离子注入透明绝缘材料中纳米颗粒的合成、表征与调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文围绕离子注入透明绝缘材料中纳米颗粒的合成、表征与调控开展了相应研究,主要内容与结果如下:
     ⑴对30keV的C离子以不同剂量注入的有机玻璃样品进行了结构、光致发光(PL)和光反射特性的研究,结果表明:样品的PL强度不随C离子剂量单调变化;样品的PL响应与氢化无定形C纳米颗粒的形成及其构型变化有关;由于注入层的结构变化,样品的光反射率既与波长有关,也与C离子剂量有关。
     ⑵对45keV的Cu和Zn离子以相同剂量(1×1017cm-2)顺序注入的SiO2样品进行N2气氛中500°C退火,成功地合成了CuZn合金纳米颗粒,其表面等离子体共振(SPR)峰位于515nm处。600°C退火导致合金纳米颗粒分解,并在基底中形成Cu纳米颗粒,相应的SPR峰出现在574nm处。由于Cu+溶质的激发,退火后的样品表现出弱的荧光发射特性,PL峰位于558nm附近。
     ⑶用50keV的Zn离子和35keV的Ag离子按不同顺序注入SiO2可以合成不同种类的金属纳米颗粒。在先Zn后Ag注入的样品中所合成的为Ag纳米颗粒,由于成核点的增加和Ag注入子的沉积增强过程,这些Ag纳米颗粒具有较高的体积分数、较小的尺寸和较窄的尺寸分布以及改善了的介电环境,因此,样品在435nm处呈现出一个很强的SPR峰,改变Zn离子剂量对SPR峰的影响不大。在先Ag后Zn注入的样品中所合成的为Ag、Zn单质和Ag–Zn合金纳米颗粒的混合物,对应的吸收带出现在260–550nm之间。
     ⑷对45keV的Cu离子以1×1017cm-2剂量注入的SiO2样品,分别用500keV的Xe和Ar离子辐照,以改善Cu纳米颗粒的尺寸和空间分布以及样品的光吸收特性。结果表明:剂量为2×1016cm-2的Xe离子辐照后,Cu纳米颗粒的平均直径从7.3nm增加到8.5nm,高密度的大尺寸Cu纳米颗粒几乎排列在相同的深度,该深度远远超出了Cu离子的投影射程;一个临界的Xe离子剂量大约为1×1016cm-2;在相同能量和剂量下,Xe离子辐照比Ar离子辐照具有更好的改性效果。
     ⑸提出并实践了一种两阶段处理方法,即先用500keV的Xe离子以1×1016cm-2剂量进行辐照,再用21keV的Ag离子以2×1016cm-2剂量进行注入,目的是在SiO2中合成准二维排列的Ag纳米颗粒,并同时抑制Ag注入子的溅射损失。实验结果不仅证实了上述方法的可行性和有效性,而且还表明Ag纳米颗粒的多晶化也是影响复合材料光吸收特性的一个重要参数。
Several researches were performed in order to fabricate nanoparticles (NPs) in thetransparent dielectrics by means of ion implantation, as well as to control the size andspatial distributions of the embedded NPs. The main contents and results are given asfollows.
     (1) Polymethylmethacrylate (PMMA) slices were implanted with30keV carbonions at different fluences, and their structure, photoluminescence (PL) and reflectivitywere examined. A luminescent band with one peak could be detected from each sample,whose intensity did not vary in parallel with ion fluence. Such PL response was relatedto the formation of hydrogenated amorphous carbon nanoclusters and their evolutionin configuration with ion fluence. The structural changes induced by ion implantationcould be responsible for the fluence-and wavelength-dependent reflectivity of sample.
     (2) CuZn alloy NPs embedded in SiO2were fabricated by sequential implantationof45keV Cu and Zn ions at the same fluence of1×1017cm-2together with subsequentannealing at500oC in nitrogen ambient. Such alloy NPs presented an intense surfaceplasmon resonance (SPR) peak at about515nm. After600°C annealing, the alloy NPswere decomposed, and only Cu NPs could be found in the substrate, which induced aSPR peak at about574nm. The weak PL peak around558nm detected from theannealed sample could be attributed to the excitation of Cu+solutes.
     (3) Nanometer metallic colloids were fabricated in SiO2by dual implantation of50keV Zn and35keV Ag ions in different implantation sequences. In the case of Znions followed by Ag ions, Ag NPs were formed, which had smaller size, narrower sizedistribution and higher volume fraction as well as modified dielectric environmentowing to the increased nucleation sites and the enhanced deposition process of Agimplants. As a result, the Zn first and then Ag implanted samples presented an intenseSPR peak around435nm. Variation of Zn ion fluence only caused slight change of theSPR peak. In contrast, a dual implantation of Ag first and then Zn ions resulted in theformation of Ag, Zn and Ag–Zn alloy NPs, which contributed a weak absorption bandbetween260and550nm.
     (4) SiO2samples implanted with45keV Cu ions at a fluence of1×1017cm-2wereirradiated by500keV Xe and Ar ions, respectively, in order to tailor the size andspatial distributions of the embedded Cu NPs along with their optical absorptionproperty. After Xe ion irradiation at a fluence of2×1016cm-2, the average diameter of Cu NPs was increased from7.3to8.5nm, and especially, the larger Cu NPs withhigher particle density were formed beyond the projected range of Cu ions and nearlyaligned at the same depth. Optical absorbance spectral measurements not only revealedin principle a critical Xe ion fluence of1×1016cm-2, but also demonstrated that Xe ionirradiation was more effective to modify the Cu SPR peak than Ar ion irradiation at thesame energy and fluence.
     (5) A two-step method, i.e.,500keV Xe ion irradiation to a fluence of1×1016cm-2and subsequent21keV Ag ion implantation to a fluence of2×1016cm-2, was proposedand employed to fabricate the quasi-two-dimensional Ag NPs in SiO2as well as tosuppress the sputtering loss of Ag implants. The experimental results not onlysubstantially evidenced the feasibility and validity of this method, but also revealedthat the polycrystallization is an important parameter affecting the SPR property of AgNPs.
引文
[1] Taniguchi N, On the basic concept of nanotechnology, Proc. Intl. Conf. Prod. Eng.Tokyo, Part II, Japan Society of Precision Engineering,1974:18~23.
    [2] Feynman R P, There's plenty of room at the bottom, Engineering and Science,1960,23(5):22~36.
    [3] Feynman R P, Infinitesimal machinery, J. Microelectromechanical Systems,1993,2(1):4~14.
    [4] Gleiter H, Marquardt P, Nanocrystalline structures: An approach to new materials?Z. Metallkund,1984,75(4):263~267.
    [5]白春礼,纳米科学与技术,昆明:云南科学技术出版社,1995.
    [6]丁秉钧,纳米材料,北京:机械工业出版社,2004.
    [7] Chmielewski A G, Chmielewska D K, Michalik J, et al., Prospects and challengesin application of gamma, electron and ion beams in processing of nanomaterials,Nucl. Instrum. Methods Phys. Res. B,2007,25(1):339~346.
    [8]白春礼,中国纳米科技研究的现状及思考,物理,2002,31(2):65~70.
    [9] Gleiter H, On the structure of grain boundaries in metals, Mater. Sci. Eng.,1982,52(2):91~131.
    [10] Gleiter H, Nanostructured materials: State of the art and perspectives, Nanostruct-ured Materials,1995,6(1):3~14.
    [11] Gleiter H, Nanostructured materials: Basic concepts and microstructure, ActaMaterialia,2000,48(1):1~29.
    [12]王翠,纳米科学技术与纳米材料概述,延边大学学报(自然科学版),2007,27(1):66~70.
    [13] Buffat P, Borel J P, Size effect on the melting temperature of gold particles, Phys.Rev. A,1976,13(6):2287~2298.
    [14] Castro T, Reifenberger R, Choi E, et al., Size-dependent melting temperature ofindividual nanometer-sized metallic clusters, Phys. Rev. B,1990,42(13):8548.
    [15] Lewis L J, Jensen P, Barrat J L, Melting, freezing, and coalescence of goldnanoclusters, Phys. Rev. B,1997,56(4):2248.
    [16]张中太,林元华,唐子龙,等,纳米材料及其技术的应用前景,材料工程,2000,3:42~48.
    [17] Schaefer H E, Würschum R, Birringer R, et al., Structure of nanometer-sizedpolycrystalline iron investigated by positron lifetime spectroscopy, Phys. Rev. B1988,38(14):9545.
    [18] Brus L E, Electron-electron and electron-hole interactions in small semiconductorcrystallites: The size dependence of the lowest excited electronic state, J. Chem.Phys.,1984,80:4403.
    [19] Takagi H, Ogawa H, Yamazaki Y, et al., Quantum size effects on photolumine-scence in ultrafine Si particles, Appl. Phys. Lett.,1990,56(24):2379~2380.
    [20] Kang Z H, Liu Y, Lee S T, Small-sized silicon nanoparticles: New nanolights andnanocatalysts, Nanoscale,2011,3:777~791.
    [21] Morokhov I D, Petinov V I, Trusov L I, et al., Structure and properties of finemetallic particles, Soviet Physics Uspekhi,2007,24(4):295.
    [22] Kubo R, Electronic properties of metallic fine particles: I, J. Phys. Soc. Jpn.,1962,17(6):975~986.
    [23] Kawabata A, Kubo R, Electronic properties of fine metallic particles: II. Plasmaresonance absorption, J. Phys. Soc. Jpn.,1966,21(9):1765~1772.
