge National Laboratory, Oak Ridge, Tennessee, Revised October 2007.
    [26] Mitchell Olszewski. Electric Traction Drive R&D at the Oak Ridge National Laboratory. OakRidge National Laboratory 865-946-1350, June, 2008.
    [27]赵峰,温旭辉,刘钧等.永磁–永磁型双机械端口电机系统建模.中国电机工程学报,2007,2(12): 59~65
    [28]徐衍亮.电动汽车用永磁同步电动机及其驱动系统研究: (博士学位论文).沈阳:沈阳工业大学,2001.
    [29]许家群.电动汽车用永磁同步电动机传动控制系统的研究: (博士学位论文).沈阳:沈阳工业大学,2003.
    [30]张东.混合动力电动汽车用电机的开发与系统仿真: (硕士学位论文).沈阳:沈阳工业大学,2003.
    [31]邢伟.电动汽车用永磁同步电动机及传动控制系统研究: (硕士学位论文).沈阳:沈阳工业大学,2004.
    [32]曹先庆.混合动力电动汽车用永磁同步电动机驱动系统的研究:(博士学位论文).沈阳:沈阳工业大学,2006.
    [33]―863‖计划节能与新能源汽车重大项目总体组. 2009, 9.
    [34]黄旭珍.高功率密度永磁电机的损耗及温升特性研究: (硕士学位论文).哈尔滨:哈尔滨工业大学,2008.
    [35] Yung-kang Chin, Juliette Soulard. Modelling of Iron Losses in Permanent Magnet SynchronousMotos with Field-weakening Capability for Electric Vehicles. International Journal of AutomotiveTechnology, 2003, 4(2): 87~94.
    [36] Jang-Ho, Seo, Tae-Kyung, Chung,Cheol-Gyun, Lee, et al. Harmonic iron loss analysis of electricalmachines for high-speed operation considering driving condition, IEEE Transactions on Magnetics,2009, 45(10):4556~4559.
    [37] Ionel D. M,Popescu M, Miller T. J. E, et al. Computation of core losses in electrical machinesusing improved models for laminated steel. IEEE Transactions on Industry Applications, 2007,43(6):1554~1564.
    [38] Domeki H, Ishihara, Y Kaido C, et al. Investigation of benchmark model for estimating iron loss inrotating machine. IEEE Transactions on Magnetics,2004,40(2): 794~797.
    [39] Yamazaki K, Fukushima N. Iron-Loss Modeling for Rotating Machines: Comparison BetweenBertotti's Three-term Expression and 3-D Eddy-current Analysis. IEEE Transactions on Magnetics,2010, 46(8):3121~3124.
    [40] Katsumi Yamazaki, Atsushi Abe. Loss Analys is of Interior Permanent Magnet Motors ConsideringCarrier Harmonics and Magnet Eddy Currents Using 3-d FEM. Proceedings of IEEE InternationalElectric Machines and Drives Conference(IEMDC), Antalya, Turkey, 2007:904~909.
    [41] Yamazaki K, Abe A. Loss investigation of interior permanent- magnet motors considering carrierharmonic and magnet eddy currents. IEEE Transactions on Industry Applications, 2009, 45(2):659~665.
    [42] Yamazaki K, Seto Y. Iron loss analysis of interior permanent magnet synchronousmotors-----variation of main loss factors due to driving condition. IEEE Transactions on IndustryApplications, 2006, 42(4): 1045~1052.
    [43] Yamazaki K. Torque and efficiency calculation of an interior permanent magnet motor consideringharmonic of both stator and rotor. IEEE Transactions on Magnetics, 2003, 39(3):1460~1463.
    [44] Ionel D.M, Popescu M, McGilp M, Miller T.J.E, et al. Computation of core losses in electricalmachines using improved models, Industry Applications Conference, 41st IAS Annual Meeting,Tampa, FL, 2006: 827~835.
