棉铃虫羧酸酯酶表达及解毒作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羧酸酯酶是昆虫对有机磷、拟除虫菊酯、氨基甲酸酯等杀虫剂进行解毒作用的重要代谢酶系。为研究羧酸酯酶在棉铃虫有机磷、拟除虫菊酯代谢抗性中的作用和角色以及解毒酶在环境修复中的应用,本文采用杆状病毒表达载体系统(BEVS)对澳洲棉铃虫GR品系的9个羧酸酯酶基因进行了异源真核表达,从分子和生化水平上研究了其对有机磷、拟除虫菊酯类杀虫剂的酶促解毒特性;并利用氨基酸定点突变技术人工构建了1~2个位点突变的18个羧酸酯酶突变体,研究了突变对有机磷及拟除虫菊酯类杀虫剂的解毒活性的影响;在此基础上初步构建了解毒酶工程菌,旨在为环境污染修复奠定基础。主要研究结果如下:
     1.棉铃虫羧酸酯酶在昆虫杆状病毒表达载体系统中的表达及酶活分析
     从棉铃虫GR品系的cDNA文库中得到9个羧酸酯酶基因,氨基酸序列比对表明其均具有酯酶活性必须的催化三联体残基(S-E-H),以及酯酶家族的特征基序(G-x-S-x-G)和酶活相关的氧阴离子洞氨基酸残基(G-G-A),表明均为有酶促活性的酯酶基因。酯酶与杆状病毒线型DNA重组后,转染草地夜蛾Sf9细胞系,表达和制备了具有天然酶活性的酯酶蛋白产物。Native-PAGE和α-乙酸萘酯检测表明,酯酶条带主要分布在相对迁移率(Rm值)为0.27~0.35和0.39~0.48之间的两个区域,很可能是与棉铃虫代谢抗性相关酯酶。紫外读板机测定结果进一步表明,酯酶对α-乙酸萘酯底物的亲和系数(Km值)在3.3μmol/L~671μmol/L之间,速率常数(kcat/Km值)在0.3μmol~(-1)·S-1·L~95μmol~(-1)·S~(-1)·L之间。酯酶对α-乙酸萘酯的酶促水解活性普遍高于4-硝基苯基乙酸酯。
     2.棉铃虫羧酸酯酶对有机磷的解毒活性
     采用荧光法根据酯酶与2种有机磷底物的酶促反应特点,测定了表达产物中的酯酶浓度及解毒活性,结果表明8个酯酶对二甲基和二乙基有机磷(dMUP和dECP)均有一定代谢活性,催化反应常数(kcat值)在1.5×10-3min~(-1)~15.8×10-3min~(-1)之间,与对照铜绿蝇酯酶E3(kcat=3.5×10-3min~(-1))的代谢活性处在同一水平范围。棉铃虫酯酶对模式羧酸酯底物的水解活性与其对有机磷杀虫剂的解毒活性无直接相关性。
     3.棉铃虫羧酸酯酶对氰戊菊酯和氯氰菊酯异构体的解毒活性
     通过荧光仪和高效液相色谱(HPLC)仪测定了其对氰戊菊酯(类型I)1种异构体2(S)-α(S)及4种异构体类似物的解毒活性,结果表明4个酯酶(001B、001C、001D、001J)对异构体2(R)-α(R)和2(R)-α(S)类似物的酶促解毒活性较高;其中酯酶001G对顺式氰戊菊酯杀虫剂异构体2(S)-α(S)的解毒活性为13.19μmol·min~(-1)·μmol~(-1),其余酯酶解毒活性均较低。酯酶对氯氰菊酯8种异构体(类型II)及异构体类似物的测定结果表明,其中4个酯酶(001B、001C、001D和001J)对氯氰菊酯的2种反式异构体1(S) trans及类似物的解毒活性最高(17μmol·min~(-1)·μmol~(-1)~43μmol·min~(-1)·μmol~(-1)),但对杀虫毒性最高的异构体1(R)cis-α(S)及其类似物的解毒活性却相对很低;另外4个酯酶对氯氰菊酯异构体及类似物代谢作用极弱甚至难以检测到。
     4.棉铃虫羧酸酯酶突变体的构建及对模式羧酸酯的酶促动力学特性
     基于氨基酸序列比对和分析,采用定点突变技术构建了在棉铃虫酯酶氧阴离子洞和酰基化口袋内1~2个氨基酸位点突变的18个酯酶突变体。酶促动力学分析表明,酯酶氧阴离子洞丙氨酸(或甘氨酸)变为天冬氨酸(A/G→D)的突变体对α-乙酸萘酯的亲和力普遍降低(Km值升高),速率常数(kcat/Km值)也降低至突变前的1/20~1/437;酰基化口袋的苯丙氨酸变为亮氨酸的突变(F→L)同样降低了酯酶对羧酸酯底物的亲和力和水解活性,但与氧阴离子洞突变相比对酶的水解活性影响相对较小,速率常数最低降至突变前的1/5;酯酶在上述两个位点同时突变的双位点突变体(A/G→D+F→L)则几乎完全失去了对底物的酶促水解活性。上述酯酶突变也显著降低了酯酶对另一种模式羧酸酯底物4-硝基苯基乙酸酯的酶促水解活性。
     5.羧酸酯酶突变对有机磷的解毒活性影响
     酯酶单双位点的突变对有机磷的解毒活性也产生了较大的影响,部分突变体提高了对有机磷的解毒活性,相反部分突变体则降低了解毒活性。氧阴离子洞突变的部分突变体增强了对有机磷底物的解毒作用,尤其是001CA127D对二乙基有机磷dECP的kcat值高达32.8×10-3min~(-1),是突变前的7倍。酯酶酰基化口袋突变的5个突变体,对分子结构较小的二甲基有机磷dMUP的kcat值均提高到突变前的2倍以上,解毒活性均高于分子结构较大的二乙基有机磷dECP,表现出对dMUP的代谢偏爱性。双位点突变中多数酯酶对2种有机磷底物的代谢活性有增强作用。
     6.羧酸酯酶突变对拟除虫菊酯异构体解毒活性影响
     通过荧光仪对类型I和类型II拟除虫菊酯异构体解毒作用测定结果表明,棉铃虫酯酶氧阴离子洞和酰基化口袋突变体中,仅有001BF236L、001DF235L和001GF238L对氰戊菊酯4个异构体类似物有代谢活性,与突变前相比是降低的。采用HPLC测定结果表明,只有001BF236L对氰戊菊酯2(S)-α(S)异构体解毒活性提高到突变前的4倍,其它突变体的解毒活性均很低,与突变前相比明显降低。
     5个氧阴离子洞突变体酯酶对氯氰菊酯的8种异构体的解毒活性均极低,这与未检测到其对类似物的代谢活性是一致的。5个酯酶酰基化口袋突变体中001BF236L、001DF235L和001JF236L对2种反式氯氰菊酯异构体1(S)trans的解毒活性与突变前相比几乎都是增强的。特别是001DF235L和001JF236L对1(S)trans-α(R)的解毒活性分别为43μmol·min~(-1)·μmol~(-1)和51μmol·min~(-1)·μmol~(-1),接近突变前的2倍。其中001DF235L对杀虫毒性较强的顺式异构体1(R)cis-α(S)的解毒活性也较高,为15.6μmol·min~(-1)·μmol~(-1)。三个双位点突变体中,均未检测到对氯氰菊酯的8种异构体类似物的代谢活性,但却检测到个别酯酶对部分异构体有较低的代谢作用。
     7.羧酸酯酶解毒酶工程菌构建和表达
     采用原核生物表达系统,将去掉N端信号肽的001C、001C~(A127D)、001F和001F~(A127D+F238L),以及001I和001I~(G130D)与PETMCS III载体重组,转入大肠杆菌(Ecoli.BL21)菌株中,构建解毒酶工程菌。在温度为18℃、28℃和37℃条件下分别表达后,SDS凝胶电泳检测结果表明在温度为37℃时酯酶表达量最大;但酯酶表达产物主要以无活性的非水溶性形式存在,水溶性酯酶(有活性)占的比例非常低。提高活性酯酶表达量及解毒活性等相关工作尚需继续深入,但目前的工作为进一步的解毒酶工程菌研究奠定了前期基础。