    [24] Kawabata A, Electronic properties of fine matallic particles: III. ESR absorptionline shape, J. Phys. Soc. Jpn.,1970,29(4):902~911.
    [25] Halperin W P, Quantum size effects in metal particles, Rev. Mod. Phys.,1986,58(3):533~606.
    [26] Shingu P H,Huang B,Hishitani S B, Large clusters and colloids metals in theembryonic state, Chem. Rev.,1992,92(8):1709~1711.
    [27] Hussain I, Brust M, Papworth A J, et al., Preparation of acrylate-stabilized goldand silver hydrosols and gold-polymer composite films, Langmuir,2003,19(11):4831~4835.
    [28] Zhu J J, Liu S, Gedanken A, et al., Shape-controlled synthesis of silver nano-particles by pulse sonoelectrochemical methods, Langmuir,2000,16(16):6396~6399.
    [29] Zhou Q, Qian G Z, Li Y, et al., Two-dimensional assembly of silver nanoparticlesfor catalytic reduction of4-nitroaniline, Thin Solid Films,2008,516(6):953~956.
    [30] Jia H Y, Xu W Q, An J, et al., A simple method to synthesize triangular silvernanoparticles by light irradiation, Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy,2006,64(4):956~960.
    [31] Stellacci F, Bauer C A, Meyer-Friedrichsen T, et al., Laser and electron-beaminduced growth of nanoparticles for2D and3D metal patterning, Adv. Mater.,2002,14(3):194~198.
    [32] Siwach O P, Sen P, Synthesis and study of fluorescence properties of Cu nano-particles, J. Nanopart. Res.,2008,10(S1):107~114.
    [33] Gangopadhyay P, Kesavamoorthy R, Bera S, et al., Optical absorption andphotoluminescence spectroscopy of the growth of silver nanoparticles, Phys. Rev.Lett.2005,94(4):047403.
    [34] Jiménez J A, Sendova M, Hartsfield T, et al., In situ optical microspectroscopy ofthe growth and oxidation of silver nanoparticles in silica thin films on soda-limeglass, Mater. Res. Bull.,2011,46(2):158~165.
    [35] Meldrum Al, Haglund R F, Jr, et al., Nanocomposite materials formed by ionimplantation, Adv. Mater.,2001,13(19):1431~1444.
    [36] Chakravorty D, Nanocomposites, Bull. Mater. Sci.,1992,15(5):411~420.
    [37] Meisel D, Radiation effects on nanoparticles, In: Emerging applications ofradiation in nanotechnology, Vienna: Iaea,2005,125~136.
    [38] Arnold G W, Near-surface nucleation and crystallization of an ion-implantedLithia-alumina-silica glass, J. Appl. Phys.1975,46(10):4466~4473.
    [39] Arnold G W, Borders J A, Aggregation and migration of ionimplanted silver inLithia-alumina-silica glass, J. Appl. Phys.,1977,48(4):1488~1496.
    [40] Meldrum A, Boatner L A, White C W, Nanocomposites formed by ion impl-antation: Recent developments and future opportunities, Nucl. Instrum. MethodsPhys. Res. B,2001,178(1):7~16.
    [41] Stepanov A L, Khaibullin I B, Fabrication of metal nanoparticles in sapphire bylow-energy ion implantation, Rev. Adv. Mater. Sci.,2005,9(2):109~129.
    [42] Stepanov A L, Synthesis of silver nanoparticles in dielectric matrix by ion impl-antation: A review, Rev. Adv. Mater. Sci.,2010,26(1/2):1~29.
    [43] Stepanov A L, Khaibullin R I, Optics of metal nanoparticles fabricated in organicmatrix by ion implantation, Rev. Adv. Mater. Sci.,2004,7(2):108~125.
    [44] Stepanov A L, Nonlinear optical properties of implanted metal nanoparticles invarious transparent matrixes: A review, Rev. Adv. Mater. Sci.,2011,27:115~145.
    [45] Mattei G, Alloy nanoclusters in dielectric matrix, Nucl. Instrum. Methods Phys.Res. B,2002,191(1):323~332.
    [46] Amekura H, Kishimoto N, Fabrication of oxide nanoparticles by ion implantationand thermal oxidation, Toward Functional Nanomaterials, Lecture Notes inNanoscale Science and Technology,2009,5:1~75.
    [47] Dhara S, Formation, dynamics, and characterization of nanostructures by ionbeam irradiation, Critical Reviews in Solid State and Materials Sciences,2007,32(1-2):1~50.
    [48] Mattei G, Mazzoldi P, Bernas H, Metal nanoclusters for optical properties, TopicsAppl. Physics,2010,116:287~316.
    [49] Franey J P, Kammlott G W, Graedel T E, The corrosion of silver by atmosphericsulfurous gases, Corros. Sci.,1985,25(2):133~143.
    [50] Cao W, Elsayed-Ali H E, Stability of Ag nanoparticles fabricated by electronbeam lithography, Mater. Lett.,2009,63(26):2263~2266.
    [51] Liu J Y, Hurt R H, Ion release kinetics and particle persistence in aqueousnano-silver colloids, Environ. Sci. Technol.,2010,44(6):2169~2175.
    [52] Schrand A M, Braydich-Stolle L K, Schlager J J, et al., Can silver nanoparticles beuseful as potential biological labels?, Nanotechnology,2008,19(23):235104.
    [53] Wijnhoven S W P, Peijnenburg W J G M, Herberts C A, et al., Nano-silver–areview of available data and knowledge gaps in human and environmental riskassessment, Nanotoxicology,2009,3(2):109~138.
    [54] Bonafos C, Coffin H, Schamm S, et al., Si nanocrystals by ultra-low-energy ionbeam-synthesis for non-volatile memory applications, Solid State Electron.,2005,49(11):1734~1744.
    [55] R is nen J, Ion–solid interactions, Surf. Interface Anal.,2003,35:743~752.
    [56] Nastasi M, Mayer J, Hirvonen J K, Ion–solid interactions: Fundamentals andapplications, London: Cambridge University Press,1996.
    [57]王广厚,粒子同固体相互作用物理学,北京:科学出版社,1991.
    [58] Inouye H, Tanaka K, Tanahashi I, et al., Femtosecond optical kerr effect in thegold nanoparticle system, Jpn. J. Appl. Phys.,1998,37(12B): L1520~L1522.
    [59] Inouye H, Tanaka K, Tanahashi I, et al., Ultrafast optical switching in a silvernanoparticle system, Jpn. J. Appl. Phys.,2000,39(9A):5132~5133.
    [60] Tarcha P J, Desaja-Gonzalez J, Rodriguez-Llorente S, et al., Surface-enhancedfluorescence on SiO2-coated silver island films, Appl. Spectroscopy,1999,53(1):43~48.
    [61] Slavík R, Homola J, Brynda E, A miniature fiber optic surface plasmon resonancesensor for fast detection of staphylococcal enterotoxin B, Biosensors and Bioelec-tronics,2002,17(6):591~595.
    [62] Raschke G, Kowarik S, Franzl T, et al., Biomolecular recognition based on singlegold nanoparticle light scattering, Nano Letters,2003,3(7):935~938.
    [63] Tsang W M, Stolojan V, Giusca C, et al., Electron field-emission properties ofAg-SiO2nanocomposite layers, J. Vacuum Sci. Tech. B,2006,24(2):958~961.
    [64] Homola J, Yee S S, Gauglitz G, Surface plasmon resonance sensors: review,Sensors and Actuators B,1999,54(1):3~15.
    [65] McFarland A D, Van Duyne R P, Single silver nanoparticles as real-time opticalsensors with zeptomole sensitivity, Nano Lett.,2003,3(8):1057~1062.
    [66] Sharma A K, Jha R, Gupta B D, Fiber-optic sensors based on surface plasmonresonance: A comprehensive review, IEEE Sensors Journal,2007,7(8):1118~1129.
    [67] Sharma A K, Mohr G J, On the performance of surface plasmon resonance basedfibre optic sensor with different bimetallic nanoparticle alloy combinations, J.Phys. D: Appl. Phys.,2008,41(5):055106.
    [68] Atwater H A, Maier S, Polman A, et al., The new “p–n junction”: Plasmonicsenables photonic access to the nanoworld, MRS Bull.,2005,30(5):385~389.
    [69] Kim Y H, Kim C W, Cha H G, et al., Bulklike thermal behavior of antibacterialAg-SiO2nanocomposites, J. Phys. Chem. C,2009,113(13):5105~5110.
    [70] Fuertes G, Sánchez-Mu oz O L, Pedrueza E, et al., Switchable bactericidal effectsfrom novel silica-coated silver nanoparticles mediated by light irradiation,Langmuir,2011,27(6):2826~2833.
    [71] Kelly K L, Coronado E, Zhao L L, et al., The optical properties of metalnanoparticles: The influence of size, shape, and dielectric environment, J. Phys.Chem. B,2003,107(3):668~677.
    [72] Kreibig U, Vollmer M, Optical properties of metal clusters, Berlin: Springer,1995.
    [73] Mazzoldi P, Arnold G W, Battaglin G, et al., Metal nanocluster formation by ionimplantation in silicate glasses: nonlinear optical applications, J. Nonlinear Opt.Phys. Mater.,1996,5(2):285~330.
    [74] Kreibig U, Bour G, Hilger A, et al., Optical properties of cluster matter: Influencesof interfaces, Phys. Stat. Sol.(a),1999,175(1):351~366.
    [75] Link S, El-Sayed M A, Optical properties and ultrafast dynamics of metallicnanocrystals, Annu. Rev. Phys. Chem.,2003,54(1):331~366.
