基于长期静态监测数据的大型桥梁安全状态评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型桥梁结构的健康监测和安全状态评估能够对结构的安全隐患提前预警从而防止重大灾害事故的发生,是当前土木工程领域的重点研究内容之一,并逐步在工程实际应用中发挥作用。本文利用桥梁恒载在总荷载中占较大比例,对桥梁结构损伤反应相对敏感的特点,提出从长期静态监测数据中提取恒载效应进行大型桥梁安全状态评估的方法,分别从结构恒载效应信息的提取、反演损伤识别方法和静态测点优化布设方法三个方面进行系统研究,探索大型桥梁健康监测和长期安全状态评估新的理论和方法。
     论文的主要研究内容和研究结果包括:
     ①基于长期静态监测数据的桥梁结构恒载效应信息提取方法研究
     根据大型桥梁响应中各种作用效应的重现周期,分析其在长期静态监测信号频域中的分布特征,提出了在测试信号中将活荷载、测试误差、温度和混凝土收缩徐变效应信号分离,从而提取恒载效应变化量信号作为损伤信息的方法,主要包括:将k-均值聚类、离子群优化算法、RBF神经网络与巴特沃斯滤波器相结合,提出了自适应变带宽温差作用效应分离方法,利用日温差效应得出温度预测模型,实现年温差效应的分离;基于ACI209、我国现行规范和B3模型的数学理论模型,建立了混凝土收缩徐变增量预测模型,实现了收缩徐变效应的分离;根据活荷载、测试误差效应在监测信号频域的分布特征,采用低通滤波手段将其分离,从而实现了损伤信息的提取。
     通过数值仿真信号的分析表明:本文提出的分离方法能有效实现从长期健康监测静态数据中提取损伤信息。
     ②基于恒载效应的反演损伤识别方法研究
     大型桥梁结构单元数量和待识别参数多,而实桥测点布设数量相对很少,导致现有反演损伤识别方法难于收敛到真实解且计算效率难以满足实际需要。针对这两个问题,建立了基于静态数据的复合反演损伤识别方法,以实现大型桥梁损伤程度和损伤部位的判定。
     在复合反演损伤识别方法中,基于损伤函数引入高维空间降维技术,将损伤识别分为宏单元和有限元单元两个层次,降低了各层次中反演计算待识别变量的个数;根据桥梁破坏通常仅发生在局部的先验知识,引入基于无变化因子的变异操作方法,降低第二代非支配排序多目标遗传算法(NSGA-2)优化求解时的搜索空间;融入了利用数学简化模型加快反演识别计算速度的进化元模型方法,大大提高了复合反演损伤识别方法的计算效率。
     石板坡长江复线桥的数值仿真算例表明,复合反演损伤识别方法能够根据实桥布设的测点成功识别有限元单元层次的损伤部位和程度,且可将损伤识别的计算效率提高10倍左右。
     ③静态测点优化布设方法研究
     根据恒载作用下损伤效应具有局部性的特征并采用损伤敏感度最大化原则,提出了基于恒载效应进行测点优化布设的有效影响域法。同时,将相对误差算子融入该方法,实现对不同静态测试参量类型的优化选取。
     ④安全状态评估软件实桥应用研究
     基于VC++、Matlab和SQL Server数据库技术,利用本文提出的基于长期健康监测数据提取恒载效应信息的方法以及复合反演损伤识别方法,开发了相应的桥梁结构安全状态评价软件,并应用于重庆石板坡长江复线桥长期健康监测的工程实施中。实桥应用表明,本文提出的方法能成功实现日常运营状态下大型桥梁的安全状态评估。
Large-span bridges’health monitoring and safety conditions assessment are used to forecast the structural deterioration and prevent the occurrence of disasters, which are major research and application domains in the fields of civil engineering. Based on the high ratio of dead load to total load in large-span bridges, a new safety conditions evaluation method is developed, which utilizes measurement changes in the long-term static monitoring data. The dissertation systematically explores new theories and methods of long-term safety conditions evaluation in the large-span bridge from the views of damage information extraction, damage detection method and optimal sensors placement.