     综上所述,文中通过对来源于澳洲棉铃虫敏感品系(GR)的9个羧酸酯酶基因进行氨基酸序列分析和异源真核表达产物的代谢活性检测,从分子水平和生化水平两方面证实其中8个羧酸酯酶分别对2种有机磷和2种拟除虫菊酯类杀虫剂具有一定代谢解毒活性。通过人工定点突变和代谢活性检测,表明氧阴离子洞和酰基化口袋位点突变对酯酶的活性有明显影响,部分酯酶增强了对二甲基和二乙基有机磷、类型II拟除虫菊酯的解毒活性。去掉N端信号肽的部分酯酶在大肠杆菌中表达后,具天然酶活的酯酶表达水平较低,这为进一步构建高效解毒酶工程菌奠定了一定前期基础。上述结果,预示着羧酸酯酶突变在今后棉铃虫对有机磷和拟除虫菊酯类杀虫剂的代谢抗性发展中可能起着重要作用;同时也表明通过人工突变修饰可以提高棉铃虫羧酸酯酶的解毒活性。
Carboxylesterases(CCEs) are a major class of enzymes involved in the detoxification oforganophosphates (OPs), synthetic pyrethroids (SPs) and carbamates (CBs) in insects. Theaim of this research is to elucidate the role of CCEs from H. armigera in the development ofmetabolic resistance to these chemical insecticides. Furthermore, identification of pesticidesdegrading enzymes from cotton bollworm will have its application in bioremedation ofcontaminated environment. Nine CCEs genes from GR strain of H. armigera weresuccessfully expressed in the Sf9cells using the Baculovirus Expression Vector System(BEVS). The hydrolysis activities of eight CCEs against OPs and SPs were measured andanalyzed so further in term with molecular and biochemical methods. In addition, a total18mutants of CCEs were maken using the site-directed mutagenesis technique, the kineticefficiency of the CCEs and the effects of the mutations on the catalytic activities toward OPsand SPs were studied. Lastly, following above the gentic engineering bacteria strain E.coliBL21were constructed for potential hydrolytic degradation of insecticides. The significancesof this research were showed as below:
     1. Baculovirus expression and esterase activity assay of CCEs in vitro
     Nine CCEs genes were cloned from the cDNA library of the H. armigera GR strain.Alignment of anmino acid sequences showed that they all contain the critical motifs in theactive centre: the catalytic triad (S-E-H), the conservative pentapeptide (GxSxG) and the highconservative oxyanion hole (G-G-A). It has shown they should have hydrolytic activitiestoward some insecticides. Baculovirus expression system was used to produce native folded(active form) protein of CCEs. The expressed CCEs were analyzed by native-PAGE andstained with artificial substrate α-naphthyl acetate (α-NA), the resulting stained bands (closelytogether) indicated that the relative mobility (Rm) of all CCEs fell in two zones (0.27~0.36and0.37~0.48), which thus has shown most CCEs are probabaly associated with metabolicresistance. The kinetic assay with α-NA and p-NA were carried out for all CCEs using amicroplate reader. Eight of nine CCEs showed hihger affinity to α-NA and their Km valuewere between3.3μmol/L and671μmol/L. The rate constants (kcat/Km value) varied from0.3μmol~(-1)·S-1·L to95μmol~(-1)·S-1·L. The eight CCEs showed relatively lower hydrolyticactivities against para-nitrophyl acetate (p-NA) compared with those of α-NA.
