昆仑都兰可可沙地区早古生代侵入岩体地质特征、形成时代及构造环境
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆仑造山带岩浆活动频繁,本文选取东昆仑都兰可可沙地区早古生代侵入岩体为研究对象,通过详细的野外路线调查、重点剖面测制和室内镜下薄片分析,对其野外分布、规模和产状及岩石组合特征、岩相学特征进行了详细研究。同时,初步限定了该套岩体的地球化学属性及形成时代,并分析了岩体成因及形成构造环境,为查明东昆仑造山带东段早古生代复杂的构造演化历史提供了依据。主要取得了以下初步认识:
     1、东昆仑都兰可可沙地区早古生代侵入岩体主要由辉长岩类、闪长岩类和花岗岩类组成,主体为闪长岩类,普遍经历弱的变形、变质。岩体大部分与古元古代白沙河岩组及中元古代小庙岩组呈侵入接触关系,局部与三叠纪洪水川组呈断层或不整合接触关系。
     2、岩体中各类岩石基本属于中钾钙碱性岩石,其中辉长岩类低碱,高TiO2、CaO、MgO;花岗岩类高碱,低TiO2、CaO、MgO,属弱过铝质岩石;闪长岩类属偏铝质岩石,主量元素含量大多介于辉长岩类和花岗岩类之间。三类岩石共同特性表现为轻稀土元素富集,重稀土元素相对亏损且轻重稀土元素分馏明显;富集Rb、Ba、Th等大离子亲石元素,相对亏损Zr、Hf、Ta等高场强元素,显著亏损Nb、Y、Ti、P等元素。以上特征表明岩体成因与俯冲作用有关,可能是底侵的幔源岩浆熔融与下地壳物质混合的结果,并且岩浆演化后期发生过明显的结晶分异作用。
     3、岩体中石英闪长岩LA-ICP-MS锆石U-Pb同位素年龄为(515.2±4.4)Ma(MSWD=2.5),限定了该岩体的主体岩浆结晶时代为中寒武世,确证了东昆仑地区存在早古生代的构造-岩浆事件。
     4、综合以上研究,结合区域地质背景,推断东昆仑都兰可可沙地区早古生代侵入岩体形成于与洋壳俯冲有关的早期陆缘弧或洋盆俯冲初始阶段的构造环境,该事件可能是原特提斯洋扩张演化在东昆仑地区的响应。
Magmatism in the East Kunlun orogenic belt occurred frequently. The Kekesha intrusive rocks of Early Paleozoic in East Kunlun area of Dulan county area is selected as the research object of the study. After detailed wild-field geological survey, key section measuring and indoor study of microscope image, the wild-field distribution, scale, occurrence and assemblage and petrology of the rocks are ascertained, meanwhile, the geological geochemistry characteristics and crystallizing age of the rocks, as well as its forming mechanism and tectonic settings are confined in preliminary, which provides strong evindences for ascertaining the complex tectonic evolutional history of the East Kunlun area in Early Paleozoic. Main cognitions are acquired as follows:
     1. The Kekesha intrusive rocks of Early Paleozoic in the East Kunlun area are constituted of gabbros, diorites and granitoids rocks, mainly of diorites rocks, both of which generally experienced low-grade deformation and metamorphism. The majority of the rocks intrude in Baishahe Group and Xiaomiao Group which belong to Paleoproterozoic and Mesoproterozoic respectively, and the local rocks emplace in Hongshuichuan Group of Triassic in the contact of fault and unconformity.
     2. The rocks belong to middle Potassium calc-alkaline series in general, of which the gabbros show the characteristics of low total alkali, high TiO2, CaO and MgO in content and the granites of high total alkali, low TiO2, CaO, MgO in content, classified to weakly peraluminous series, while, the diorites show the feature of metaluminous, and the content of major elements of which is mostly between the content of gabbros and granites. The common characteristics of the three types of rocks are enrichment of LREE and LILE like Rb, Ba and Th, loss of HREE and HFSE like Zr, Hf and Ta relatively, especially Nb, Y, Ti and P. All of these indicate that the rocks may form in relation to subduction of continental margin and is a result of mixing of intrusive mantle magma and the material of lower-crust and occurred distinct fractional crystallization in later evolution of the magma.
     3. LA-ICP-MS zircon U-Pb isotopic age of quartz diorite is (515.2±4.4) Ma (MSWD =2.5), which confines the crystallizing age of the majority rocks to Middle Cambrian epoch and corroborates the tectono-magmatism event of the East Kunlun region during the early Caledonian.