     The main contents and results are stated in detail as following:
     ①A novel damage information extraction method for long-term static monitoring data
     Based on the time scale character of action effects in the long-term static signals, the distribution characteristics in the frequency of signals are analyzed and a new dead load effect extraction method is proposed, which can separate the temperature effect, live load effect, creep and shrinkage effect and measurement error effect from the monitoring signal. Combining the k-means clustering algorithm, particle swarm optimization algorithm, RBF neural network and Butterworth filter, the adaptive band-width temperature separation method is developed. Based on the mathematic prediction model of ACI209, Chinese related regulations and B3 model, the incremental prediction model is presented to separate the creep and shrinkage effects of concrete. According to the distribution location of the live load and measurement error effect in the signal, low-pass filter technique is used to detach them, thus realizing the extraction of the damage information.
     The experimental verification result of numerical simulation shows that the novel damage information extraction method can accurately acquire the damage information.
     ②A synthetical damage detection method based on dead load effect
     The number of sensors in situ bridge is small compared with the number of finite elements and design variables, so the existing methods of condition evaluation based on model updating can hardly converge to true damage condition and the calculation efficiency of these methods is too low to meet the actual need, which prevents the application of these methods. To solve above problems, a synthetical damage detection method based on dead load signal is developed to detect the degree and the position of the damage part of the Shibanpo Yangtze Bridge in Chongqing.
     The dimension reduction technique is introduced into this method based on the damage function, and the damage detection is departed into two levels, which are level of marco-cell and finite element cell. The number of design variables to be identified in each level is cut down. Based on the priori knowledge that only several locations will be damaged in the whole structure, the non-change factor is used to modify the non-dominated sorting genetic algorithm II(NSGA-2) in order to reduce the search space of the NSGA-2. The meta-model method which substitutes the finite element model with mathematical model is used and calculation efficiency of NSGA-2 is improved obviously.
     The experimental verification results of numerical simulation show that the synthetical damage detection method can detect the damage location and level successfully in the condition of sparse sensor location. The calculation efficiency can be improved 10 times in the Shibanpo Yangtze River Bridge in Chongqing.
     ③A novel sensor optimal location approach for static sensor
     According to the fact that damage effect of dead load can only be reflected in part of the whole structure and based on the rule of maximization sensitivity of damage, the effective influence domain method for optimal sensors setup is developed, and the relative measurement error factor is added into the method in order to select different static measurement types.
     ④Application of the software system developed to a real bridge
     Based on the VC++, Matlab and SQL Server database technique, using the damage information extraction method for long-term static data and the synthetical damage detection method proposed, a software system for condition assessment to bridge is developed and applied to Shibanpo Yangtze Bridge. The application results show that this software can realize the condition assessment to large-span bridges under operation environment.
引文
[1]陈伟民.大型桥梁结构状态监测与故障诊断系统的角色诊断技术[R].国家高技术研究发展计划(863计划),2008.
    [2]袁万诚,崔飞,张启伟.桥梁健康监测与状态评估的研究现状与发展[J].同济大学学报,1999,27(2):184-188.
    [3]《公路桥涵养护规范》(JTG H11-2004)[S].北京:人民交通出版社,2004.
    [4] H. Sohn, C.R. Farrar, F.M. Hemez et al,A Review of Structural Health Monitoring Literature:1996-2001[R], Los Alamos National Laboratory Report, LA-13976-MS, 2003.
    [5]高怀志,王君杰.桥梁检测和状态评估研究与应用[J].世界地震工程.2000,6:57-63.
    [6] ZongZhou-hong,Wang TL. State-of-the-art report of bridge health monitoring[J], Journal of Fuzhou University, 2002,(4).
    [7]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评[J].地震工程与工程震动,2002,22(3):82-90.
    [8]秦权.桥梁结构的健康监测[J].中国公路学报,2000,13(2):37-41.
    [9]张启伟.大型桥梁健康监测概念与监测系统设计[J].同济大学学报,2001,29(1):65-69.
    [10] Banan MR, Banan MR, Hjelmstad KD. Parameter estimation of structures from static response, I: Computational aspects. Journal of Structural Engineering, ASCE 1994,120(11):3243–59.
    [11] Banan MR, Banan MR, Hjelmstad KD. Parameter estimation of structures from static response, II: Numerical simulation. Journal of Structural Engineering, ASCE 1994,;120(11):3259–83.
    [12]崔飞,袁万城,史家钧.基于静态应变及位移测量的结构损伤识别法[J].同济大学学报.2000,28(2):5-8.
    [13]陈孝珍,基于静态测量数据的桥梁结构损伤识别研究[D]. 2005,华中科技大学.