     2. Hydrolysis of organophosphrous insecticides by CCEs expression in vitro
     The molar concentration of esterase protein in the Sf9cell extracts and the OP hydrolysiswere determined fluorometrically by using diethyl-and dimethyl-phosphates (dECP anddMUP) in term with the enzymatic reaction. The results showed the kinetic constants (kcatvalue) varied from1.3×10-3min~(-1)to15.8×10-3min~(-1)and resembled those of the E3controlfrom Lucilia cuprina. Although the eight CCEs had hydrolytic activities toward OPs, noclosed correlations between the OPs hydrolysis and the carboxylesterase activity were found.
     3. Hydrolysis of individual isomers of fenvalerate and cypermethrin insecticides byCCEs
     The catalytic activities of the CCEs toward individual SP insecticides and analogs weremeasured with fluorometric and HPLC assays repectively. The reuslts showed four of eightCCEs (001B,001C,001D and001J) had relatively higher hydrolytic activities toward twoisomers2(R)-α(R) and2(R)-α(S) of fenvalerate analogs, and001G had some activities againstesfenvalerate2(S)-α(S)(13.19μmol·min~(-1)·μmol~(-1)). In contrast with001G others hadnegligible activities. The same four CCEs also were observed higher activities toward thelight insecticidal1S trans cypermethrin isomers (17μmol·min~(-1)·μmol~(-1)~43μmol·min~(-1)·μmol~(-1))as well as the corresponding analogs. But their hydrolytic activities for the most insecticidalisomer1(R)cis-α(S) of cypermethrin and its analog were relatively lower. Other four CCEsshowed even lower or undetectable activities toward the isomers of cypermethrin.
     4. Construction of mutant CCEs and their kinetic properties for model substrates
     One or two amino acids were introduced to mutate in oxyanion hole (A/G to D) and acylbinding pocket (F to L) in the CCEs using the site-directed mutagenesis technique to make18mutant enzymes. The results of kinetic assay with a-NA showed that the single point mutationin oxyanion hole had dramatically reduced the esterase activities. The constants Km values ofthese mutants were generally higher than that of the wild type enzymes and the rate constantskcat/Km were between20-and437-fold lower than that of the wild type enzymes. By contrast,the single point mutations in acyl binding pocket had relatively less effects on the kinceticefficiencies of CCEs than that of the A to D mutants. The kcat/Km values were between1.5-and5-fold lower than that of the wild type enzymes. The double point mutations at both sitesnearly nullified the carboxylesterase activities. In line with the pattern of kinetic assay witha-NA, the mutations also markedly reduced the activities toward p-NA.
     5. The effects on hydrolysis of OPs by two point mutations of CCEs
     The amino acid mutations had marked effects on the hydrolytic activities of CCEstoward dimethyl-and diethyl-phosphates. Some mutants increased hydrolytic activites, but others reduced the hydrolysis. Among the CCEs modified in oxyanion hole, some obviouslyenhanced the hydrolysis of OPs, in particular, the kcat value for dECP of001CA127Dwas32.8×10-3min~(-1). By contrast, the F to L mutations in acyl binding pocket showed enhancedhydrolytic activites for relatively smaller substrate dimethylphosphates, the kcat values wereat least1.5-fold higher than that of the wild type enzyme, which were also higher comparedwith the relatively larger substrate diethylphosphates. It’s shown the dimethylphosphates wasas the preferred substrate in the hydrlolysis. The A to D mutations combined with F to Lmutations almost all enhanced the hydrolysis of OPs to some extent.
     6. The effects of mutations on the hydrolytic activities of CCEs against individual SPsinsecticides
     The catalytic activities toward individual SP insecticides and analogs of the mutant CCEswere also measured with fluorometric and HPLC assays. Among all the mutants, just threemutants (001B~(F236L),001D~(F235L)and001G~(F238L)) showed some hydrolytic activities against the4isomers of envalerate analogs, but the hydrolysis were lower compared to those of the wildtype CCEs with the exception of the001BF236L.001BF236Lshowed an enhancement ofhydrolysis of2(S)-α(S) isomer analog compared to its wild type. In line with that thismutation increased the activity about4-fold higher for the most insecticidal2(S)-α(S) isomer.Others reduced the hydrolytic activities toward this most insecticidal isomer.
     The CCEs modified in oxyanion hole had undetectable activities toward any of thecypermethrin analogs, and also showed lowest activities toward most of the isomers ofcypermethrin insecticides. By contrast, three of five CCEs modified in the acyl binding pocket(001B~(F236L),001D~(F235L)and001J~(F236L)) showed enhancement of hydrolytic activities toward thelight insecticidal1(S) trans isomers of cypermethrin insecticide than that of the wild typeCCEs. The turnover for the1(S) trans-α(R) isomer were20μmol·min~(-1)·μmol~(-1),43μmol·min~(-1)·μmol~(-1)and51μmol·min~(-1)·μmol~(-1)respectiviely. In particular, the turnover for themost insecticidal1(R) cis-α(S) isomer by001D~(F236L)and001J~(F238)Lwere9.3μmol·min~(-1)·μmol~(-1)and15.6μmol·min~(-1)·μmol~(-1)respectively. All three double point mutations in CCEs had verylower or nearly nullifiled the activities toward both the cypermethrin analogs and the isomers.