     4. Combined with the above study fruites and regional geological setting, it is concluded that the rocks of Paleozoic in Kekesha area of the east Kunlun orogenic belt formed in the setting of initial continental margin arc-zone or the primary subduction stage of oceanic basin, and the event may be a material response to expansion of proto-Tethys ocean in the East Kunlun area.
引文
[1]Anderson T. Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemical Geology,2002,192 (1-2):59-79.
    [2]Bea F. Residence of REE, Y, Th and U in Granites and Crustal Protoliths:Implications for the Chemistry of Crustal Melts [J]. Journal of Petrology,1996,37 (3):521.
    [3]Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments [J]. Lithos,1999,46:605-626.
    [4]Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous zircon:Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology,2002,143:602-622.
    [5]Chappell B W, White A J R. Two contrasting granite types[J]. Pacific Geology.1974, 8:173-174.
    [6]Cantagrel J M, Didier J, Gourgand A. Magma mixing:origin of intermediate rock and enclaves from volcanism to plutonism[J]. Phys. Earth Planet. Inter.1984,35:63-76.
    [7]Castro A, Moreno-Ventas I, Dela Rosa J D. Microgranular enclaves as indicators of hybridization processes in granitoid rocks, Hercynian Belt, Span[J]. Journal of Geology, 1990,25:391-404.
    [8]Castro A. H-type (hybird) granitoids:a proposed revision of the granite type classfication and nomenclature[J]. Earth Seience Review,1991,31:237-253.
    [9]Collins W J. Evaluation of petrogenetic models for Lachlan Fold Belt granites: implications for crustal architecture and tectonic models[J]. Australian journal of Earth Science.1998,45:483-500.
    [10]Chen F K, Hegner E, Todt W. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany:Evidence for a Cambrian magmatic arc[J]. International Journal of Earth Science (Geol Rundsch),2000,88:791-802.
    [11]Chen F K, Siebel W, Satir M, et al. Geochronology of the Karadere basement (NWTurkey) and implications for the geological evolution of the Istanbul zone[J]. International Journal of Earth Science (Geol Rundsch,2002,91:469-481.
    [12]Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical Geology,2000,172: 5-24.
    [13]Dawes R L. Mount S T. Helens:potential example of partial melting of subducted lithosphere in a volcanic arc:Comment[J]. Geology,1994,22:187-188.
    [14]Diego P, Barbarin B. Enclaves and Granite Petrology[J]. Elsevier, Amserdam.1991, 375-381.
    [15]Diego P, Giampiero P S. Chaotic dynamics and fractals in magmatic interaction processes:a different approach to the interpretation of mafic microgranular enclaves[J]. Earth Planet. Sci Lett.2000,175 (1-2):93-103.
    [16]Didier J. Granites and their Enclaves[M]. Elsevier, Amsterdam,1973, P.393.
    [17]Didier J, Barbarin B. Enclaves and Granite petrology[M]. Elsevier, Amsterdam,1991, P.625.
    [18]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithospheres[J]. Nature,1990,347:602-665.
    [19]Defant M J, Drummond M S. Mount St. Helens:Potential example of partial melting of sunducted lithosphere in a volcanic arc[J]. Geology,1993,21:547-550.
    [20]Ferry J M., Watson E B. New thermodynamic models and revised calibrations for the Ti-in zircon and Zr-in-rutile thermometers [J]. Contributions to Mineralogy and Petrology,2007,154 (4):429-437.
    [21]Guo J, O'Reilley S Y, Griffin W L. Zircon Inclusions in Corundum Megacrysts:Trace Elements Geochemistry and Clues to the Origin of Corundum Megacrysts in Alkali Basalts[J]. Geochim Cosmochim Acta,1996,60 (13):2347.
    [22]Harrison T M, Aleinikoff J N, Compston W. Observations and controls on the occurrence of inherited zircon in concord-type granitoids, New Hampshire[J]. Geochmica et Cosmochimica Acta,1987,52:2549-2558.
    [23]Hoskin P W O, Ireland T R. Rare earth element chemistry of zircon and its use as a provenance indicator [J]. Geology,2000,28:627-630.
    [24]Hinton R W, Upton B G J. The Chemistry of Zircon:Variations Within and Between Large Crystals from Syenite and Alkali Basalt Xenoliths[J]. Geochim Cos mochim Acta, 1991,55 (11):3287.