    [14] Sanayei M, Imbaro G..R., McClain A.S et al, Structural Model Updating Using Experimental Static Measurements [J]. Journal of Structural Engineering.1997, 123(6): 792-798.
    [15] Sanayei M, Saletnik M.J. Parameter estimation of structure from static strain measurements I : Formulation[J] . Journal of Structural Engineering. 1996, 122(5):555-562.
    [16] Hjelmstad KD, Shin S. Damage detection and assessment of structural from static response. Journal of Engineering Mechanics, ASCE 1997,123(6):568–76.
    [17] Xiaofeng Hu. Structural damage identification based on static dead load strain measurements[D].University of Delaware,2002.
    [18] I.Yeo, S.Shin, H.S.Lee, and S.P.Chang. Statistical damage assessment of framed structures from static response [J]. Journal of Enigeering Mechanics, 2000,126(4):414-421.
    [19]蒋华.基于静力测试数据的桥梁结构损伤识别与评定理论研究[D].2005,西南交通大学.
    [20]刘纲,黄宗明,杨溥.一种基于动态序列二次规划的模型修正方法,重庆大学学报(自然科学版),2008,31(1):106-109.
    [21] Juan Martin Caicedo. Structural health monitoring of flexible civil structures [D]. Washington university,2003.
    [22] J.L.Zapico, M.P.Gonzalez, M.I.Friswell, C.A.Taylor and A.J.Crewe.Finite element model updating of a small scale bridge[J].Journal of Sound and Vibration,2003,268:993-1012.
    [23] Michael Link ,Matthias Weiland.Damage identification by multi-modelupdating in the modal and in the time domain[J].Mechanical SystemsandSignalProcessing,2009,23:1734-1746.
    [24] Cohon J L. Multicriteria programming: brief review and application [M]. In: Gero J S, ed. Design Optimization. Orlando, FL: Academic Press, 1985:163-191.
    [25]王灵,俞金寿.混沌耗散离散粒子群算法及其在故障诊断中的应用[J].控制与决策,2007, 22(10):1197-1200.
    [26]任远,黄侨,林阳子.大跨度斜拉桥综合评估系统的研制与开发[J],南京航空航天大学学报,2007,39(8):535-539.
    [27] Roelfstra G, Hajdin R, A dey B, et al. Condit ionevolution in bridge management systems and corrosion-induced deterioration [J]. Journal of Bridge Engineering, 2004, 9(3):268-277.
    [28] Beynon M J. A method of aggregat ion in DS/AHP for group decision-making with the non-equivalent importance of individuals in the group[J]. Computers and Operations Research, 2005, 32 (7):18812-1896.
    [29] M. Rucka, K. Wilde. Crack identification using wavelets on experimental static deflection profiles [J]. Engineering Structures, 2006,28: 279–288.
    [30] Q. Wang, X. Deng. Damage detection with spatial wavelets[J]. International Journal of Solids and Structures,1999,36:927–939.
    [31] Chih-Chieh Chang,Lien-Wen Chen, Detection of the location and size of cracks in the multiple cracked beam by spatial wavelet based approach[J], Mechanical Systems and Signal Processing, 2005,19:139-155.
    [32] Wei-Xin Ren,Zhou-Hong Zong, Output-only modal parameter identification of civil engineering structures[J], Sturctural Engineering and Mechanics,2004,17(3):429-444.
    [33] Doebling, S.W., Farrar, C.R., et al, A review of damage identification methods that examine changes in dynamic properties [J], Shock and Vibration Dig, 1998,30(2):91-105.
    [34] Cawley, P. and Adams, R. D. The location of defects in structures from measurements ofnatural frequencies[J], Journal of Strain Analysis, 1979,4 (2):49-57.
    [35] Penny, J.E.T., Wilson, D.A.L., Friswell, M.L, Damage location in structures using vibration data, Proceedings of the 11th International Modal Analysis Conference, Kissimmee, Florida, Vo1.II, 1993: 861-867.
    [36] Williams,E.J., Messina.Applications of the multiple damage location assurance criterion, proceedings of the international conference on damage assessment of structures, 1999,Dublin, Ireland :256–264.
    [37]郭惠勇,李正良.基于测量位移和频率的结构损伤二次识别方法[J].振动与冲击, 2007, 26(4):94-96.
    [38] F. T. K. Au, structural damage detection based on a micro-genetic algorithm using incomplete and noisy modal test data[J], Journal of Sound and Vibration, 2003,259(5):1081-1094.