    [45] Jang-Ho Seo, Tae-Kyung Chung, Cheol-Gyun Lee, et al. Harmonic iron loss analysis of electricalmachines for high-speed operation considering driving condition. IEEE Transactions on Magnetics,2009, 45(10): 4656~4659.
    [46] Domeki H, Ishihara Y, Kaido C, et, al. Investigation of benchmark model for estimating iron loss inrotating machine. IEEE Transactions on Magnetics, 2004, 40(2): 794~797.
    [47]黄平林,胡虔生,崔杨等. PWM逆变器供电下电机铁心损耗的解析计算.中国电机工程学报,2007, 27(12):19~23.
    [48] Boglietti A, Cavagnino A, Ionel DM, et al. A general model to predict the iron losses in PWMinverter-fed Induction motors. IEEE Transactions on Industry Applications, 2010, 46(4):1882~1890.
    [49] Boglietti A, Cavagnino A. Iron loss prediction with PWM supply: an overview proposed methodsfrom an Engineering application point of view. Industry application conference, 42ndIAS annualmeeting, New Orleans, LA, 2007: 81~88
    [50] Boglietti A, Cavagnino A, Lazzari M. Predicting Iron Losses in Soft Magnetic Materials WithArbitrary Voltage Supply: An Engineering Approach. IEEE Transactions on Magnetics, 2003,39(2): 981~989.
    [51] BarcaroM, Bianchi N. Air-gap flux density distortion and iron loss in anisotropic synchronousmotor. IEEE Transactions on Magnetics, 2010, 46(1): 121~126.
    [52] M. Kamiya, Development of Traction Drive Motors for the Toyota Hybrid System. IEEJTransactions on Industry Applications, 2006, 126(4):1342~1349.
    [53] Zivotic-Kukolj, V. Soong W. L, Ertugrul N. Iron loss reduction in an interior PM automotivealternator. IEEE Transactions on Industry Applications, 2006, 42(6): 1478~1486.
    [54] Yamazaki K, Ohki S, Nezu A. Development of interior permanent magnet motors-reduction ofharmonic iron loss by optermizing rotor structures. 2007 IEEE International Electric Machines andDrives Conference, Piscataway, NJ, USA, 2007: 489~494.
    [55] Yamazaki K, Ishigami H. Rotor-shape optimization of interior-permanent-magnet motors to reduceharmonic iron losses. IEEE Transactions on Industrial Electronics, 2010, 56(1): 61~69.
    [56] Seok-Hee Han; Soong W.L, Jahns T.M., et al. An analytical design approach for reducing statoriron loss in interior PM synchronous machines during flux weakening operation. IndustryApplications Conference, 42nd IAS Annual Meeting, 2007, New Orleans, LA: 103~110.
    [57] Han, S.-H, Jahns T. M ,Zhu Z. Q. Design Tradeoffs Between Stator Core Loss and Torque Ripplein IPM Machines. IEEE Transactions on Industry Applications, 2010, 46(1):187~195.
    [58] Han, Seok-Hee,Soong, Wen L Jahns, Thomas M, et al. Reducing harmonic eddy-current losses inthe stator teeth of interior permanent magnet synchronous machines during flux weakening. IEEETransactions on Energy Conversion, 2010, 25(2):441~449.
    [59] Pellegrino G, Guglielmi P, Vagati A, et al. Core loss and torque ripple in IPM machines: dedicatedmodeling and design trade off. IEEE Transactions on industry application, 2010, 46(6):2381~2391.
    [60] Shah, Manoj R, El-Refaie, Ayman M. Eddy-current loss minimization in conducting sleeves ofsurface PM machine rotors with fractional-slot concentrated armature windings by optimal axialsegmentation and copper cladding. IEEE Transactions on Industry Applications, 2009,45(2):720~728.
    [61] Yamazaki, Katsumi, Kanou, Yuji. Rotor loss analys is of interior permanent magnet motors usingcombination of 2-D and 3-D finite element method. IEEE Transactions on Magnetics, 2009, 45(3):1772~1775.