    [25]Kay R W. Aleutian magnesian andesites:melts from subducted Pacific Ocean crust[J]. Volcanol Geotherm Res,1978,4:117-132.
    [26]Lanyon R, Black R P, Seitz H M. U-Pb zircon dating of mafic dykes and its application to the Proterozoic geological history of the Vestford Hills, East Antarctica[J]. Contributions to Mineralogy and Petrology,1993,115:84-203.
    [27]Lee J, Williams I, Ellis D. Pb, U and Th diffusion in nature zircon[J]. Nature,1997, 390 (13):159-162.
    [28]Le Maitre R W, Bateman P, Dudek A. A classification of igneous rocks and glossary of terms[M]. Blackwell Scientific Publication,1989.
    [29]Ludwig K R. Isoplot/Ex version 2.49. A Geochronological Toolkit for Microsoft Excel[J]. Berkeley:Berkeley Geochronology Center Special Publication,2003, (la): 1-56.
    [30]Martin H. The adakitic magmas:Modern analogue of Archean granotoids[J]. Lithos, 1999,46:411-429.
    [31]Peare J A. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S., Chichester, Wiley, ed. Andesites[M].1982,525-548.
    [32]Pearce J A. Trace element discrimination diagrams for the tectonic interpretation of the granitic rocks[J]. Journal of Petrology,1984,25:956-983.
    [33]Patino-Douce A E, Johnston A D. Phase equilibria and melt productivity in the pelitic system:implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology,1991,107 (2):202-218.
    [34]Peacock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust[J]. Earth and Planet and Science Letters,1994,121:227-244.
    [35]Pitcher W S. Granite type and tectonic environment[C]//Hsu K ed. Mountain building Processes[M]. New York:Academic Press,1983,19-40.
    [36]Phinney R A, et al.A National program for research in continental dynamics[J]. The IRIS Consortium, Arlington, USA.1989.
    [37]Rapp R P, Watson E B. Dehydration melting of metabasah at 8-32 kpar:implications for continental growth and crust mantle recycli[J]. Journal of petrology,1995,36:891-931.
    [38]Rapp R P. Heterogeneous source regions for Archean granitoids[C]//Wit M J, Ashwal L D ed.Greenstone Belts[M]. Oxford university Press,1997,35-37.
    [39]Rubatto D. Zircon trace element geochemistry:Partitioning with garnet and link between U-Pb ages and metamorphism[J]. ChemGeol,2002,184:123-138.
    [40]Rudnick R. L. Xenoliths-Samples of lower continental crust[C]//Fountain D. M., Arculus R., Kay R W. Continental Lower Crust[M]. Elservier, Amsterdam,1992, 269-316.
    [41]Schofield D I, D'Lemos, R S. Granite petrogenesis in the Gander Zone, NE N ewfoundland:mixing of melts from multiole sources and the role of lithospheric delamination[J]. Canad. journal of Earth Science,2000,37 (4)
    [42]Vavra G. Systematic of internal zircon morphology in major Variscan granitoid types[J]. Contributions to Mineralogy and Petrology,1994,117:331-344.
    [43]Vavra G, Gebauer D, Schmid R. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps):an ion microprobe (SHRIMP) study[J]. Contributions to Mineralogy and Petrology,1996,122:337-358.
    [44]Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon:geochronology of the ivren zone (Southern Alps) [J]. Contributions to Mineralogy and Petrology,1999,134:380-404.
    [44]Vernon R H. Microgranitoid enclaves in granites-globules of hybrid magma quenched in a plutonic envirnment[J]. Nature,1984,309:438-439.
    [45]Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology,2006,151:413-433.
    [46]Winchester J A, Floyd P A. Geochemical discramination of different magama series and their differentiation products using immobile elements[J]. Chemical Geology,1977, 20:325-343.
    [47]Winther K T, Newton R C. Experimental melting of hydrous low-K tholeiite:evidence on the orgin of Arehaean cratons[J]. Bulll GeolSoc Demark.1991,39:213-228.
    [48]Williams I S. Some observations on the use of zircon U-Pb geochronology on the study of granitic rocks[J]. Transactions of the Royal Society of Edinburge:Earth Science, 1992,83:447-458.