    [39] Constantine C. Spyrakos,Ioannis G. Raftoyiannis,John Ch. Ermopoulos.Condition assessment and retrofit of a historic steel-truss railway bridge[J].Journal of Constructional Steel Research,2004,60:1213-1225.
    [40] J.-M. Ndambi,J. Vantomme,K. Harri.Damage assessment in reinforced concrete beams using eigenfrequencies and mode shape derivatives[J].Engineering Structures,2002,24:501-515.
    [41] Pandey A K, Biswas M. Damage detection in structuresusing changes in flexibility [J]. Journal of Sound and Vibration, 1994, 169: 3-17.
    [42] Ko J M. Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun Bridge [J].Engineering Structures, 2002, 24: 857-868.
    [43]曹晖,M.I. Friswell.基于模态柔度曲率的损伤检测方法[J].工程力学,2006,23(4):33-38.
    [44] Wi Di.Vibration-based structural assessment with damage-detection-oriented models[D]. The Hong Kong Polytechnic University,2004.
    [45]史治宇,吕令毅.由模态应变能法诊断结构破损的实验研究[J].东南大学学报,1999,29(2):134-138.
    [46]李忠献,刘永光.基于遗传神经网络与模态应变能的斜裂缝两阶段诊断方法[J].工程力学,2008,25(2):9-16.
    [47] H. Guan,V.M. Karbhari,Improved damage detection method based on Element Modal Strain Damage Index using sparse measurement[J], Journal of Sound and Vibration, 2008,309:465-494.
    [48]刘晖,瞿伟廉,袁润章.基于模态应变能耗散率理论的结构损伤识别方法[J].2004,23 (2):118-121.
    [49] A.Alvandia,C. Cremona. Assessment of vibration-based damage identification techniques[J]. Journal of Sound and Vibration,2006 (292):179-202.
    [50] Law,s.s., Shi,Z.Y., Zhang,L.M. Structural damage detection from incomplete and noisy modal test data, Journal of Engineering Mechanics,1998,124(11):1280-1288.
    [51] Loh, C.H., and Lin, H.M. ,Application of off-line and on-line identification techniques to building seismic response data[J], Earthquake Engineering and Structural Dynamics, 1996,25:269–290.
    [52] K. K. Naira, A. S. Kiremidjianb, K. H. Law,Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure[J], Journal of Sound and Vibration, 2006 ,29(1):349-368.
    [53] E. Peter Carden,James M.W.Brownjohn, ARMA modelled time-series classification for structural health monitoring of civil infrastructure, Mechanical Systems and Signal Processing, 2008,22:295-314.
    [54] Feng Gao, Yong Lu,A Kalman-filter based time-domain analysis for structural damage diagnosis with noisy signals[J], Journal of Sound and Vibration ,2006 (297):916-930.
    [55] S.A. Neild, P.D. McFadden, M.S.Williams, A review of time-frequency methods for structural vibration analysis[J],2003 (25):713–728.
    [56] A.V. Ovanesova, L.E. Sua′rez, Applications of wavelet transforms to damage detection in frame Structures, Engineering Structures, 2004 (26):39-49.
    [57]丁幼亮,李爱群,韩晓林,基于小波包分析的结构实时损伤报警数值研究,东南大学学报(自然科学版),2003,33(5):643-46.
    [58]孟庆丰,焦李成,回转机械低频振动的时频域识别[J],振动工程学报,2004,17(3):374-376.
    [59]程华,基于时频分布的桅杆结构损伤识别方法及试验研究[D]. 2005,重庆大学.
    [60]沈国际,陶利民,徐永成.基于Wigner分布和经验模态分解的减速器故障诊断[J].航空动力学报,2005,20(2):236-239.
    [61] Huang N E, Zheng S, Long S R, et al. The Empirical Mode Decomposition and Hilbert Spectrum fo r Nonlinear and Non-stationary Time SeriesAnalysis [J]. P roceedings of the Royal Society of London, Series A, 1998, 454:903-995.
    [62]李书进,虞晖,瞿伟廉,基于Hilbert-Huang变换的结构损伤诊断[J],武汉理工大学学报,2004,26(8):44-47.
    [63] Darryll Pinesa, Liming Salvino, Structural health monitoring using empirical mode decomposition and the Hilbert phase[J], Journal of Sound and Vibration,2006,294:97-124.