    [62] Muhammad Firmansyah. Eddy Current Losses Calculation in Rotor Back Iron and Magnet forConcentrated Winding Permanent Magnet Generator, master thesis, The Netherland: DelftUniversity of Technology, 2009.
    [63] Ayman M. EL-Refaie. High Speed Operation of Permanent Magnet Machines, PhD dissertation,the Wisconsin-Madison, University of Wisconsin-Madison, 2005.
    [64]周风争.高速永磁无刷直流电机转子涡流损耗的研究:(博士学位论文).杭州:浙江大学,2008.
    [65] Z. Q Zhu, K Ng, N Sehofield, D Howe. Improved analytical modeling of rotor eddy current inbrushless machines equipped with surface mounted permanent magnets. IEE Proceeding of PowerApplication, 2004, 151(4):641~650.
    [66] K. Atallah, D. Howe, P.H. Mellor, et al. rotor loss in permanent-magnet brushless AC machines.IEEE Transactions on Industry Applications, 2000, 36(6):1612~1618.
    [67]邢军强.高速永磁电机转子损耗和通风散热研究:(博士学位论文).沈阳:沈阳工业大学,2011.
    [68] Seok-Hee Han,Thomas M. Jahns,Z. Q. Zhu. Analysis of Rotor Core Eddy-Current Losses inInterior Permanent-Magnet Synchronous Machines. IEEE Transactions on Industry Applications,2010,46(1):196~205.
    [69]张士军.混合励磁风力发电机的关键技术研究:(硕士学位论文).沈阳:沈阳工业大学,2010.
    [70] Sang-Ho Lee, Jae-Woo Jung, Jung-Pyo Hong. Reduction Design of Eddy Current Loss in IPMSMusing Response Surface Methodology. 2010 International Conference on Electrical Machines andSystems (ICEMS), Incheon 2010: 1218~1221.
    [71] Yamazaki K, Abe A. Loss investigation of interior permanent-magnet motors considering carrierharmonics and magnet eddy currents. IEEE Transactions on Industry Applications, 2009, 45(2):659~665.
    [72] Yamazaki K, Fukushima Yu. Effective of eddy-current loss reduction by magent segmentation insynchronous motors with concentrated windings. International Conference on Electrical Machinesand Systems, Tokyo, 2009: 1~6.
    [73] Yamazaki K, Shina M, Kanou Y, et al. Effective of eddy current loss reduction by segment ofmagnets in synchronous motors: difference between interior and surface type. IEEE Transactionson Magnetics, 2009, 45(10):4756~4759.
    [74] Yamazaki K, Shina M, Miwa M, et al. Investigation of eddy current loss in divided Nd-Fe-Bsintered magnets for synchronous motors due to insulation resistance and frequency. IEEETransactions on Magnetics, 2004, 44(11):4269~4272.
    [75]杨鹤. 100kW永磁风力发电机设计及永磁体涡流损耗计算分析:(硕士学位论文).沈阳:沈阳工业大学,2011.
    [76] Wan-Ying Huang, Adel Bettayeb, Robert Kaczmarek, et al. Optimization of Magnet Segmentationfor Reduction of Eddy-Current Losses in Permanent Magnet Synchronous Machine. IEEETransaction on Energy Conversion, 2010, 25(2):381~387.
    [77]李子健.电动车用水冷感应电机温度场及其水冷系统的研究:(硕士学位论文).哈尔滨:哈尔滨工业大学, 2008.
    [78]刘娇,黄守道,成本权等.循油冷却永磁同步电动机的温度场分析.微电机,2010,43(5):10~12.
    [79]吴桂珍,孟大伟,许明宇.高能量密度水冷电机冷却系统设计与热力计算.防爆电机,2008,43(3):1~3.