     7. Construction of genetic engineering bacteria with degradation CCEs and itsexpression
     The N-terminal signal peptide sequence were removed from three CCEs and their codingregions were amplification with new designed primers. They were cloned into an expressionvector PETMCS III and transferred into the E.coli BL21cells. The CCEs genes wereexpressed in E.coli BL21at18,28and37degree respectively to yield the CCEs protein. The CCEs expressing BL21(DE3) cells were lysed and the soluble and insoluble proteins wereseparated. Both supernatants and precipitates of cell harvests from the cell cultures wereanalyzed by SDS-PAGE. The results showed that the higher expression level was found whenthe cells were grown at37degree. However, nearly all the over-expressed CCEs wereexpressed as insoluble protein (in precipitates) and very little enzyme were in solubale andactive. Future work will focus on improving correct folding of CCEs in E.coli BL21cellsbefore they can be applied for removing pesticide contamination in the environment. Currentresults provided useful data for further devolopment of degradation enzymes using genticlymicrobial engineering.
     In summary, CCEs from H. armigera GR strain contain the active sites of typicalhydrolase. All CCEs were successfully expressed in Baculovirus Expression Vector System.Their hydrolytic activities were assayed and the results showed eight CCEs had somehydrolysis activities to some extent toward OPs and SPs insecticides. The kinetic results ofthe substitution of amino acids in oxyanion hole or acyl binding pocket had significant effectson the the enzymatic activities, in which some really showed enhancement of the hydrolysisof OP and the type II SP insecticides. The results demonstrated that the CCEs hydrolaseactivity toward insecticides could be enhanced through mutations at around enzyme activesites. It’s thus shown the mutation in active site of CCEs will play important role for thedeveolepment of OP and SP insecticides resistance in H. armigera in future. The results alsoindicated there are great potentials for using the CCEs of H. armigera to develop geneticengineering bacterial for detoxificaiton in contaminated enviroment.
引文
陈亚丽,张先恩,刘虹等.2002.甲基对硫磷降解菌假单胞菌WBC-3的筛选及其降解性能的研究.微生物学报,42(4):490~497
    戴小枫,郭予元.1995.棉铃虫的抗药性与治理.北京:中国农业出版社:1~244
    丁矛.2006.昆虫抗药性相关基因芯片的研制及其应用.[博士学位论文].中国杭州:浙江大学
    戈峰,李典谟,丁岩钦,刘向辉.2000.病虫危害损失及其防治效益的新观察.中国昆虫学会,2000年学术年会论文集.北京:中国科学技术出版社:614~619
    郭惠琳,高希武.2005.棉蚜抗氧化乐果品系的羧酸酯酶基因突变.昆虫学报,48(2):194~202
    黄菁,乔传令.2002.昆虫解毒酶解毒机理及其在农药污染治理中的应用.农业环境保护,21(3):285~287
    黄水金,秦文婧,陈琼.2010.斜纹夜蛾羧酸酯酶基因的克隆、序列分析及表达水平.昆虫学报,53(1):29~37
    冷欣夫,邱星辉.2001.细胞色素P450酶系的结构、功能与应用前景.北京:科学出版社:1~252
    李隆弟,张德强,杨世忠.1996.伞形酮在不同溶剂中的荧光光谱及其二聚作用.光谱学与光谱分析,1996,16(2):95-99
    刘小民,李杰,郭巍,张霞,李新娜.棉铃虫羧酸酯酶基因cDNA的克隆、表达及活性分析.中国农业科学,2011,44(4):730-737
    乔传令.2004.超级工程菌剂和解毒酶制剂的开发.动物学杂志,39(1):105
    邱星辉.2005.杀虫剂抗性:遗传学、基因组学及应用启示.昆虫学报,48(6):960~967
    沈晋良,吴益东.1995.棉铃虫抗药性及其治理.北京:中国农业出版社:1~288
    唐除痴,李煜,陈彬,杨华铮,金桂玉编著.农药化学.南开:南开大学出版社:1~654
    王东,李兵,管京敏,赵华强,陈玉华,沈卫德.2008.棉铃虫羧酸酯酶基因的克隆、序列分析及组织表达.昆虫学报,51(9):979~985
    王厚振,华尧楠,牟吉元.1999.棉铃虫预测预报与综合治理.北京:中国农业出版社:1~630
    武淑文.2010.酯酶在棉铃虫氰戊菊酯和久效磷抗性中的作用.[博士学位论文].中国南京:南京农业大学
    吴文君主编.农药学原理.北京:中国农业出版社:1~393
    徐建农,瞿逢伊,刘维德.1994.致倦库蚊有机磷抗性相关扩增酯酶B基因的多样性.第二军医大学学报,15(2):101~105
    许雄山,韩召军,王荫长.1999.羧酸酯酶与棉铃虫对有机磷杀虫剂抗性的关系.南京农业大学学报,22(4):41~44
    袁国瑞.2011.小菜蛾GABA受体基因克隆及棉铃虫羧酸酯酶的功能表达.[博士学位论文].中国南京:南京农业大学
    张霞,郭巍,李国勋,宋水山.2008.甜菜夜蛾羧酸酯酶基因cDNA的克隆、表达及序列分析.昆虫学报,51(7):681~688
    周斌芬,唐振华,高菊芳.2008昆虫代谢抗性的研究.农药,47(5):313-315
    Abernathy C O, Casida J E.1973. Esterase cleavage in relation to selective toxicity. Science,179(4079):1235~1236
    Agianian B, Tucker P A, Schouten A, Leonard K, Bullard B, Gros P.2003. Structure of a Drosophilasigma class glutathione S-transferase reveals a novel active site topography suited for lipid peroxidationproducts. J. Mol. Biol,326:151~165
    Ahmad M, Denholm I, Bromilow R H.2006. Delayed cuticular penetration andenhanced metabolismof deltamethrin in pyrethroid-resistant strains of Helicoverpa armigera from China and Pakistan. PestManag. Sci,62:805~810
    Ahmad M, McCaffery A R.1999. Penetration and metabolism of trans-cypermethrin in a susceptibleand a pyrethroid-resistant strain of Helicoverpa armigera. Pestici. Biochem. Physiol,65:6~14
    Ai G M, Zou D Y, Shi X Y, Li F G, Liang P, Song D L, Gao X W.2010. HPLC assay forcharacterizing r-Cyano-3-phenoxybenzyl pyrethroids hydrolytic metabolism by Helicoverpa armigera(Hubner) based on the quantitative analysis of3-Phenoxybenzoic acid. J. Agric. Food Chem,58:694~701
    Aldridge W N, Reiner E.1972. Enzyme Inhibitors as Substrates: interactions of esterases with estersof organophosphorus and carbamic acids. Amsterdam: North-Holland Publishing:1~328.