    [64] Yong Xia, Hong Hao, Giovanna Zanardo et al. Long term vibration monitoring of an RC slab: Temperature and humidity effect [J]. Engineering Structures, 2006 (28):441-452.
    [65] Pirner, M, Fischer, O. 1997 Monitoring stresses in GRP extension of the Prague TV tower[C]. In Proc. DAMAS 97: structural damage assessment using advanced signal processingprocedures,University of Sheffield, UK, pp. 451–460.
    [66]文成林,周东华,多尺度估计理论及其应用[M].北京:清华大学出版社,2002.
    [67]凯尔别克.太阳辐射对桥梁结构的影响[M].北京:中国铁道出版社,1981.
    [68]贺拴海.桥梁结构理论与计算方法[M].北京:人民交通出版社,2003.
    [69]秦权,孙晓燕.关于大跨桥结构健康监测系统的反思[C].全国桥梁结构健康监测研讨会.南京,2005,9:1-5.
    [70]钱政,王中宇,刘桂礼.测试误差分析与数据处理[M].北京:北京航空航天大学出版社,2008.
    [71] Simon Haykin.自适应滤波器原理[M].北京:电子工业出版社,2006.
    [72] Miroslav D.信号处理滤波器设计[M].北京:电子工业出版社,2004.
    [73]王济,胡晓. MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.
    [74] Hoon Sohn. Effects of environmental and operational variability on structural health monitoring. Phil. Trans. R. Soc. A (2007): 365, 539-560.
    [75] Farrar, C. R., Baker, W. E., Bell, T. M., Cone, K. M., Darling, T. W., Duffey, T. A., Eklund, A. & Migliori, A. Dynamic characterization and damage detection in the I-40 bridge over the Rio Grande. Los Alamos National Laboratory Report, 1994,LA-12767-MS.
    [76] Fritzen, C. R., Mengelkamp, G. & Guemes, A. Elimination of temperature effects on damage detection within a smart structure concept. In Proc. 4th Int. Workshop on Structural Health Monitoring, Stanford University, CA, 2003:1530-1538.
    [77] B. Peeters, G. De Roeck, One year monitoring of the z24-bridge: environmental influences versus damage events, Proceedings of IMAC-XVIII, San Antonio, Texas, USA, February, 2000:1570-1576.
    [78] Ruotolo, R. & Surace, C. Damage detection using singular value decomposition. In Proc. DAMAS 97, 1997:87-96.
    [79] Sohn, H., Worden, K. & Farrar, C. R. Statistical damage classification under changing environmental and operational conditions. J. Intel. Mater. Syst. Struct. 2003,13:561-574.
    [80] Manson, G. Identifying damage sensitive, environmental insensitive features for damage detection[C]. In 3rd Int. Conf. Identification in Engineering Systems, University of Wales Swansea, 2002, UK.
    [81] A. Deraemaeker, E. Reynders, G. De Roeck, J. Kullaa. Vibration-based structural health monitoring using output-only measurements under changing environment [J]. Mechanical Systems and Signal Processing. 2008,22:34-56.
    [82]梁宗保.基于监测信息统计分析的桥梁结构安全评价研究[D].重庆大学,2006.
    [83] Doebling, S. W. & Farrar, C. R.Using statistical analysis to enhance modal-based damage identification. In Proc. DAMAS 97: structural damage assessment using advanced signalprocessing procedures, University of Sheffield, UK, 1997:199-210.
    [84]胡庆林,叶念渝,朱明富.数据挖掘中聚类算法的综述[J].计算机与数字工程.2007,35(2): 17-20.
    [85]李序,张葛祥.基于K-均值的SVC的雷达辐射源信号识别[J].系统仿真学报.2008,20(12): 6333-6337.
    [86]孔锐,张国宣,施泽生,郭立.基于核的K-均值聚类[J].计算机工程,2004,(11):12-15.
    [87]杨淑莹.模式识别与智能计算-Matlab技术实现[M].北京,电子工业出版社,2008.
    [88] Shi Y, Eberhart R.A modified particle swarm optimizer [C]//IEEE World Congress on Computational Intelligence, 1998: 69-73.
    [89]高岳林,任子晖.带有变异算子的自适应粒子群优化算法[J],计算机工程与应用,2007, 43(25):43-47.