    [76] Link S, El-Sayed M A, Size and temperature dependence of the plasmonabsorption of colloidal gold nanoparticles, J. Phys. Chem. B,1999,103(21):4212~4217.
    [77] Amekura H, Takeda Y, Kishimoto N, Criteria for surface plasmon resonanceenergy of metal nanoparticles in silica glass, Nucl. Instrum. Methods Phys. Res. B,2004,222(1):96~104.
    [78] Sherry L J, Jin R C, Mirkin C A, et al., Localized surface plasmon resonancespectroscopy of single silver triangular nanoprisms, Nano Lett.,2006,6(9):2060~2065.
    [79] Sherry L J, Chang S H, Schatz G C, V et al., Localized surface plasmon resonancespectroscopy of single silver nanocubes, Nano Lett.,2006,5(10):2034~2038.
    [80] Yu Y Y, Chang S S, Lee C L, et al., Gold nanorods: Electrochemical synthesis andoptical properties, J. Phys. Chem. B,1997,101(34):6661~6664.
    [81] Noguez C, Surface plasmons on metal nanoparticles: The influence of shape andphysical Environment, J. Phys. Chem. C,2007,111(10):3806~3819.
    [82] Mohamed M B, Ismail K Z, Link S, et al., Thermal reshaping of gold nanorods inmicelles, J. Phys. Chem. B,1998,102(47):9370~9374.
    [83] Link S, Mohamed M B, El-Sayed M A, Simulation of the optical absorptionspectra of gold nanorods as a function of their aspect ratio and the effect of themedium dielectric constant, J. Phys. Chem. B,1999,103(16):3073~3077.
    [84] Link S, El-Sayed M A, Spectral properties and relaxation dynamics of surfaceplasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys.Chem. B,1999,103(40):410~8426.
    [85] Mock J J, Barbic M, Smith D R, et al., Shape effects in plasmon resonance ofindividual colloidal silver nanoparticles, J. Chem. Phys.,2002,116(15):6755~6579.
    [86] Chan G H, Zhao J, Hicks E M, et al., Plasmonic properties of copper nano-particles fabricated by nanosphere lithography, Nano Lett.,2007,7(7):1947~1952.
    [87] Link S, Wang Z L, El-Sayed M A, Alloy formation of gold silver nanoparticlesand the dependence of the plasmon absorption on their composition, J. Phys.Chem. B,1999,103(18):3529~3533.
    [88] Wang C, Peng S, Chan R, et al., Synthesis of AuAg alloy nanoparticles fromcore/shell-structured Ag/Au, Small,2009,5(5):567~570.
    [89] Mallin M P, Murphy C J, Solution-phase synthesis of sub-10nm Au–Ag alloynano particles, Nano Lett.,2002,2(11):1235~1237.
    [90] Kim M J, Na H J, Lee K C, et al., Preparation and characterization of Au–Ag andAu–Cu alloy nanoparticles in chloroform, J. Mater. Chem.,2003,13(7):1789~1792.
    [91] Sra A F, Schaak R E, Synthesis of atomically ordered AuCu and AuCu3nanocrystals from bimetallic nanoparticle precursors, J. Am. Chem. Soc.,2004,126(21):6667~6672.
    [92] Chen W, Yu R, Li L L, et al., A seed-based diffusion route to monodisperseintermetallic CuAu nanocrystals, Angewandte Chemie,2010,122(16):2979~2983.
    [93] Cattaruzza E, Battaglin G, Gonella F, et al., Au–Cu nanoparticles in silica glass ascomposite material for photonic applications, Appl. Surf. Sci.,2007,254(4):1017~1021.
    [94] Maier S A, Kik P G, Atwater H A, Observation of coupled plasmon-polaritonmodes in Au nanoparticle chain waveguides of different lengths: Estimation ofwaveguide loss, Appl. Phys. Lett.,2002,81(9):1714.
    [95] Huang W Y, Qian W, El-Sayed M A, The optically detected coherent latticeoscillations in silver and gold monolayer periodic nanoprism arrays: The effect ofinterparticle coupling, J. Phys. Chem. B,2005,109(40):18881~18888.
    [96] Jain P K, El-Sayed M A, Plasmonic coupling in noble metal nanostructures, Chem.Phys. Lett.,2010,487(4-6):153~164.
    [97] Jain P K, Eustis S, El-Sayed M A, Plasmon coupling in nanorod assemblies:Optical absorption, discrete dipole approximation simulation, and exciton-coupling model, J. Phys. Chem. B,2006,110(37):18243~18253.
    [98] Olk P, Renger J, Wenzel M T, et al., Distance dependent spectral tuning of twocoupled metal nanoparticles, Nano Lett.,2008,8(4):1174~1178.
    [99] Bouhelier A, Bachelot R, Jin Seo Im, et al., Electromagnetic interactions inplasmonic nanoparticle arrays, J. Phys. Chem. B,2005,109(8):3195~3198
    [100] Hicks E M, Zou S L, Schatz G C, et al., Controlling plasmon line shapes throughdiffractive coupling in linear arrays of cylindrical nanoparticles fabricated byelectron beam lithography, Nano Lett.,2005,5(6):1065~1070.
    [101] Chen C F, Tzeng S D, Chen H Y, et al., Tunable plasmonic response fromalkanethiolate-stabilized gold nanoparticle superlattices: Evidence of near-fieldcoupling, J. Am. Chem. Soc.,2008,130(3):824~826.
    [102] Malynych S, Chumanov G, Light-induced coherent interactions between silvernanoparticles in two-dimensional arrays, J. Am. Chem. Soc.,2003,125(10):2896~2898.
    [103] Su K H, Wei Q H, Zhang X. et al., Interparticle coupling effects on plasmonresonances of nanogold particles, Nano Lett.,2003,3(8):1087~1090.
    [104] Jain P K, El-Sayed M A, Surface plasmon coupling and its universal size scalingin metal nanostructures of complex geometry: Elongated particle pairs andnanosphere trimers, J. Phys. Chem. C,2008,112(13):4954~4960.
    [105] Gluodenis M, Foss C A, Jr, The effect of mutual orientation on the spectra ofmetal nanoparticle rod–rod and rod–sphere pairs, J. Phys. Chem. B,2002,106(37):9484~9489.
    [106] Mock J J, Smith D R, Schultz S, Local refractive index dependence of plasmonresonance spectra from individual nanoparticles, Nano Lett.,2003,3(4):485~491.
    [107] Hu M, Chen J Y, Marquez M, et al., Correlated Rayleigh scattering spectroscopyand scanning electron microscopy studies of Au–Ag bimetallic nanoboxes andnanocages, J. Phys. Chem. C,2007,111(34):12558~12565.
    [108] Haes A J, Zou S L, Schatz G C, et al., Nanoscale optical biosensor: Short rangedistance dependence of the localized surface plasmon resonance of noble metalnanoparticles, J. Phys. Chem. B,2004,108(22):6961~6968.
    [109] Gole A, Murphy C J, Polyelectrolyte-coated gold nanorods: Synthesis, charact-erization and immobilization, Chem. Mater.,2005,17(6):1325~1330.
    [110] Haes A J, Zou S L, Schatz G C, et al., A nanoscale optical biosensor: The longrange distance dependence of the localized surface plasmon resonance of noblemetal nanoparticles, J. Phys. Chem. B,2004,108(1):109~116.
    [111] Jensen T R, Duval M L, Kelly K L, et al., Nanosphere lithography: Effect of theexternal dielectric medium on the surface plasmon resonance spectrum of aperiodic array of silver nanoparticles, J. Phys. Chem. B,1999,103(45):9846~9853.
    [112] Malinsky M D, Kelly K L, Schatz G C, et al., Chain length dependence andsensing capabilities of the localized surface plasmon resonance of silvernanoparticles chemically modified with alkanethiol self-assembled monolayers,J. Am. Chem. Soc.,2001,123(7):1471~1482.
    [113] Sun Y G, Xia Y N, Increased sensitivity of surface plasmon resonance of goldnanoshells compared to that of gold solid colloids in response to environmentalchanges, Anal. Chem.,2002,74(20):5297~5305.
    [114] Sheik-Bahae M, Said A A, Tai-Huei Wei, et al., Sensitive measurement of opticalnonlinearities using a single beam, IEEE J. Quantum Electron.,1990,26(4):760~769.
    [115] Yang L, Osborne D H, R. F. Haglund, et al., Probing interface properties of nano-composites by third-order nonlinear optics, Appl. Phys. A,1996,62(5):403~415.
    [116] Haus J W, Kalyaniwalla N, Inguva R, et al., Nonlinear-optical properties ofconductive spheroidal particle composites, J. Opt. Soc. Am. B,1989,6(4):797~807.
    [117] Haus J W, Inguva R, Bowden C M, Effectiv-medium theory of nonlinear ellip-soidal composites, Phys. Rev. A,1989,40(10):5729~5734.
    [118] Hache F, Ricard D, Flytzanis C, Optical nonlinearities of small metal particles:Surface-mediated resonance and quantum size effects, J. Opt. Soc. Am. B,1986,3(12):1647~1655.
    [119] Stroud D, Hui P M, Nonlinear susceptibilities of granular matter, Phys. Rev. B,1988,37(15):8719.
    [120] Zeng X C, Bergman D J, Hui P M, et al., Effective-medium theory for weaklynonlinear composites, Phys. Rev. B,1988,38(15):10970.
    [121] Neeves A E, Birnboim M H, Composite structures for the enhancement ofnonlinear-optical susceptibility, J. Opt. Soc. Am. B,1989,6(4):787~796.