    Ali M, Naqvi A T, Kanwal M, Rasheed F, Hameed A, Ahmed S.2012. Detection of theorganophosphate degrading gene opdA in the newly isolated bacterial strain Bacillus pumilus W1. AnnMicrobiol,62:233~239
    Angelucci C, Barrett-Wilt G A, Hunt D F, Akhurst R J, East P D, Gordon K H J, Campbell P M.2008.Diversity of aminopeptidases, derived from four lepidopteran gene duplications, and polycalins expressedin the midgut of Helicoverpa armigera: Identification of proteins binding the delta-endotoxin, Cry1Ac ofBacillus thuringiensis. Insect Biochem. Mol. Biol,38:685~696
    Anthony N, Unruh T, Ganser D, ffrench-Constant R.1998. Duplication of the Rdl GABAR subunitgene in an insecticide-resistant aphid, Myzus persicae. Mol. Gen.Genet,260:165~175
    Behra M, Cousin X, Bertrand C, Vonesch J L, Biellmann D, et al.2002. Acetylcholinesterase isrequired for neuronal and muscular development in the zebrafish embryo. Nature Neuro,5:111~118
    Bloomquist J R.1988. Neurophysiological assays for the characterization and monitoring ofpyrethroid resistance. In: Lunt GG.(Ed.). Neurotox: The Molecular Basis of Drug and Pesticide Action.Amsterdam: Elsevier:543~551
    Bonning B C, Roelvink P W, Vlak J M, Possee R D, Hammock B D.1994. Superior expression ofjuvenile hormone esterase and b-galactosidase from the basic protein promoter of Autographa califonicanuclear polyhedrosis virus compared to the p10protein and polyhedrin promoters. J. Gen. Virol,75:1551~1556
    Booth J, Boyland E, Sims P.1961. An enzyme from rat liver catalyzing conjugation with glutathione.Biochem. J,79:516~524
    Bourguet D, Fonseca D, Vourch G, Dubois M P, Chandre F, et al.1998. The acetylcholinesterase geneAce: a diagnostic marker for the pipiens and quinquefasciatus forms of the Culex pipiens complex. J. Am.Mosquito Control Assoc,14(4):390~396
    Bües R, Bouvier J C, Boudinhon L.2005. Insecticide resistance and mechanisms of resistance toselected strains of Helicoverpa armigera (Lepidoptera:Noctuidae) in the south of France. Crop Prot,24:814~820
    Busvine J R.1951. Mechanism of resistance to insecticide in houseflies. Nature,168:193~195
    Campbell B E.2001. The role of esterases in pyrethroid resistance in Australian populations of thecotton bollworm, Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae).[Ph.D Thesis]. Canberra,Australia: Australian National University
    Campbell P M, Cao A T, Hines E R, East P D, Gordon K H J.2008. Proteomic analysis of theperitrophic matrix from the gut of the caterpillar, Helicoverpa armigera. Insect Biochem. Mol. Biol,38:950~958
    Campbell P M, Newcomb R D, Russell R J, Oakeshott J G.1998. Two different amino acidsubstitutions in the ali-esterase, E3, confer alternative types of organophosphorus insecticide resistance inthe sheep blowfly, Lucilia cuprina. Insect Biochem. Mol. Biol,28:139~50
    Cao C W, Zhang J, Gao X W, Liang P, Guo H L.2008a. mRNA expression levels and gene sequencesof carboxylesterase in both deltamethrin resistant and susceptible strains of the cotton aphid, Aphis gossypii(Glover). Insect Sci,127:127~134
    Cao C W, Zhang J, Gao X W, Liang P, Guo H L.2008b. Overexpression of carboxylesterase geneassociated with organophosphorous insecticide resistance in cotton aphids, Aphis gossypii (Glover). Pest.Biochem. Physiol,90:175~180
    Casida J E, Gammon D W, Glickman A H, Lawrence L J.1983. Mechanisms of selective action ofpyrethroid insecticides. Annu. Rev. Pharmacol,23:413~438
    Chen S, Yang Y, Wu Y.2005. Correlation between fenvalerate resistance and cytochrome P450mediated O-demethylation activity in Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol,98:943~946
    Chiang F and Sun C.1993. Glutathione transferase isozymes of diamondback moth larvae and theirrole in the degradation of some organophosphorous insecticides. Pest. Biochem. Physiol,45:7~14
    Chisholm G E, Henner D J.1988. Multiple early transcripts and splicing of the Autographacalifornica nuclear polyhedrosis virus IE-1gene. J. Virol,62:3193~3200
    Claude M, Pasteur N, Berge J B, Hyren O.1987. Amplification of an esterase gene is responsible forinsecticide resistance in a California Culex Mosquito. Science,233:778~780
    Claudianos C, Russell R J, Oakeshott J G.1999. The same amino acid substitution in orthologousesterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochem. Mol. Biol,29:675~86
    Costa L G.2006. Current issues in organophosphate toxicology. Clin. Chim. Acta,366:1~13
    Cui F, Lin Z, Wang H, Liu S, Chang H, Reeck G, Qiao C, Raymond M, Kang L.2011. Two singlemutations commonly cause qualitative change of nonspecific carboxylesterases in insects. Insect Biochem.Mol. Biol,41:1~8
    Cui F, Weill M, Berthomieu A, Raymond M, Qiao C L.2007. Characterization of novel esterases ininsecticide-resistant mosquitoes. Insect Biochem. Mol. Biol,37:1131~1137
    da Silva N M, de Carvalho R A, de Azeredo-Espin AM.2011. Acetylcholinesterase cDNA sequencingand identification of mutations associated with organophosphate resistance in Cochliomyia hominivorax(Diptera: Calliphoridae). Veter. Parasitol,177(1-2):190~5