    [90]邵毅敏,周晓君,马祥华,林腾蛟.进化论自适应滤波算法及降噪特性研究[J].振动与冲击,2007, 26:157-159.
    [91]李维特,黄保海.毕仲波.热应力理论分析及应用[M].北京:中国电力出版社,2004:15-54.
    [92] Blevins RD. Formulas for natural frequency and mode shape. New York:Van Nostrand Reinhold; 1979.
    [93] Jeong-Tae Kim, Jae-Hyung Park, Byung-Jun Lee, Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions[J]. Engineering Structures, in Press.
    [94] S.Chen,C.F.N.Cowan,P.M.Grant. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks[J]. IEEE transactions on neural networks 1991,2:302-309.
    [95] S.Chen, E.S.Chng. Alkadhim. Regularized orthogonal least squares algorithm for constructing radial basis function networks. International Journal of Control, 1996,64(5):829-837.
    [96] S. Chen. Local regularization assisted orthogonal least squares regression[J]. Neurocomputing. 2006,69:559-585.
    [97] Shmuel Rippa. An algorithm for selecting a good value for the parameter c in radial basis function interpolation [J]. Advances in Computational Mathematics. 1999,11:193-210.
    [98] Jian-Ping Lam.Evaluation of Concrete Shrinkage and Creep Prediction Models:[D].America:The San Jose State University,2002:1-200.
    [99]惠荣炎,黄国兴,易冰若.混凝土的徐变[M].北京:中国铁道出版社,1988:1-208.
    [100]周履,陈永春.收缩徐变[M].北京:中国铁道出版社,1994:7-60.
    [101]方辉.高层混合结构考虑施工过程凝土徐变收缩影响的分析[D].长沙,湖南大学,2006.
    [102]汪剑.大跨预应力混凝土箱梁桥非荷载效应及预应力损伤研究[D].长沙,2006,湖南大学.
    [103] Zdeněk P.Bazant.Mathematical Modeling of Creep and Shrinkage of Concrete[M]. JohnWiley&Sons Ltd,1988:6-100.
    [104]丁文胜,吕志涛,孟少平等.混凝土收缩徐变预测模型的分析比较[J].桥梁建设,2004(6):13-16.
    [105] Z.P.Bazant,F.H.Wittmann. Creep and shrinkage in concrete structures[M]. John Wiley&Sons Ltd,1982.
    [106] Zdeněk P.Bazant,Sandeep Baweja.Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures(Model B3).Materials and Structures,1995,28:357-365.
    [107]《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)[S].
    [108] CEB-FIP Model Code for Concrete Structures 1990.Comite Euro-international du Beton/Federation International de la Precon-strainte.Paris,1990.
    [109] Wirat lertpaitoonpan, Bridge damage detection using a system identification method [D]. Unviersity of Florida,2000.
    [110] Dong-Ho nam, Improvements in the accuracy of system identification and nondestructive damage evaluation in civil engineering structures[D]. Texas A&M Unviersity,2001.
    [111]徐文平.既有预应力混凝土梁桥承载能力实桥试验及分析研究[D].南京:东南大学,2006.
    [112] Anne Teughels, Johan Maeck, Guido De Roeck. Damage assessment by FE model updating using damage functions [J]. Computers and Structures. 2002,80:1869-1879.
    [113] Sheng-En Fanga, Ricardo Pereraa, Guido De Roeck. Damage identification of a reinforced concrete frame by finite element model updating using damage parameterization [J]. Journal of Sound and Vibration. 2008(313):544-559.
    [114] Ricardo Pereraa, Antonio Ruiz. A multistage FE updating procedure for damage identification in large-scale structures based on multiobjective evolutionary optimization [J]. Mechanical Systems and Signal Processing.2008,22:970-991.
    [115] Srinivas N, Kalyanmoy Deb. Multi-objective optimization using nondominated sorting in genetic algorithms[J].EvolutionaryComputation.1994,2(3):221-248.
    [116] Jia XP, Han FY. Multi-bojective optimization and its application in processes engineering: A Review [J]. Computers ans Applied Chemistry.2001, 18(10):113-119.
    [117]王小平.遗传算法理论、应用与软件实现[M].西安:西安交通大学出版社, 2002. 138-140.
    [118]吉根林.遗传算法研究综述[J].计算机应用与软件,2004,21(2):69-73.
    [119]宋立敏,贾小平,韩方煌.遗传算法在多目标优化应用中的对比研究[J].计算机与应用化学,2005,22:1079-1082.