    [122] Flytzanis C, Hache F, Klein M C, et al., Nonlinear optics in composite materials:Semiconductor and metal crystallites in dielectrics, Prog. Opt.,1991,29:321~411.
    [123] Halté V, Guille J, Merle J C, et al., Electron dynamics in silver nanoparticles:Comparison between thin films and glass embedded nanoparticles, Phys. Rev. B,1999,60(16):11738.
    [124] Carles R, Farc u C, Bonafos C, et al., The synthesis of single layers of Agnanocrystals by ultra-low-energy ion implantation for large-scale plasmonicstructures, Nanotechnology,2009,20(35):355305.
    [125] Carles R, Farc u C, Bonafos C, et al., Three dimensional design of silvernanoparticle assemblies embedded in dielectrics for Raman spectroscopyenhancement and dark-field imaging, ACS Nano,2011,5(11):8774~8782.
    [126] Benzo P, Cattaneo L, Farc u C, et al., Stability of Ag nanocrystals synthesized byultra-low energy ion implantation in SiO2matrices, J. Appl. Phys.,2011,109(10):103524.
    [127] Farc u C, Bonafos C, Benzo P, et al., Combining elastic and resonant inelasticoptical spectroscopies for multiscale probing of embedded nanoparticlearchitectures, J. Appl. Phys.,2010,108(9):093516.
    [128] Stepanov A L, Zhikharev V A, Hole D E, et al., Depth distribution of Cu, Ag andAu ions implanted at low energy into insulators, Nucl. Instrum. Methods Phys.Res. B,2000,166-167:26~30.
    [129] Amekura H, Ohnuma M, Kishimoto N, et al., Fluence-dependent formation ofZn and ZnO nanoparticles by ion implantation and thermal oxidation: Anattempt to control nanoparticle size, J. Appl. Phys.,2008,104(11):114309.
    [130] Ren F, Jiang C Z, Liu C, et al., Controlling the morphology of Ag nanoclustersby ion implantation to different doses and subsequent annealing, Phys. Rev. Lett.,2006,97(16):165501.
    [131] Plaksin O A, Takeda Y, Kono K, et al., Optical effects in silica glass duringimplantation of60keV Cu-ions, Appl. Surf. Sci.,2005,244(1-4):79~83.
    [132] Kuiri P K, Size saturation in low energy ion beam synthesized nanoparticles insilica glass:50keV Ag-ions implantation, a case study, J. Appl. Phys.,2010,108(5):054301.
    [133] Pe a O, Pal U, Rodríguez-Fernández L, et al., Linear optical response of metallicnanoshells in different dielectric media, J. Opt. Soc. Am. B,2008,25(8):1371~1379.
    [134] Volkert C A, Minor A M, Focused ion beam microscopy and micromachining,MRS Bull.,2007,32(5):389~399.
    [135] Antonello M, Arnold G W, Battaglin G, et al., Fluence and current densitydependence of silver nanocluster dimensions in ion-implanted fused silica, J.Mater. Chem.,1998,8(2):457~461.
    [136] Stepanov A L, Popok V N, Effect of the ion beam current density on theformation of implanted metal nanoparticles in a dielectric matrix, Technical Phys.Lett.,2003,28(12):977~979.
    [137] Takeda Y, Zhao J P, Lee C G, et al., Nonlinear optical properties of Cunanoparticles embedded in insulators by high-current Cu-implantation, Nucl.Instrum. Methods Phys. Res. B,2000,166-167:877~881.
    [138] Shen Y Y, Li X, Wang Z, et al., Fabrication and thermal evolution ofnanoparticles in SiO2by Zn ion implantation, J. Crystal Growth,2009,311(21):4605~4609.
    [139] Kishimoto N, Umeda N, Takeda Y, et al., In-beam growth and rearrangement ofnanoparticles in insulators induced by high-current negative copper ions,Vacuum,2000,58(1):60~78.
    [140] Kishimoto N, Umeda N, Takeda Y, et al., Self-assembled two-dimensionaldistribution of nanoparticles with high-current Cu-implantation into insulators,Nucl. Instrum. Methods Phys. Res. B,1999,148(1):1017~1022.
    [141] Stepanov A L, Hole D E, Townsend P D, Formation of silver nanoparticles insoda-lime silicate glass by ion implantation near room temperature, J. Non-Cryst.Solids,1999,260(1):65~74.
    [142] Stepanov A L, Popok V N, Hole D E, Formation of metallic nanoparticles insilicate glass through ion implantation, Glass Phys. Chem.,2002,28(2):90~95.
    [143] Ren F, Jiang C Z, Liu C, et al., Fabrication and annihilation of nanovoids in Cunanoclusters by ion implantation into silica and subsequent annealing, Appl.Phys. Lett.,2006,88(18):183114.
    [144] Voorhees P W, The theory of Ostwald ripening, J. Stat. Phys.,1985,38(1-2):231~252.
    [145] Marqusee J A, Ross J, Theory of Ostwald ripening: Competitive growth and itsdependence on volume fraction, J. Chem. Phys.,1984,80(1):536~543.
    [146] Stepanov A L, Hole D E, Bukharaev A A, et al., Reduction of the size of theimplanted silver nanoparticles in float glass during excimer laser annealing,Appl. Surf. Sci.1998,136(4):298~305.
    [147] Stepanov A L, Laser annealing of dielectrics with metal nanoparticles, Opticsand Spectroscopy,2011,111(2):215~219.
    [148] Stepanov A L, Modification of implanted metal nanoparticles in the dielectricsby high-power laser pulses, Rev. Adv. Mater. Sci.,2003,4(2):123~138.
    [149] Shen Y Y, Zhang L L, Li Z D, et al., Fabrication and evolution of Cunanoparticles in Al2O3crystal by ion implantation and annealing at differentatmospheres, Appl. Surf. Sci.,2010,256(12):3767~3771.
    [150] Amekura H, Umeda N, Takeda Y, et al., Optical transitions of Cu2O nanocrystalsin SiO2fabricated by ion implantation and two-step annealing, Appl. Phys. Lett.,2006,89(22):223120.
    [151] Shen Y Y, Zhang X D, Zhang D C, et al.,(101)-oriented ZnO nanoparticlesfabricated in Si (100) by Zn ion implantation and thermal oxidation, Mater. Lett.,2011,65(21-22):3323~3326.
    [152] Shen Y Y, He W Y, Zhang D C, et al., Creation of nanoparticles and lumine-scence in Al2O3crystal by Zn ion implantation, J. Luminescence,2011,131(12):2725~2729.
    [153] Umeda N, Amekura H, Kishimoto N, Void formation in silica glass induced bythermal oxidation after Zn ion implantation, Vacuum,2009,83(3):645~648.
    [154] Xiang X, Zu X T, Zhu S, et al., ZnO nanoparticles embedded in sapphirefabricated by ion implantation and annealing, Nanotechnology,2006,17(10):2636~2640.
    [155] Amekura H, Umeda N, Sakuma Y, et al., Fabrication of ZnO nanoparticles inSiO2by ion implantation combined with thermal oxidation, Appl. Phys. Lett.,2005,87(1):013109.
    [156] Battaglin G, Catalano M, Cattaruzza E, et al., Influence of annealing atmosphereon metal and metal alloy nanoclusters produced by ion implantation in silica,Nucl. Instrum. Methods Phys. Res. B,2001,178(1-4):176~179.
    [157]闫怀义,王迎进, Arrhenius经验公式的推导及Ea的本质,绍兴文理学院学报,2010,30(8):12~14.
    [158] Itoigawa H, Kamiyama T, Nakamura Y, Ag precipitation and optical behavior inNa2O-B2O3glasses, J. Non-Cryst.Solids,1997,220(2-3):210~216.
    [159] Rao P, Doremus R, Kinetics of growth of nanosized gold clusters in glass, J.Non-Cryst. Solids,1996,203:202~205.
    [160] Ila D, Williams E K, Sarkisov S, et al., Formation of metallic nanoclusters insilica by ion implantation, Nucl. Instrum. Methods Phys. Res. B,1998,141(1-4):289~293.
    [161] Umeda N, Kishimoto N, Takeda Y, et al., Thermal stability of nanoparticles insilica glass implanted with high-flux Cu-ions, Nucl. Instrum. Methods Phys. Res.B,2000,166-167:864~870.
    [162] Cheang-Wong J C, Oliver A, Roiz J, et al., Relationship between the Ag depthprofiles and nanoparticle formation in Ag-implanted silica, J. Phys.,2001,13(45):10207.
    [163] Miotello A, De Marchi G, Mattei G, et al., Clustering of gold atoms in ion-implanted silica after thermal annealing in different atmospheres, Phys. Rev. B,2001,63(7):075409.
    [164] Kofman R, Cheyssac P, Aouaj A, et al., Surface melting enhanced by curvatureeffects, Surf. Sci.,1994,303(1-2):231~246.
    [165] Shen Y Y, Li Z D, Zhang X D, et al., Atmosphere effects on the formation andevolution of Zn and ZnO nanoparticles in Zn ion implanted SiO2, Opt. Mater.,2010,32(9):961~965.
    [166] Amekura H, Plaksin O A, Kono K, et al. Production of Cu2O nanoparticles inSiO2by ion implantation and two-step annealing at different oxygen pressures, J.Phys. D: Appl. Phys.,2006,39(16):3659~3664.
    [167] Liu Z X, Wang H H, Annealing behavior of c-SiO2implanted layer with highdensity Ag nanoparticles, Nucl. Instrum. Methods Phys. Res. B,1997,122(1):45~50.