    [49]Williams I S. U-Th-Pb geochronology by ion microprobe[C]//McKibben M A, Shanks Ⅲ W C, Ridley W I, eds. Applications of Microanalytical Techniques to Understanding Mineralizing Processes[M]. Rev Econ Geol,1998,7:1-35.
    [50]Wolf M B, Wyllie P J. Dehydration-melting of amphibolite at 10kbar:effects of temperature and time Contribution[J]. Minmal Petrol,1994,115:369-383.
    [51]Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma-mass spectrometry. Geostands and Geoanalytical[J]. Research,2004,28 (3):353-370.
    [52]Yang Jingsui, Robinson P T, Jiang Chunfa, et al. Ophiolites of the Kunlun Mountains, China and their tectonic implications [J]. Tectonophysics,1996,258:299-305.
    [53]鲍学昭,陈松年,李忠民.中国38亿年古陆壳锆石的成因矿物学研究[J].矿物学报,1996,16:(4).
    [54]鲍学昭,陆松年,李惠民,等.河北高级变质岩中锆石的成因矿物学研究[J].岩石矿物学杂志,1995,14:(3).
    [55]边千韬,李涤徽,罗小全,等.阿尼玛卿山早古生代和早石炭-早二叠世蛇绿岩的发现[J].地质科学,1999,34(4):523-524.
    [56]陈炳蔚,王彦斌,左国朝,等.青藏高原北部地体划分及其构造演化[J].地球物理学报,1995,38(2):98-113.
    [57]陈道公,李彬贤,夏群科,等.变质岩中锆石U-Pb计时问题评述-兼论大别造山带锆石定年[J].岩石学报,2001,17(1):129-138.
    [58]陈能松,何蕾,孙敏,等.东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定[J].科学通报,2002,47(8):628-631.
    [59]陈能松,孙敏,王勤燕,等.东昆仑造山带中带的锆石U-Pb定年与构造演化启示[J].中国科学(D辑),2008,38(6):657-666.
    [60]陈能松,孙敏,王勤燕,等.东昆仑造山带中的独居石电子探针化学年龄:多期构造变质事件记录[J].科学通报,2007,52(11):1297-1306.
    [61]陈能松,李晓彦,张克信,等.东昆仑山香日德南部白沙河岩组的岩石组合特征和形成年代的锆石Pb-Pb定年启示[J].地质科技情报,2006,25(6):1-7.
    [62]陈能松,孙敏,张克信,等.东昆仑变闪长岩体的40Ar-39Ar和U-Pb年龄:角闪石过剩Ar和东昆仑早古生代岩浆岩带证据[J].科学通报,2000,45(21):2337-2342.
    [63]董申保.Some discussion on the recent development of granite petrogenesis[J].董申保文集[M].北京:北京大学出版社,1999,246-235.
    [64]董申保,洪大卫,徐保良.花岗岩拓扑学的研究展望[J].地质论评,2001,47(4):356-360.
    [65]杜杨松.酸性-中酸性火山-侵入杂岩中岩石包体研究的新进展[J].现代地质,1996,10(2):196-174.
    [66]杜杨松,车勤建,秦新龙,等.花岗质岩石中包体研究的新进展[J].矿物岩石地球化学通报,2003,22(4):334-337.
    [67]冯建簧,裴先治,于书伦,等.东昆仑都兰可可沙地区镁铁-超镁铁质杂岩的发现及其LA-ICP-MS锆石U-Pb年龄[J].中国地质,2010,37(1):28-38.
    [68]洪大卫,王式洗,谢锡林,等.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7:441-456.
    [69]洪大卫,王式洗,谢锡林,等.从中亚正ε Nd(t)值花岗岩看超大陆演化和大陆地壳生长的关系[J].地质学报,2003,77(2):203-208.
    [70]姜春发,王宗起,李锦轶,等.中央造山带开合构造[M].北京:地质出版社,2000.
    [71]姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质出版社,1992,125-171.
    [72]江万,张双全,莫宣学,等.青藏高原冈底斯带中段花岗岩及其中铁镁质微粒包体地球化学特征[J].岩石学报,1999,15(1):89-97.
    [73]高延林,吴向农,左国朝.东昆仑山清水泉蛇绿岩特征及其大地构造意义[J].中国地质科学院西安地质矿产研究所所刊,1988,21:7-28.
    [74]古凤宝.东昆仑地质特征及晚古生代-中生代构造演化[J].青海地质,1994,(1):4-13.