    [120] Kalyanmoy Deb,Amrit Pratap,Sameer Agarwal,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation[J].2002,6(2):182-197.
    [121]关志华,非支配排序遗传算法(NSGA)算子分析[[J],管理工程学报,2004,18: 56-60.
    [122] De Jong K A. An Analysis Systems. Ph. D Dissertation of the Behavior of a Class of Genetic Adaptive.University of Michigan, No. 76-9381, 1975.
    [123]雷英杰等.Matlab遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [124]刘纲,黄宗明,杨溥.基于恒载下的梁和桥梁损伤识别研究.重庆建筑大学学报,2008, 10:28-31.
    [125] Wang GG, Shan S . Review of metamodeling techniques in support of engineering design optimization [J]. ASME J Mech Des. 2007,129:370-389.
    [126] K.C. Giannakoglou, A.P. Giotis, A.P.M.K. Karakasis, Low-cost genetic optimization based on inexact pre-evaluations and the sensitivity analysis of design parameters [J],. Inverse Problems Engrg. 2001,9:389-412.
    [127] M. Karakasis, A.P. Giotis, K.C. Giannakoglou, Inexact information aided, low-cost, distributed genetic algorithms for aerodynamic shape optimization, Int. J. Numer. Methods Fluids 2003,43:1149–1166.
    [128] Ioannis C. Kampolis, Kyriakos C. Giannakoglou. A multilevel approach to single- and multiobjective aerodynamic optimization [J]. Comput. Methods Appl. Mech. Engrg. 2008,197:2963–2975.
    [129]万越,吕震宙,袁修开.基于Latin方抽样和修正的Latin方抽样的可靠性灵敏度估计及其方差分析[J].机械强度,2008,6:927-934.
    [130] Simpson, T.W. Metamodels for computer-based engineering design: Survey and recommendations [J]. Engineering with Computers, 2001,17(2): 129-150.
    [131] McKay M D, Beckman R J, Conover WJ. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code [J]. Technometrics, 1979, 2:239-245.
    [132] Kathleen M. Carley, Natalia Y. Kamneva, Jeff Reminga.Response surface methodology[R], Carnegie Mellon University,2004.
    [133] Ratle A, Kriging as a Surrogate Fitness Landscape in Evolutionary Optimization. Artificial Intelligence for Engineering Design Analysis and Manufacturing, ,2001,15(1): 37-49.
    [134] Jin R, Chen W, Simpson T W. Comparative Studies of Metamodeling Techniques under Multiple Modeling Criteria. Structural and Multidisciplinary Optimization, 2001, 23(1):1-13.
    [135] Songqing Shan ,G. Gary Wang. Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions [J]. Struct Multidisc Optim,2009,(8):113-146.
    [136] Kammer D C. Sensor set expansion for modal vibration testing [J]. Mechanical Systems and Signal Processing. 2005,19:700-713.
    [137] Kammer D C. Sensor placements for on orbit modal identification of large space structures [J]. Journal of Guidance, Control, and Dynamics,1991,14 (2):252-259.
    [138] Meo M, Zumpano G. On the optimal sensor placement techniques for a bridge structure[J]. Engineering Structures. 2005, 27:1488-1497.
    [139]谭冬莲,肖汝诚.桥梁监测系统中复杂结构的静力应变传感器优化配置方法[J].公路,2006, 6:105-108.
    [140] F. Bakhtiari-Nejada, A. Rahaib, A. Esfandiarib, A structural damage detection method using static noisy data, Engineering Structures, 2005 (27): 1784-1793.
    [141] Doebling SW, Peterson LD, Alvin KF. Experimental determination of local structural stiffness by disassembly of measured flexibility matrices. Journal of Vibration and Acoustics 1998;120:949-57.
    [142] Kammer D C. Sensor placements for on orbit modal identification of large space structures [J]. Journal of Guidance, Control, and Dynamics,1991,14 (2):252-259.
    [143]崔飞,袁万城,史家钧.传感器优化布设在桥梁健康监测中的应用[J].同济大学学报.1999,27(1):P165-169.
    [144] K. Worden , A.P. Burrows, Optimal sensor placement for fault detection[J], Engineering Structures, 2001, (23): 885-901.
    [145]岳笛.重庆石板坡长江大桥复线桥基于静动力的模型修正[D].重庆大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700