    Dawsona R M, Pantelidis S, Rose H R, Kotsonis S E.2008. Degradation of nerve agents by anorganophosphate-degrading agent (OpdA). J. Hazard. Mater,157:308~314
    de Carvalho R A, Limia C E, Bass C, de Azeredo-Espin A M.2010. Changes in the frequency of theG137D and W251S mutations in the carboxylesterase E3gene of Cochliomyia hominivorax (Diptera:Calliphoridae) populations from Uruguay. Vet Parasitol,170(3-4):297~301
    de Carvalho R A, Torres T T, de Azeredo-Espin A M L.2006. A survey of mutations in theCochliomyia hominivorax (Diptera: Calliphoridae) esterase E3gene associated with organophosphateresistance and the molecular identification of mutant alleles. Vet. Parasitol,140:344~351
    de Carvalho R A, Torres T T, Paniago M G, Azeredo-Espin A M L.2009. Molecular characterization ofesterase E3gene associated with organophosphorus insecticide resistance in the New World screwworm fly,Cochliomyia hominivorax. Med. Vet. Entomol,23:86~91
    De Silva D, Hemingway J, Ranson H, Vaughan A.1997. Resistance to insecticides in insect vectors ofdisease: Esta3, a novel amplified esterase associated with amplified Estb1from insecticide resistant strainsof the mosquito Culex quinquesfasciatus. Exp. Parasitol,87:253~259
    Devonshire A L.1977. The properties of a carboxylesterase from the peachpotato aphid, Myzuspersicae (Sulz.), and its role in conferring insecticide resistance. Biochem. J,167:675~683
    Devonshire A L, Heidari R, Bell K L, Campbell P M, Campbell B E, Odgers W A, Oakeshott J G,Russell R J.2003. Kinetic efficiency of mutant carboxylesterases implicated in organophosphate insecticideresistance. Pestic. Biochem. Physiol,76:1~13
    Devonshire A L, Heidari R, Huang H Z, Hammock B D, Russell R J, Oakeshott J G.2007. Hydrolysisof individual isomers of fluorogenic pyrethroid analogs by mutant carboxylesterases from Lucilia cuprina.Insect Biochem. Mol. Biol,37:891~902
    Devonshire A L, Moores G D.1982. Acarboxylesterase with broad substrate specificity causesorganophosphorous, carbamate and pyrethroid resistance in peach potato aphids (Myzus persicae). Pestic.Biochem. Physiol,18:235~246
    Devonshire A L, Sawicki R M.1979. Insecticide resistant-Myzus persicae as an example of evolutionby gene duplication. Nature,280:140~141
    Dumancic M M, Oakeshott J G, Russell R J, Healy M J.1997. Characterization of the EstP protein inDrosophila melanogaster and its conservation in drosophilids. Biochem. Genet,35(7-8):251~71
    Dumas D P, Caldwell S R, Wild J R, Raushel F M.1989. Purification and properties of thephosphotriesterase from Pseudomonas diminuta. J. Biol. Chem,264:19659~19665
    Dunkov B C, Guzov V M, Mocelin G, Shotkoski F, Brun A.1997. The Drosophila cytochrome P450gene Cyp6a2: structure, localization, heterologous expression, and induction by phenobarbital. DNA. Cell.Biol,16:1345~1356
    Elliott M.1996. Synthetic insecticides related to natural pyrethrins. In: Copping L G.(Ed.). CropProtection Agents from Nature: Natural Products and Analogues. Cambridge: Royal Society of Chemistry:254~300
    Elliott M.1977. Synthetic pyrethroids. In: Gould R F.(Ed.). Synthetic Pyrethroids. San Francisco:American Chemical Society:1~28
    Farnsworth C, Teese M, Yuan G, Li Y, Scott C, Zhang X, Wu Y, Russell R, Oakeshott J.2010.Esterase-based metabolic resistance to insecticides in heliothine and spodopteran pests. J. Pestic. Sci,35(3):275~289
    Farrell P J, Swevers L, Iatrou K.2005. Insect Cell Culture and Recombinant Protein ExpressionSystems. In: Gilbert L I, Latrou K, Gill S S.(Eds.). Comprehensive Molecular InsectScience-Pharmacology. Vol.(5), Oxford: Elsevier::475~507
    Feyereisen R.1999. Insect P450enzymes. Annu. Rev. Entomol,44:507~533
    Feyereisen R.2005. Insect Cytochrome P450. In: Gilbert L I, Latrou K, Gill S S.(Eds.).Comprehensive Molecular Insect Science-Pharmacology. Vol.(4), Oxford: Elsevier:1~77
    ffrench-Constant R H, Rocheleau T A, Steichen J C, Chalmers A E.1993b. A point mutation in aDrosophila GABAR confers insecticide resistance. Nature,363:449~451
    ffrench-Constant R H, Steichen J C, Rocheleau T A, Aronstein K, Roush R T.1993a. A single-aminoacid substitution in a g-aminobutyric acid subtype A receptor locus is associated with cyclodiene insecticideresistance in Drosophila populations. Proc. Natl Acad. Sci. USA,90:1957~1961
    Field L M, Blackman R L, Tyler-Smith C, Devonshire A L.1999. Relationship between amount ofesterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochem. J,339(Pt3):737~42
    Field L M, Devonshire A L.1998. Evidence that the E4and FE4esterase genes responsible forinsecticide resistance in the aphid, Myzus persicae (Sulzer) are part of a gene family. Biochem. J,330:169~173
    Field L M, Devonshire A L, Forde B G.1988. Molecular evidence that insecticide resistance inpeach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem. J,251:309~312