    [75]郭进京,张国伟,陆松年,等.中国新元古代大陆拼合Rodinia超大陆[J].高校地质学报,1999,5(2):148-153.
    [76]赖绍聪.青藏高原新生代埃达克质岩的厘定及其意义[J].地学前缘,2003,10(4):407-413.
    [77]李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992.
    [78]李昌年.岩浆混合作用及其研究评述[J].地质科技情报,2002,21(4):49-54.
    [79]李春昱,郭令智,朱夏,等.板块构造基本问题[M].北京:地震出版社,1986,1-464.
    [80]李怀坤,陆松年,相振群,等.东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究[J].地学前缘,2006,13(6):‘311-321.
    [81]李荣社,计文化,杨永成,等.昆仑山及邻区地质[M].北京:地质出版社,2008.
    [82]李兴振,许效松,潘桂棠.泛华夏大陆群与东特提斯构造域演化[J].岩相古地理,1995,15(4):1-10.
    [83]梁细荣,李献华,刘永康,等.激光探针等离子体质谱同时测定锆石微区铀-铅年龄及微量元素[J].岩矿测试,1999,18(4):253-257.
    [84]刘良,车自成,罗金海,等.阿尔金山西段榴辉岩的确定及其地质意义[J].科学通报,1996,41(16):1485-1488.
    [85]刘成东.东昆仑造山带东段花岗岩岩浆混合作用[M].北京:地质出版社,2008.
    [86]路风香.地幔岩石学[M].北京:地质出版社,1988,1-120.
    [87]陆松年.从罗迪尼亚到冈瓦纳超大陆-对新元古代超大陆研究几个问题的思考[J].地学前缘,2001,8(4):515-523.
    [88]陆松年.青藏高原北部前寒武纪地质初探[M].北京:地质出版社,2002,1-125.
    [89]陆松年,李怀坤,陈志宏,等.新元古代时期中国古大陆与罗迪尼亚超大陆的关系[J].地学前缘,2004,11(2):515-523.
    [90]罗照华,柯珊,曹永清,等.东昆仑印支晚期幔源岩浆活动[J].地质通报,2002,21(6):292-297.
    [91]潘桂棠,陈智梁,李兴振,等.东特提斯地质构造形成演化[M].北京:地质出版社,1997.
    [92]潘裕生,周伟明,许荣华,等.昆仑山早古生代地质特征与演化[J].中国科学(D辑),1996,26(4):302-307.
    [93]青海地质科学研究所,中国科学院南京地质古生物研究所.青海布尔汗布达山南坡石炭纪-三叠纪地层和古生物[M].合肥:安徽科学技术出版社,1996.
    [94]青海省地质矿产局.青海省区域地质志[M].北京:地质出版社,1991.
    [95]青海省地质矿产局.青海省岩石地层[M].武汉:中国地质大学出版社,1997.
    [96]孙德有,吴福元,高山,等.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘,2005,12(2):263-275.
    [97]孙雨,裴先治,丁仨平,等.东昆仑哈拉尕吐岩浆混合花岗岩:来自锆石U-Pb年代学的证据[J].地质学报,2009,83(7):1000-1010.
    [98]王德滋.微粒花岗岩包体的成因[J].桂林冶金地质学院学报,1992,(4):235-240.
    [99]王德滋,周新民.中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化[M].北京:科学出版社,2002,1-5.
    [100]王德滋.微粒花岗岩包体的成因[J].桂林冶金地质学院学报,1992,(4):235-240.
    [101]王德滋,舒良树.花岗岩构造岩浆组合[J].高校地质学报,2007,13(3):362-370.
    [102]王德滋.岩浆混合作用:来自岩石包体的证据[J].高校地质学报,2008,14(1):16-21.
    [103]王国灿,王青海,简平,等.东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义[J].地学前缘,2004,11(4):481-490.
    [104]王强,赵振华,熊小林,等.底侵玄武质下地壳的熔融:来自安徽沙溪埃达克质富钠石英闪长玢岩的证据[J].地球化学,2001,30:353-361.
    [105]王涛.花岗岩混合成因研究及大陆动力学意义[J].岩石学报,2000a,16(2):161-168.
    [106]王涛.花岗岩研究与大陆动力学[J].地学前缘,2000b,7(增刊):137-146.
    [107]汪相,J P PUPIN.花岗岩锆石中的微量元素的配分特征[J].地质科学,1992,(2):131-140.