    [168] Amekura H, Sele M L, Ishikawa N, et al., Thermal stability of embedded metalnanoparticles elongated by swift heavy ion irradiation: Zn nanoparticles in amolten state but preserving elongated shapes, Nanotechnology,2012,23(9):095704.
    [169] Amekura H, Ishikawa N, Okubo N, et al., A synchronous melting of embeddedmetal nanoparticles and silica matrix for shape elongation induced by swiftheavy ion irradiation, Nucl. Instrum. Methods Phys. Res. B,2011,269(23):2730~2733.
    [170] Oliver A, Reyes-Esqueda J A, Cheang-Wong J C, et al., Controlled anisotropicdeformation of Ag nanoparticles by Si ion irradiation, Phys. Rev. B,2006,74(24):245425.
    [171] Mishra Y K, Singh F, Avasthi D K, et al., Synthesis of elongated Au nano-particles in silica matrix by ion irradiation, Appl. Phys. Lett.,2007,91(6):063103.
    [172] Hensel B, Roas B, Henke S, et al., Ion irradiation of epitaxial YBa2Cn3O7~5films:Effects of electronic energy loss, Phys. Rev. B,1990,42(7):4135~4142.
    [173] Shen Y Y, Zhang X D, Zhang D C, et al., Toward uniform ZnO nanoparticlesembedded in SiO2by post Xe irradiation, Mater. Lett.,2011,65(19):2966~2968.
    [174] Liu H X, Zhang X D, Shen Y Y, et al., Tailoring the size distribution of Agnanoparticles embedded in SiO2by Xe ion postirradiation, Appl. Phys. Express,2012,5(10):105002.
    [175] Hosono H, Importance of implantation sequence in the formation of nanometersize colloid particles embedded in amorphous SiO2: Formation of compositecolloids with Cu core and a Cu2O shell by coimplantation of Cu and F, Phys.Rev. Lett.,1995,74(1):110~113.
    [176] Chatterjee K, Banerjee S, Chakravorty D, Plasmon resonance shifts in oxide-coated silver nanoparticles, Phys. Rev. B,2002,66(8):085421.
    [177] Johannessen B, Kluth P, Giulian R, et al., Modification of embedded Cu nano-particles: Ion irradiation at room temperature, Nucl. Instrum. Methods Phys. Res.B,2007,257(1-2):37~41.
    [178] Ren F, Cai G X, Xiao X H, et al., Ion irradiation induced hollow and sandwichednanoparticles, J. Appl. Phys.,2008,103(8):084308.
    [179] Johannessen B, Kluth P, Llewellyn D J, et al., Ion-irradiation-induced amorphiz-ation of Cu nanoparticles embedded in SiO2, Phys. Rev. B,2007,76(18):184203.
    [180] Amekura H, Johannessen B, Sprouster D J, et al., Amorphization of Cu nano-particles: Effects on surface plasmon resonance, Appl. Phys. Lett.,2011,99(4):043102.
    [181] Bello V, De Marchi G, Maurizio C, et al., Ion irradiation for controlling comp-osition and structure of metal alloy nanoclusters in SiO2, J. Non-Cryst. Solids,2004,345-346:685~688.
    [182] Mattei G, Bello V, Mazzoldi P, et al., Modification of composition and structureof bimetallic nanocluster in silica by ion beam irradiation, Nucl. Instrum.Methods Phys. Res. B,2005,240(1):128~132.
    [183] Mattei G, De Marchi G, Maurizio C, et al., Chemical-or radiation-assistedselective dealloying in bimetallic nanoclusters, Phys. Rev. Lett.,2003,90(8):085502.
    [184] Ren F, Zhang L Y, Xiao X H, et al. Controlling the growth of ZnO quantum dotsembedded in silica by Zn/F sequential ion implantation and subsequentannealing, Nanotechnology,2008,19(15):155610.
    [185] Joseph B, Mohapatra S, Lenka H P, et al., Size saturation in low energy ion beamsynthesized Au nanoclusters and their size redistribution with O irradiation, ThinSolid Films,2005,492(1-2):35~40.
    [186] Zhang L H, Zhang X D, Shen Y Y, et al., Effect of N ion irradiation combinedwith thermal annealing on the optical absorption properties of Cu nanoparticlesembedded in SiO2, Nucl. Instrum. Methods Phys. Res. B,2012,270:140~143.
    [187] Iwayama T S, Hama T, Hole D E, Influence of excimer UV irradiation on growthand optical properties of implanted Si nanocrystals, IOP Conf. Series: MaterialsScience and Engineering,2010,15:012022.
    [188] Iwayama T S, Hama T, Hole D E, Influence of UV irradiation and RTA processon optical properties of Si implanted SiO2, Nucl. Instrum. Methods Phys. Res. B,2010,268(19):3203~3206.
    [189] Aliberti P, Shrestha S K, Li R Y, et al., Single layer of silicon quantum dots insilicon oxide matrix: Investigation of forming gas hydrogenation on photo-luminescence properties and study of the composition of silicon rich oxidelayers, J. Crystal Growth,2011,327(1):84~88.
    [190] Wang Y H, Peng S J, Lu J D, et al., Optical properties of Cu and Ag nano-particles synthesized in glass by ion implantation, Vacuum,2009,83(2):408~411.
    [191] Anderson T S, Magruder III R H, Wittig J E, et al., Fabrication of Cu-coated Agnanocrystals in silica by sequential ion implantation, Nucl. Instrum. MethodsPhys. Res. B,2000,171(3):401~405.
    [192] Xiao X H, Ren F, Wang J B, et al., Formation of aligned silver nanoparticles byion implantation, Mater. Lett.,2007,61(22):4435~4437.
    [193] Cai G X, Ren F, Xiao X H, et al., Morphology control and optical absorptionproperties of Ag nanoparticles by ion implantation, J. Mater. Sci. Technol.,2009,25(5):669~672.
    [194] Gonella F, Metal nanocluster composite silicate glasses, Rev. Adv. Mater. Sci.,2007,14:134~143.
    [195] Gonella F, Mattei G, Mazzoldi P, et al., Au–Cu alloy nanoclusters in silicaformed by ion implantation and annealing in reducing or oxidizing atmosphere,Appl. Phys. Lett.,1999,75(1):55~57.
    [196] Haug J, Kruth H, Dubiel M, et al., ASAXS study on the formation of core–shellAg/Au nanoparticles in glass, Nanotechnology,2009,20(50):505705.
    [197] Pe a O, Pal U, Rodríguez-Fernández L, et al., Formation of Au–Ag Core–Shellnanostructures in silica matrix by sequential ion implantation, J. Phys. Chem. C,2009,113(6):2296~2300.
    [198] Anderson T S, Magruder R H, Zuhr R A, et al., Optical properties ofmulticomponent nanometer dimension metal colloids formed in silica bysequential ion implantation of in and Ag and In and Cu, J. Electron. Mater.,1996,25(1):27~33.
    [199] Magruder III R H, Zuhr R A, Formation and optical characterization ofnanometer dimension colloids in silica formed by sequentially implanting In andAg, J. Appl. Phys.,1995,77(7):3546~3548.
    [200] Anderson T S, Magruder III R H, Kinser D L, et al., Ag:Sb and Sb:Agimplantations into high purity silica, J. Mater. Res.,1997,12(12):3316~3321.
    [201] Cattaruzza E, Battaglin G, Polloni R, et al., Nanocluster formation in silicateglasses by sequential ion implantation procedures, Nucl. Instrum. Methods Phys.Res. B,1999,148(1-4):1007~1011.
    [202] Anderson T S, Magruder III R H, Kinser D L, et al., Formation and opticalproperties of metal nanoclusters formed by sequential implantation of Cd and Agin silica, Nucl. Instrum. Methods Phys. Res. B,1997,124(1):40~46.
    [203] Falconieri M, Salvetti G, Cattaruzza E, et al., Large third-order optical non-linearity of nanocluster-doped glass formed by ion implantation of copper andnickel in silica, Appl. Phys. Lett.,1998,73(3):288~290.
    [204] D'Acapito F, Battaglin G, Cattaruzza E, et al. Cu–Ni alloy nanocluster formationby ion implantation in silicate glasses: Structure and optical properties, Eur. Phys.J. D,2000,10(1):123~129.
    [205] Kluth P, Hoy B, Johannessen B, et al., Co–Au core–shell nanocrystals formed bysequential ion implantation into SiO2, Appl. Phys. Lett.,2006,89(15):153118.
    [206] Cattaruzza E, D'Acapito F, De Julian Fernandez C, et al., Sequential ion impl-antation of copper and cobalt in silica glass: A study by synchrotron radiationtechniques, Nucl. Instrum. Methods Phys. Res. B,2002,191(1-4):406~410.
    [207] De J. Fernández C, Tagliente M A, Mattei G, et al., Structural and magneticproperties of Fe–Al silica composites prepared by sequential ion implantation,Nucl. Instrum. Methods Phys. Res. B,2004,216:245~250.
    [208] De Julián Fernández C, Sangregorio C, Mattei G, et al., Magnetic properties ofCo and Ni based alloy nanoparticles dispersed in a silica matrix, Nucl. Instrum.Methods Phys. Res. B,2001,175-177:479~484.
    [209] Yuan C W, Shin S J, Liao C Y, et al., Structure map for embedded binary alloynanocrystals, Appl. Phys. Lett.,2008,93(19):193114.