    Field L M, Williamson M S, Moores G D, Devonshire A L.1993. Cloning and analysis of the esterasegenes conferring insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). Biochem. J,294:569~574
    Field L M.2000. Methylation and expression of amplified esterase genes in the aphid, Myzus persicae(Sulzer). Biochem. J,349:863~868
    Forrester N W, Cahill M, Bird L J, Layland J K.1993.Management of pyrethroid and endosulfanresistance in Helicoverpa armigera(Lepidoptera:Noctuidae) in Australia. Bull. Entomol. Res. Suppl. Ser,1:1~132
    Funaki E, Dauterman W C, Motoyama N.1994. Invitro and in-vivo metabolism of fenvalerate inpyrethroid-resistant houseflies. J. Pest. Sci,19:43~52
    Godin S J, Scollon E J, Hughes M F, Potter P M, DeVito M J, Ross M K.2006. Species differences inthe in vitro metabolism of deltamethrin and esfenvalerate: differential oxidative and hydrolytic metabolismby humans and rats. Drug Metab. Dispos.34(10):1764~1771
    Granados R R, Li G, Derkensen A C G, McKenna K A.1994. A new insect cell line from Trichoplusiani (BTI-Tn-5B1-4) susceptible to Trichloplusiani single enveloped nuclear polyhedrosis virus. J. Invertebr.Pathol,64:260~266
    Grant D F, Bender D M, Hammock B D.1989. Quantitative kinetic assays for glutathioneS-transferase and general esterase in individual mosquitoes using an EIA reader. Insect Biochem,19:741~751
    Guerrero F D, Nene V M.2008. Gene structure and expression of a pyrethroid-metabolizing esterase,CzEst9, from a pyrethroid resistant Mexican population of Rhipicephalus (Boophilus) microplus (Acari:Ixodidae). J. Med. Entomol,45(4):677~685
    Gullemaud T, Makate N, Raymond M, Hirst B, Callaghan A.1997. Esterase gene amplification inCulex pipiens,6(4):319~327
    Gunning R V, Devonshire A L, Moores G D.1995. Metabolism of esfenvalerate inpyrethroid-susceptible and-resistant Austrain Helicoverpa armigera (Lepidoptera:Noctuidae). Pestic.Biochem. Physiol,51:205~213
    Gunning R V, Moores G D, Devonshire A L.1996. Esterases and esfenvalerate resistance in AustralianHelicoverpa armigera (Hübner)(Lepidoptera: Noctuidae). Pestic. Biochem. Physiol,54:12~23
    Gunning R V, Moores G D, Devonshire A L.1997. Esterases and fenvalerate resistance in a fieldpopulation of Helicoverpa punctigera (Lepidoptera: Noctuidae) in Australia. Pestic. Biochem. Physiol,58:155~162
    Gunning R V, Moores G D, Devonshire A L.1999. Esterase inhibitors synergise the toxicity ofpyrethroids in Australian Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae). Pestic. Biochem.Physiol,63:50~62
    Gutfreund H, Sturtevant J M.1956. The mechanism of the reaction of chymotrypsin withp-nitrophenyl acetate. Biochem. J,63:656~661
    Guzov V M, Unnithan G C, Chernogolov A A, Feyereisen R.1998. CYP12A1, a mitochondrialcytochrome P450from the housefly. Arch. Biochem. Biophys,359:231~240
    Harel M, Kryger G, Rosenberry T L, Mallender W D, Lewis T, et al.2000. Three-dimensionalstructures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors.Protein Sci,9:1063~1072
    Harold J A, Ottea J A.2000. Characterization of esterases associated with profenofos resistance in thetobacco budworm, Heliothis virescens (F.). Arch. Insect Biochem. Physiol,45:47~59
    Hayes J D, Wolf C R.1988. Role of glutathione transferase in drug resistance. In: Sies H, Ketterer B.(Eds.). Glutathione Conjugation. London: Academic Press:315
    Healy M J, Dumancic M M, Oakeshott J G.1991. Biochemical and physiological studies of solubleesterases from Drosophila melanogaster. Biochem. Genet,29:365~388
    Heidari R, Devonshire A L, Campbell B E, Bell K L, Dorrian S J, Oakeshott J G, Russell R J.2004.Hydrolysis of organophosphorus insecticides by in vitro modified carboxylesterase E3from Luciliacuprina. Insect Biochem. Mol. Biol,34:353~363
    Heidari R, Devonshire A L, Campbell B E, Dorrian S J, Oakeshott J G, Russell R J.2005. Hydrolysisof pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sitesmodified by in vitro mutagenesis. Insect Biochem. Mol. Biol,35:597~609
    Hemingway J, Hawkes N J, McCarroll L, Ranson H.2004. The molecular basis of insecticideresistance in mosquitoes. Insect Biochem. Mol. Biol,34(7):653~665
    Holden J S.1979. Absorption and metabolism of permethrin and cypermethrin in the cockroach andthe cotton leafworm larvae. Pestici. Sci,10:295~307
    Horne I, Sutherland T D, Harcourt R L, Russell R J, Oakeshott J G.2002. Identification of an opd(organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol,68:3371~3376
    Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams-Collier C J, Nakai K.2007. WoLFPSORT: protein localization predictor. Nucl. Aci. Res,35:585~587
    Hossain M M, Suzuki T, Unno T, Komori S, Kobayashi H.2008. Differential presynaptic actions ofpyrethroid insecticides on glutamatergic and GABA ergic neurons in the hippocampus. Toxicology,243:155~163
    Huang H S, Hu N T, Yao Y E, Wu C Y, Chiang S W, et al.1998. Molecular cloning and heterologousexpression of a glutathione S-transferase involved in insecticide resistance from the diamondback moth,Plutella xylostella. Insect Biochem. Mol. Biol,28:651~658