    [108]汪相,Kienast J R.微粒暗色包体中锆石的形态演化及其制约机制[J].中国科学(D辑),2000,30(2):180-187.
    [109]王云山.青海省东昆仑缝合带及基底构造对比研究[R].青海省区调综合地质大队,1994.
    [110]吴福元,林强,葛文春,等.张广才岭新华屯岩体的形成时代与成因研究[J].岩石矿物学杂志,1998,17(3):226-234.
    [111]吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1225-1226.
    [112]吴元保,陈道公,夏群科,等.大别山黄土岭麻粒岩中锆石LA-ICP-MS微区微量元素分析和U-Pb定年[J].中国科学(D辑),2003,33:20-28.
    [113]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
    [114]肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].北京:地质出版社,2002,53-70.
    [115]肖庆辉,邱瑞照,邓晋福,等.中国花岗岩与大陆地壳生长方式初步研究[J].中国地质,2005,32(3):343-351.
    [116]肖庆辉,刑作云,张昱,等.当代花岗岩研究的几个重要前沿[J].地学前缘,2003,10(3):221-228.
    [117]谢桂青,胡瑞忠,蒋国豪,等.锆石的成因和U-Pb同位素定年的某些进展[J].地质地球化学,2001,29(4):64-68.
    [118]解玉月.昆中断裂东段不同时代蛇绿岩特征及形成环境[J].青海地质,1998:27-35.
    [119]许荣华,Harris N, Lewis C,等.拉萨至格尔木的同位素地球化学[C]//中-英青藏高原综合考察队.青藏高原地质演化[M].北京:科学出版社.1990:280-302.
    [120]许志琴,杨经绥,陈方远.阿尼玛卿缝合带及“俯冲—碰撞”动力学[C]//张旗.蛇绿岩与地球动力学研究[M].北京:地质出版社,1996,185-189.
    [121]许志琴,杨经绥,张建新,等.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J].地质学报,1999,73(3):194-205.
    [122]闫义,林舸,李白安.利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究[J].大地构造与成矿学,2003,27(2):184-190.
    [123]杨坤光,杨巍然.碰撞后的造山过程及造山带巨量花岗岩的成因[J].地质科技情报,1997,16(4):16-22.
    [124]殷鸿福,张克信,陈能松,等.中华人民共和国区域地质调查报告(1:25万冬给措纳湖幅)[R].武汉:中国地质大学出版社,2000,1-457.
    [125]袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520.
    [126]张建新,孟繁聪,万渝生,等.柴达木盆地南缘金水口群的早古生代构造热事件:锆石U-Pb SHRIMP年龄证据[J].地质通报,2003,22(6):397-404.
    [127]张建新,张泽明,许志琴,等.阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄[J].科学通报,1999,44(10):1109-1112.
    [128]张克信,黄继春,殷鸿福,等.放射虫等生物群在非斯密斯地层研究中的应用—以东昆仑阿尼玛卿混杂岩为例[J].中国科学(D辑),1999,29(6):542-548.
    [129]张旗.埃达克岩研究的回顾和前瞻[J].中国地质,2008,35(1):32-36.
    [130]张旗,钱青,王二七,等.燕山中晚期的中国东部高原:埃达克岩的启示[J].地质科学,2001,36(2):248-255.
    [131]张雪亭,杨生德,杨站君,等.青海省区域地质概论-1:100万青海省地质图说明书[M].北京:地质出版社,2007.
    [132]张玉泉,谢应雯.东昆仑胡晓钦岩体Rb,Sr同位素研究[C]//青藏项目专家委员会.青藏高原形成演化,环境变迁与生态系统研究学术论文年刊[M].北京:科学出版社,1996:42-47.
    [133]赵振华.微量元素地球化学原理[M].北京:科学出版社,1997.
    [134]赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学,2007,31(1):92-103.
    [135]周新民,朱云鹤.江绍断裂带的岩浆混合作用及其两侧的前寒武纪地质[J].中国科学(D辑),1992,3:296-303.
    [136]周殉若.花岗岩混合作用[J].地学前缘,1994,1(1-2):87-97.
    [137]朱云海.东昆仑复合造山带蛇绿岩、岩浆岩及构造岩浆演化[M].武汉:中国地质大学出版社,2002.
    [138]朱云海,张克信.东昆仑造山带不同蛇绿岩带的厘定及其构造意义[J].中国地质大学学报,1999,24(2):134-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700