    [210] Ferrando R, Jellinek J, Johnston R L, Nanoalloys: From theory to applications ofalloy clusters and nanoparticles, Chem. Rev.,2008,108(3):845~910.
    [211] Sharma A K, Gupta B D, Fibre-optic sensor based on surface plasmon resonancewith Ag–Au alloy nanoparticle films, Nanotechnology,2006,17(1):124.
    [212] Magruder III R H, Zuhr R A, Osborne D H, et al., Modification of the opticalproperties of glass by sequential ion implantation, Nucl. Instrum. Methods Phys.Res. B,1995,99(1):590~593.
    [213] Charnvanichborikarn S, Conway M J, Wong-Leung J, et al., Achieving a narrowsize distribution of Au particles at a precise depth in SiO2by segregation of Auprecipitates, Nanotechnology,2009,20(18):185603.
    [214] Jiang C Z, Fan X J, In-situ TEM observation of silver nanocrystals in anAg-implanted SiO2film, Surf. Coat. Technol.,2000,131(1):330~333.
    [215] Hayashi S, Kataoka M, Yamamoto K, Photoluminescence spectra of carbonclusters embedded in SiO2, Jpn. J. Appl. Phys.,1993,32(2B): L274~L276.
    [216] Grill A, Diamond-like carbon: State of the art, Diamond Relat. Mater.,1999,8(2):428~434.
    [217] Ray S C, Saha A, Jana N R, et al., Fluorescent carbon nanoparticles: Synthesis,characterization, and bioimaging application, J. Phys. Chem. B,2009,113(43):18546~18551.
    [218] Yu S J, Kang M W, Chang H C, et al., Bright fluorescent nanodiamonds: Nophotobleaching and low cytotoxicity, J. Am. Chem. Soc.,2005,127(50):17604~17605.
    [219] Radeva E, Yourukova L, Kolentsov K, et al., Study on organosilicon plasmapolymers implanted by carbon ions, J. Phys.: Conf. Ser.,2008,113(1):012041.
    [220] De M, Ghosh P S, Rotello V M, Applications of nanoparticles in biology, Adv.Mater.,2008,20(22):4225~4241.
    [221] Li H T, He X D, Liu Y, et al., One-step ultrasonic synthesis of water-solublecarbon nanoparticles with excellent photoluminescent properties, Carbon,2011,49(2):605~609.
    [222] Tian L, Ghosh D, Chen W, et al., Nanosized carbon particles from natural gassoot, Chem. Mater.,2009,21(13):2803~2809.
    [223] Yu Y H, Wong S P, Wilson I H, Visible photoluminescence in carbon-implantedthermal SiO2films, Phys. Stat. Sol.(a),1998,168(2):531~534.
    [224] Hu S L, Niu K Y, Sun J, et al., One-step synthesis of fluorescent carbonnanoparticles by laser irradiation, J. Mater. Chem.,2009,19(4):484~488.
    [225] Lu J, Yang J X, Wang J Z, et al., One-pot synthesis of fluorescent carbonnanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionicliquids, ACS Nano,2009,3(8):2367~2375.
    [226] Tsvetkova T, Balabanov S, Avramov L, et al., Photoluminescence of Si+and C+implanted polymers, J. Phys.: Conf. Ser.,2010,223(1):012033.
    [227] Brown A R, Bradley D D C, Burroughes J H, et al., Poly(p-phenylenevinylene)light-emitting diodes: Enhanced electroluminescent efficiency through chargecarrier confinement, Appl. Phys. Lett.,1992,61(23):2793~2795.
    [228] Granstr m M, Ingan s O, White light emission from a polymer blend lightemitting diode, Appl. Phys. Lett.,1996,68(2):147~149.
    [229] Bao J M, Zimmler M A, Capasso F, et al., Broadband ZnO single-nanowirelight-emitting diode, Nano Lett.,2006,6(2):1719~1722.
    [230] Feng D, Yan Y B, Yang X P, et al., Novel integrated light-guide plates for liquidcrystal display backlight, J. Opt. A: Pure Appl. Opt.,2005,7(3):111~117.
    [231] Hadjichristov G B, Gueorguiev V K, Ivanov Tz E, et al., Silicon ion implantedPMMA for soft electronics, Org. Electron.,2008,9(6):1051~1060.
    [232] Tsvetkova T, Balabanov S, Avramov L, et al., Photoluminescence enhancementin Si+implanted PMMA, Vacuum,2009,83(S1): S252~S255.
    [233] Rück D M, Brunner S, Tinschert K, et al., Production of buried waveguides inPMMA by high energy ion implantation, Nucl. Instrum. Methods Phys. Res. B,1995,106(1):447~451.
    [234] Kulisch J R, Franke H, Irmscher R, et al., Optooptical switching in ionimplantedpoly(methyl methacrylate) waveguides, J. Appl. Phys.,1992,71(7):3123~3126.
    [235] Lee E H, Rao G R, Mansur L K, LET effect on cross-linking and scissionmechanisms of PMMA during irradiation, Radiat. Phys. Chem.,1999,55(3):293~305.
    [236] Choi H W, Woo H J, Hong W, et al., Structural modification of poly(methylmethacrylate) by proton irradiation, Appl. Surf. Sci.,2001,169-170:433~437.
    [237] Hadjichristov G B, Stefanov I L, Florian B I, et al., Optical reflectivity study ofsilicon ion implanted poly(methyl methacrylate), Appl. Surf. Sci.,2009,256(3):779~786.
    [238] Davenas J, Thevenard P, Boiteux G, et al., Hydrogenated carbon layers producedby ion beam irradiation of PMMA and polystyrene films, Nucl. Instrum.Methods Phys. Res. B,1990,46(1-4):317~323.
    [239] Hadjichristov G B, Ivanov V G, Faulques E, Reflectivity modification ofpolymethylmethacrylate by silicon ion implantation, Appl. Surf. Sci.,2008,254(15):4820~4827.
    [240] Li Z F, Yang Z Y, Xiao R F, Visible photoluminescence from hydrogenatedamorphous carbon films prepared by pulsed laser ablation of polymethylmethacrylate (PMMA), Appl. Phys. A,1996,63(3):243~246.
    [241] Watanabe I, Hasegawa S, Kurata Y, Photoluminescence of hydrogenatedamorphous carbon film, Jpn. J. Appl. Phy.,1982,21(6):856~859.
    [242] Robertson J, Recombination and photoluminescence mechanism in hydrogen-nated amorphous carbon, Phys. Rev. B,1996,53(24):16302~16305.
    [243] Rusli, Robertson J, Amaratunga G A J, Photoluminescence behavior of hydro-genated amorphous carbon, J. Appl. Phys.,1996,80(5):2998~3003.
    [244] Heitz T, Godet C, Bouree J E, et al., Radiative and nonradiative recombination inpolymerlike a-C:H films, Phys. Rev. B,199960(8):6045~6051.
    [245] Prawera S, Nugenta K W, Lifshitzb Y, et al., Systematic variation of the Ramanspectra of DLC films as a function of sp2:sp3composition, Diamond Relat.Mater.,1996,5(305):433~438.
    [246] Lindhard J, Scharff M, Schiott H E, Range concepts and heavy ion ranges, Mat.Fys. Medd. Dan. Vid. Selsk.,1963,33(14):1~42.
    [247] Ziegler J F, Ziegler M D, Biersack J P. SRIM–The stopping and range of ions inmatter, Nucl. Instrum. Methods Phys. Res. B,2010,268(11):1818~1823.
    [248] Messenger S R, Burke E A, Summers G P, et al., Nonionizing energy loss (NIEL)for heavy ions, IEEE Transactions on Nuclear Science,1999,46(6):1595~1602.
    [249] Biersack J P, Computer simulations of sputtering, Nucl. Instrum. Methods Phys.Res. B,1987,27(1):21~36.
    [250] Tsuji H, Kurita K, Gotoh Y, et al., Optical absorption properties of Cu and Agdouble negative-ion implanted silica glass, Nucl. Instrum. Methods Phys. Res. B,2002,195(3):315~319.
    [251] Gnaser H, Brodyanski A, Reuscher B, Focused ion beam implantation of Ga inSi and Ge: Fluence-dependent retention and surface morphology, Surf. InterfaceAnal.,2008,40(11):1415~1422.
    [252] Lifshitz I M, Slyozov V V, The kinetics of precipitation from supersaturatedsolid solutions, J. Phys. Chem. Solids,1961,19(1):35~50.
    [253] Wagner C, Theorie der Alterung von Niederschl gen durch Uml sen (OstwaldReifung), Z. Elektrochem,1961,65(7-8):581~591.
    [254] De Lamaestre R E, Bernas H, Significance of lognormal nanocrystal sizedistributions, Phys. Rev. B,2006,73(12):125317.
    [255] Rosen J M, A statistical description of coagulation, J. Colloid Interface Sci.,1984,99(1):9~19.
    [256] Yuan C W, Yi D O, Sharp I D, et al., Theory of nanocluster size distributionsfrom Ion beam synthesis, Phys. Rev. Lett.,2009,102(14):146101.
    [257] Yuan C W, Yi D O, Sharp I D, et al., Size-distribution evolution of ion-beam-synthesized nanoclusters in silica, Phys. Rev. B,2009,80(13):134121.
    [258] Battaglin G, Formation and chemical-physical characterization of metallic nano-clusters in ion-implanted silica, Nucl. Instrum. Methods Phys. Res. B,1996,116(1):102~108.
    [259] Hosono H, Simple criterion on colloid formation in SiO2glasses by ionimplantation, Jpn. J. Appl. Phys.1993,32(9A):3892~3894.