    [80]温嘉斌,许明宇.防爆型水冷电机内换热与温度场计算.电机与控制学报,2009,13(3):393~397.
    [81] Mohamed Amine Fakhfakh, Moez Hadj, Souhir Tounsi, et al. thermal anslys is of a permanentmagnet synchronous motor for electric vehicles. Journal of Electric Vehicle, 2008, 6(2):1145~1151.
    [82]郭伟,张承宁.车用永磁同步电机的铁耗与瞬态温升分析.电机与控制学报,2009,13(1):83~88.
    [83] J. S. Hsu,S. C. Nelson,P. A. Jallouk. Report on Toyota Prius Motor Thermal Management.ORNL/TM-2005/33, UT-Battelle, LLC, Oak Ridge National Laboratory, Oak Ridge, Tennessee,February 2005.
    [84] J. S. Hsu, R. H. Staunton, M. R. Starke. Barriers to the Application of High Temperature Coolantsin Hybrid Electric Vehicles. ORNL/TM-2006/514, UT-Battelle, LLC, Oak Ridge NationalLaboratory, Oak Ridge, Tennessee, September 2006.
    [85] Olszewski, Mitchell, FY2011 Oak Ridge National Laboratory Annual Progress Report for thePower Electronics and Electric Machinery Program. ORNL/TM-2011/263, UT-Battelle, LLC, OakRidge National Laboratory, Oak Ridge, Tennessee, October, 2011.
    [86]温旭辉.电动汽车用电机及驱动系统关键技术与科学问题.电气时代,2011:122~125.
    [87]陈世坤.电机设计.北京:机械工业出版社,2000.
    [88]余莉,胡虔生,易龙芳等.高速永磁无刷直流电机铁耗的分析和计算.电机与控制应用,2007,34(4):10~14.
    [89]王兆安.电力电子技术.北京:机械工业出版社,2000.
    [90]韩雪岩.大功率轴向永磁电机关键技术研究:(博士学位论文).沈阳:沈阳工业大学,2010.
    [91] Seok-Hee, Thomas M. Jahns, Z.Q, Zhu. Design Tradeoffs Between Stator Core Loss and TorqueRipple in IPM Machines. IEEE Transactions on industry Applications, 2010, 46(1): 187~195.
    [92] Gianmario Pellegrino, Paolo Guglielmi, Alfredo Vagati. Core Losses and Torque Ripple in IPMMachines: Dedicated Modeling and Design Tradeoff. IEEE Transactions on Industry Applications,2010, 46(6):2381~2391.
    [93] M. Kamiya. Development of Traction Drive Motors for the Toyota Hybrid System. IEEJTransactions on Industry Applications, 2006, 126(4): 125~132.
    [94] K. Yamazaki, S. Ohki, A. Nezu, and T. Ikemi. Development of Interior Permanent Magnet Motors–Reduction of Harmonic Iron Losses by Optimizing Rotor Structures. IEEE International ElectricMachines & Drives Conference, Piscataway, NJ, USA, 2007.
    [95] GB/T 755.2-2003.旋转电机(牵引电机除外)确定损耗和效率的试验方法.
    [96]汤蕴璆.电机内的电磁场.北京:科学出版社,1998.
    [97] GB/18613-2002,中小型三相异步电动机能效限定值及节能评价值.
    [98] K.Endo. A high Performance Permanent Magnet Motor for Electric Vehicles. EVS-14 conferenceproceeding, 1997:143-149.
    [99]张殿海.高速永磁电机流体场分析与温升计算: (硕士学位论文).沈阳:沈阳工业大学,2009.
    [100]魏永田,孟大伟,温嘉斌.电机内热交换.机械工业出版社,1998.
    [101] Soong, W.L. and Miller, T.J.E. Field-weakening performance of brushless synchronous AC motordrives. IEE Proc.-Electr. Power Applications, 1994, 141(6):331~340.
    [102]王秀和.永磁电机.北京:中国电力出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700