    [260] Cattaruzza E, Quantum-dot composite silicate glasses obtained by ion impl-antation, Nucl. Instrum. Methods Phys. Res. B,2000,169(1-4):141~155.
    [261] Marshall C D, Speth J A, PayneS A, Induced optical absorption in gamma,neutron and ultraviolet irradiated fused quartz and silica, J. Non-Cryst. Solids,1997,212(1):59~73.
    [262] Skuja L, Optically active oxygen-deficiency-related centers in amorphous silicondioxide, J. Non-Cryst. Solids,1998,239(1-3):16~48.
    [263] De Lamaestre R E, Béa H, Bernas H, et al., Irradiation-induced Ag nanoclusternucleation in silicate glasses: Analogy with photography, Phys. Rev. B,2007,76(20):205431.
    [264] Svecova B, Nekvindova P, Mackova A, et al., Study of Cu+, Ag+and Au+ionimplantation into silicate glasses, J. Non-Cryst. Solids,2010,356(44):2468~2472.
    [265] Dubiel M, Hofmeister H, Schurig E, et al., On the stress state of silvernanoparticles in ion-implanted silicate glasses, Nucl. Instrum. Methods Phys.Res. B,2000,166-167:871~876
    [266] Dubiel M, Hofmeister H, Tan G L, et al., Silver diffusion and precipitation ofnanoparticles in glass by ion implantation, Eur. Phys. J. D,2003,24(1-3):361~364.
    [267] Barber D J, Freestone I C, An investigation of the origin of the colour of theLycurgus Cup by analytical transmission electron microscopy, Archaeometry,1990,32(1):33~45.
    [268] Faraday M, The Bakerian lecture: Experimental relations of gold (and othermetals) to light, Phil. Trans. R. Soc.,1857,147:145~181.
    [269] Mie G, Beitr ge zur optik trüber medien, speziell kolloidaler metall sungen,Annalen der Physik,1908,330(3):377~445.
    [270] Debye P, Der lichtdruck auf kugeln von beliebigem material, Annalen der physik,1909,335(11):57~136.
    [271] Maxwell-Garnett J C, Colours in metal glasses and in metallic films, Proceed-ings of the Royal Society of London,1904,73(488-496):443~445.
    [272] Bohren C F, Huffman D R, Absorption and scattering of light by small particles,New York: Wiley,1983.
    [273] H vel H, Fritz S, Hilger A, et al., Width of cluster plasmon resonances: Bulkdielectric functions and chemical interface damping, Phys. Rev. B,1993,48(11):18178~18188.
    [274] Johnson P B, Christy R W, Optical constants of the noble metals, Phys. Rev. B,1972,6(12):4370~4379.
    [275] Wakaki M, Kudo K, Shibuya T (原著),周海宪,程云芳(译),光学材料手册,北京:化学工业出版社,2009.
    [276]蒋昌忠,宋亮,任峰,等, Ag,Cu离子注入石英玻璃光学吸收谱研究,武汉大学学报(理学版),2004,50(1):43~46.
    [277] Zeman E J, Schatz G C, An accurate electromagnetic theory study of surfaceenhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd, J. Phys.Chem.,1987,91(3):634~643
    [278] Gallagher W J, Compound geometrical resonances in superconducting proximityeffect sandwiches, Phys. Rev. B,1980,22(3):1233~1236.
    [279] Roy R K. Mandal S K, Pal A K, Effect of interfacial alloying on the surfaceplasmon resonance of nanocrystalline Au–Ag multilayer thin films, Eur. Phys. J.B,2003,33(1):109~114.
    [280] Lowery H, Wilkinson H, Smare D L, On the optical constants of alloys of thecopper-zinc system, Proc. Phys. Soc.,1937,49(4):345~353.
    [281] Green E L, Muldawer L, Optical properties of the alpha-phase alloys Ag–Zn andAg–Cd, Phys. Rev. B,1970,2(2):330~340.
    [282] Curtin W A, Ashcroft N W, Theory of far-infrared absorption in small metalparticle-insulator composites, Phys. Rev. B,1985,31(6):3287~3295.
    [283] Kochergin V, Zaporojtchenko V, Takele H, et al., Improved effective mediumapproach: Application to metal nanocomposites, J. Appl. Phys.,2007,101(2):024302~024308.
    [284] Grechko L G, Pustovit V N, Whites K W, Dielectric function of aggregates ofsmall metallic particles embedded in host insulating matrix, Appl. Phys. Lett.,2000,76(14):1854~1856.
    [285] García M A, Llopis J, Paje S E, A simple model for evaluating the opticalabsorption spectrum from small Au-colloids in sol-gel films, Chem. Phys. Lett.,1999,315(5-6):313~320.
    [286] Pivin J C, Gracia M A, Llopis J, et al., Interaction between clusters in ionimplanted and ion beam mixed SiO2:Ag films, Nucl. Instrum. Methods Phys.Res. B,2002,191(1-4):794~799.
    [287]曾正明,常用材料速查速算手册(第3版),北京:机械工业出版社,2010.
    [288] Chou S Y, Krauss P R, Renstroms P J, Imprint of sub-25nm vias and trenche inpolymers, Appl. Phys. Lett.,1995,67(21):3114~3116.
    [289] Zhang H P, Zhang P, Li Z H, et al., A novel sandwiched membrane as polymerelectrolyte for lithium ion battery, Electrochem. Comm.,2007,9(7):1700~1703.
    [290]王玉芬,刘连城,石英玻璃,北京:化学工业出版社,2007.
    [291] Liu A D, Zhang H X, Zhang T H, MEVVA ion source development and itsindustrial applications at Beijing Normal University, Surf. Coat. Technol.,2005,193(1):65~68.
    [292]戴世章,离子注入设备的物理极限,半导体光电,1988,(1):96~104.
    [293] Casiraghi C, Ferrari A C, Robertson J, Raman spectroscopy of hydrogenatedamorphous carbons, Phys. Rev. B,2005,72(8):085401.
    [294] Marchon B, Gui J, Grannen K, et al., Photoluminescence and Ramanspectroscopy in hydrogenated carbon films, IEEE Transactions on Magnetics,1997,33(5):3148~3150.
    [295] Ivanov V G, Hadjichristov G, Faulques E, Characterization of chemical bondingin ion-implanted polymers by means of mid-infrared reflectivity, Appl.Spectrosc.,2009,63(9):1022~1026.
    [296] Lipschitz I, The vibrational spectrum of poly (Methyl Methacrylate): A review,Polym. Plast. Technol. Eng.,1982,19(1):53~106.
    [297] Discher B, Bubenzer A, Koidl P, Bonding in hydrogenated hard carbon studiedby optical spectroscopy, Solid State Comm.,1983,48(2):105~108.
    [298] De Martino C, Demichelis F, Tagliaferro A, Determination of the sp3/sp2ratio ina-C:H films by infrared spectrometry analysis, Diamond Relat. Mater.,1995,4(10):1210~1215.
    [299] Ferrari A C, Robertson J, Interpretation of Raman spectra of disordered andamorphous carbon, Phys. Rev. B,2000,61(20):14095~14107.
    [300] Ferrari A C, Robertson J, Raman spectroscopy of amorphous, nanostructured,diamond-like carbon, and nanodiamond, Phil. Trans. R. Soc. Lond. A,2004,362(1824):2477~2512.
    [301] Matthews M J, Pimenta M A, Dresselhaus G, et al., Origin of dispersive effectsof the Raman D band in carbon materials, Phys. Rev. B,1999,59(10): R6585~R6588.
    [302] Ferrari A C, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Comm.,2007,143(1):47~57.
    [303] Ivanov V G, Hadjichristov G B, Orientation of sp2carbon nanoclusters inion-implanted polymethylmethacrylate as revealed by polarized Raman spectro-scopy, J. Raman Spec.,2011,42(6):1340~1343.
    [304] Rao G R, Wang Z L, Lee E H. Microstructural effects on surface mechanicalproperties of ion-implanted polymers, J. Mater. Res.,1993,8(4):927~933.
    [305] Elman B S, Dresselhaus M S, Dresselhaus G, et al., Raman scattering fromion-implhnted graphite, Phys. Rev. B,1981,24(2):1027~1034.
    [306] Lee E H, Hembree D M, Jr, et al., Raman scattering from ion-implanted diamond,graphite, and polymers, Phys. Rev. B,1993,48(21):15540~15551.
    [307] Pimenta M A, Dresselhaus G, Dresselhaus M S, et al., Studying disorder ingraphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys.,2007,9(11):1276~1291.
    [308] Kakiuchi H, Kobayashi T, Terai T, Property change of diamond-like carbon thinfilms due to ion implantation, Nucl. Instrum. Methods Phys. Res. B,2000,166-167:415~419.
    [309] Zhang S L, Hou Y T, Ho K S, et al., Raman investigation with excitation ofvarious wavelength lasers on porous silicon, J. Appl. Phys.,1992,72(9):4469~4471.
    [310] Compagnini G, Optical constants of hydrogenated and unhydrogenated amorph-ous carbon in the0.5–12-eV range, Appl. Opt.,1994,33(31):7377~7381.
    [311] Hume-Rothery W, Mabbott G W, Evans K M C, The freezing points, meltingpoints, and solid solubility limits of the alloys of silver, and copper with theelements of the B sub-groups, Phil. Trans. R. Soc.,1934,233:1~97.
    [312] Yazawa A, Gub ová A, Thermodynamic studies of liquid Au–Zn and Ag–Znsystems, Trans. JIM,1970,11:419~423.
    [313] Pickering H W, Wagner C, Electrolytic dissolution of binary alloys containing anoble metal, J. Electrochem. Soc.,1967,114(7):698~706.
    [314] Zhang X D, Xi J F, Shen Y Y, et al., Thermal evolution and optical properties ofCu nanoparticles in SiO2by ion implantation, Opt. Mater.,2011,33(3):570~575.
    [315] Ghosh B, Chakraborty P, Mohapatra S, et al., Linear and nonlinear opticalabsorption in copper nanocluster-glass composites, Mater. Lett.,2007,61(23):4512~4515.
    [316] Amekura H, Tanaka M, Katsuya Y, et al., Melting of Zn nanoparticles embeddedin SiO2at high temperatures: Effects on surface plasmon resonances, Appl. Phys.Lett.,2010,96(2):023110.
    [317] Amekura H, Plaksin O A, Kishimoto N, et al., Annealing atmosphere effects onZn nanoparticles in SiO2and transformation to ZnO nanoparticles, Surf. Coat.Technol.,2007,201(19):8215~8219.
    [318] Kwak M Y, Shin D H, Kang T W, et al., Characteristics of TiN barrier layeragainst Cu diffusion, Thin Solid Films,1999,339(1):290~293.
    [319] Ruge I, Halbleiter-Technologie, Berlin: Springer,1984.
    [320] Masuo K, Plaksin O A, Fudamoto Y, et al., Effects of laser irradiation onnanoparticle evolution in SiO2implanted with Cu ions, Nucl. Instrum. MethodsPhys. Res. B,2006,247(2):268~270.
    [321] Wang D, Peng Q, Li Y, Nanocrystalline intermetallics and alloys, Nano Res.,2010,3(8):574~580.
    [322] Kanai Y, Watanabe T, Fujitani T, et al., The synergy between Cu and ZnO inmethanol synthesis catalysts, Catalysis Lett.,1996,38(3):157~163.
    [323] Chao L C, Lin S J, Chang W C, Growth, characterization and effect of substratebias on ZnO prepared by reactive capillaritron ion beam sputtering deposition,Nucl. Instrum. Methods Phys. Res. B,2010,268(10):1581~1584.
    [324] Johannessen B, Kluth P, Glover C J, et al., Structural characterization of Cunanocrystals formed in SiO2by high-energy ion-beam synthesis, J. Appl. Phys.,2005,98(2):024307.
    [325] Ren F, Jiang C Z, Zhang L, et al., Formation and microstructural investigation ofAg–Cu alloy nanoclusters embedded in SiO2formed by sequential ion impl-antation, Micron,2004,35(6):489~493.
    [326] Vassamillet L F, Stacking fault probability of noble metal–Zinc alloys, J. Appl.Phys.,1961,32(5):778~782.
    [327] Gialanella S, Lutterotti L, Metastable structures in α–β′brass, J. Alloys Compd.,2001,317-318:479~484.
    [328] Mooradian A, Photoluminescence of metals, Phys. Rev. Lett.,1969,22(5):185~187.
    [329] Boyd G T, Yu Z H, Shen Y R, Photoinduced luminescence from the noble metalsand its enhancement on roughened surfaces, Phys. Rev. B,1986,33(12):7923.
    [330] Apell P, Monreal R, Lundqvist S, Photoluminescence of noble metals, Phys. Scr.,1988,38(2):174~179.
    [331] Manikandan D, Mohan S, Nair K G M, Photoluminescence of embedded coppernanoclusters in soda-lime glass, Mater. Lett.,2003,57(8):1391~1394.
    [332] Plaksin O, Takeda Y, Amekura H, et al., Electronic excitation and opticalresponses of metal-nanoparticle composites under heavy-ion implantation, J.Appl. Phys.,2006,99(4):044307.
    [333] Guzzi M, Martini M, Mattaini M, et al., Luminescence of fused silica: Obser-vation of the O2-emission band, Phys. Rev. B,1987,35(17):9407.
    [334] Yang N, Yang H B, Qu Y Q, et al., Preparation of Cu–Zn/ZnO core–shell nano-composite by surface modification and precipitation process in aqueous solutionand its photoluminescence properties, Mater. Res. Bull.,2006,41(11):2154~2160.
    [335] Wang J, Zhang L H, Zhang X D, et al., Synthesis, thermal evolution and opticalproperties of CuZn alloy nanoparticles in SiO2sequentially implanted with dualions, J. Alloys Compd.,2013,549:231~237.
    [336] Arnold G W, Ion implantation effects in alkali-borosilicate glasses, RadiationEffects,1986,98(1-4):55~61.
    [337] Liu F X, Cao Z S, Tang C J, et al., Ultrathin diamond-like carbon film coatedsilver nanoparticles-based substrates for surface-enhanced raman spectroscopy,ACS Nano,2010,4(5):2643~2648.
    [338] Bourgoin J C, Corbett J W, Enhanced diffusion mechanisms, Radiation Effects,1978,36(3-4):157~188.
    [339] Ramaswamy V, Haynes T E, White C W, et al., Synthesis of nearly monodisperseembedded nanoparticles by separating nucleation and growth in ion implantation,Nano Lett.,2005,5(2):373~377.
    [340] Ceylan A, Jastrzembski K, Shah S I, Enhanced solubility Ag–Cu nanoparticlesand their thermal transport properties, Metall. Mater. Trans. A,2006,37(7):2033~2038.
    [341] Hurley A L, Dayananda M A, Multiphase diffusion in Ag–Zn alloys, Mater.Trans. B,1970,1(1):139~143.
    [342] Pérez-Robles F, García-Rodríguez F J, Jiménez-Sandoval S, et al., Raman studyof copper and iron oxide particles embedded in an SiO2matrix, J. RamanSpectrosc.,1999,30(12):1099~1104.
    [343] Lazzeri M, Mauri F, First-principles calculation of vibrational Raman spectra inlarge systems: Signature of small rings in crystalline SiO2, Phys. Rev. Lett.,2003,90(3):36401.
    [344] Colomban P, Schreiber H D, Raman signature modification induced by coppernanoparticles in silicate glass, J. Raman Spectrosc.,2005,36(9):884~890.
    [345] Amekura H, Yoshitake M, Plaksin O A, et al., Implantation-induced nonequil-ibrium reaction between Zn ions of60keV and SiO2target, Appl. Phys. Lett.,2007,91(6):063113.
    [346] Kutateladze K S, Gaprindashvili G G, Loladze G Z, et al., Microstructure ofopaque glazes, Glass Ceram.,1978,35(2):101~103.
    [347] Cai G X, Ren F, Xiao X H, et al., Fabrication of hollow Ag nanoclusters in silicaby irradiation with Ar ions, Nucl. Instrum. Methods Phys. Res. B,2008,266(6):889~893.
    [348] Dienes G J, Damask A C, Radiation enhanced diffusion in solids, J. Appl. Phys.,1958,29(12):1713~1721.
    [349] Loualiche S, Lucas C, Baruch P, et al., Theoretical model for radiation enhanceddiffusion and redistribution of impurities: Comparison with experiments, Phys.Status Solidi (a),1982,69(2):663~676.
    [350] Wang J, Jia G Y, Zhang B, et al., Formation and optical absorption property ofnanometer metallic colloids in Zn and Ag dually implanted silica: Synthesis ofthe modified Ag nanoparticles, J. Appl. Phys.,2013,113(3):034304.
    [351] Snoeks E, Weber T, Cacciato A, et al., MeV ion irradiation-induced creation andrelaxation of mechanical stress in silica, J. Appl. Phys.,1995,78(7):4723~4732.
    [352] McBrayer J D, Swanson R M, Sigmon T W, et al., Observation of rapid fieldaided diffusion of silver in metal oxide semiconductor structures, Appl. Phys.Lett.,1983,43(7):653~654.
    [353] Nason T C, Yang G R, Park K H, et al., Study of silver diffusion into Si (111)and SiO2at moderate temperatures, J. Appl. Phys.,1991,70(3):1392~1396.
    [354] Stepanov A L, Popok V N, Khaibullin I B, et al., Optical properties of poly-methylmethacrilate with implanted silver nanoparticles, Nucl. Instrum. MethodsPhys. Res. B,2003,191(1):473~477.
    [355] Tsuji H, Arai N, Matsumoto T, et al., Silver nanoparticle formation in thin oxidelayer on silicon by silver-negative-ion implantation for Coulomb blockade atroom temperature, Appl. Surf. Sci.,2004,238(1):132~137.
    [356] Carlisle C I, King D A, Bocquet M L, et al., Imaging the surface and theinterface atoms of an oxide film on Ag {111} by scanning tunneling microscopy:Experiment and theory, Phys. Rev. Lett.,2000,84(17):3899~3902.
    [357] Krasheninnikov A V, Nordlund K, Ion and electron irradiation-induced effects innanostructured materials, J. Appl. Phys.,2010,107(7):071301.
    [358] Heinig K H, Müller T, Schmidt B, et al., Interfaces under ion irradiation: Growthand taming of nanostructures, Appl. Phys. A,2003,77(1):17~25.
    [359] Rizza G C, Ramjauny Y, Gacoin T, et al., Dependence of the irradiation-inducedgrowth kinetics of satellites on the nanoclusters dimension, Nucl. Instrum.Methods Phys. Res. B,2007,257(1):15~19.
    [360] Rizza G C, Strobel M, Heinig K H, et al., Ion irradiation of gold inclusions inSiO2: Experimental evidence for inverse Ostwald ripening, Nucl. Instrum.Methods Phys. Res. B,2001,178(1):78~83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700