    Huang H, Stok J E, Stoutamire D W, Gee S J, Hammock B D.2005a. Development of optically purepyrethroid-like fluorescent substrates for carboxylesterases. Chem. Res. Toxicol,18:516~527
    Hughes P B, Raftos D A.1985. Genetics of an esterase associated with resistance toorganophosphorus insecticides in the sheep blowfly, Lucilia cuprina (Wiedemann)(Diptera: Calliphoridae).Bull. Entomol. Res,75:535~544
    Ingles P J, Adams P M, Knipple D C, Soderlund D M.1996. Characterization of voltage-sensitivesodium channel gene coding sequences from insecticide-susceptible and knockdown-resistant houseflystrains. Insect Biochem. Mol. Biol,26:319~326
    Jackson C J, Weir K M, Sutherland T D, Khurana J L, Horne I, Herlt A, Easton C J, Russell R J, ScottC, Oakeshott J G.2009. Structure-based rational design of a phosphotriesterase. Appl. Environ. Microbiol,75:5153~5156
    Jamroz R C, Guerrero F D, Pruett J H, Oehler D D, Miller R J.2000. Molecular and biochemicalsurvey of acaricide resistance mechanisms in larvae from Mexican strains of the southern cattle tick,Boophilus microplus. J. Insect Physiol,46:685~695
    Jarü J.1984. Stereochemical aspects of cholinesterase catalysis. Bioorganic Chem,12:259~278
    Kennaugh L, Pearce D, Daly J C, Hobbs A A.1993. A piperonyl butoxide synergizable resistance topermethrin in Helicoverpa armigera which is not due to increased detoxificaion by cytochrome P450. Pestic.Biochem. Physiol,46:234~241
    Khambay B P S, Jewess P J.2005. Pyrethroids. In: Gilbert L I, Latrou K, Gill S S.(Eds.).Comprehensive Molecular Insect Science-Pharmacology. Vol.(6), Oxford: Elsevier:1~29
    Knipple D C, Doyle K E, Marsella-Herrick P A, Soderlund D M.1994. Tight genetic linkage betweenthe kdr insecticide resistance trait and a voltagesensitive sodium channel gene in the housefly. Proc. NatlAcad. Sci. USA,91:2483~2487
    Komagata O, Kasai S, Tomita T.2010. Overexpression of cytochrome P450genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochem. Mol. Bio,40:146~152
    Korochkin L I, Ludwig M Z, Poliakova E V, Philinova M R.1987. Some molecular genetic aspects ofcellular differentiation in Drosophila. Soviet Sci. Rev,1:411~466
    Kovacs G K, Guarino L A and Summers M D.1991. Novel Regulatory Properties of the IE1and IE0Transactivators Encoded by the Baculovirus Autographa californica Multicapsid Nuclear PolyhedrosisVirus. J. Virol,65:5281~5288
    Lee K S, Walker C H, McCaffery A, Ahmad M, Little E.1989. Metabolism of trans-cypermethrin byHeliothis armigera and Heliothis virescens. Pestici. Biochem. Physiol,34:49~57
    Lenormand T, Guillemaud T, Bourguet D, Raymond M.1998. Evaluating gene flow using selectedmarkers: a case study. Genetics,149:1383~1392
    Leonard R J, Labarca G G, Charnet P, Davidson N, Lester H A.1988. Evidence that the M2membranespanning region lines the ion channel pore of the nicotinic receptor. Science,242:1578~1581
    Li X, Schuler M A, Berenbaum M R.2007. Molecular mechanisms of metabolic resistance tosynthetic and natural xenobiotics. Annu. Rev. Entomol,52:231~53
    Liu Z, Valles S M, Dong K.2000. Novel point mutations in the German cockroach para sodiumchannel gene are associated with knockdown resistance (kdr) to pyrethroid insecticides. Insect Biochem.Mol. Biol,30:991~997
    Lo H R, Chao Y C.2004. Rapid titer determination of baculovirus by quantitative real-timepolymerase chain reaction. Biotechnol. Prog,20:354~360
    Lockridge O, Blong R M, Masson P, Froment M T, Millard C B, Broomfield C A.1997. A singleamino acid substitution, Gly117His, confers phosphotriesterase (organophosphorus acid anhydridehydrolase) activity on human butyrylcholinesterase. Biochemistry,36:786~795
    Mannervik B.1985. The isoenzymes of glutathione transferase. Adv. Enzymol. Relat. Areas Mol. Biol,57:357~417
    Martin T, Chandre F, Ochou O G, Vaissayre M, Fournier D.2002. Pyrethroid resistance mechanisms inthe cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) from West Africa. Pestic. Biochem.Physiol,74:17~26
    McCaffery A R.1998. Resistance to insecticides in heliothine Lepidoptera: a global view. Philos.Trans. R. Soc. Lond B. Biol. Sci,353:1735~1750
    Mileson B E, Chanbers J E,Chen W L, Dettbarn W, Ehrich M, et al.1998. Common mechanism oftoxicity: a case study of organophosphorus pesticides. Toxicol. Sci,41:8~20
    Miyazaki M, Ohyama K, Dunlap D Y, Matsumura F.1996. Cloning and sequencing of the para-typesodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) andhousefly (Musca domestica). Mol. Gen. Genet,252:61~68
    Mouches C, Magnin M, Berge J B, de Silvestri, M, Beyssat V, et al.1987. Overproduction ofdetoxifying esterases in organophosphate-resistant Culex mosquitoes and their presence in other insects.Proc. Natl Acad. Sci. USA,84:2113~2116
    Mouches C, Pasteur N, Berge J, Hyren O, Raymond M, Vincent B R D S, Silvestri M D, Georghiou GP.1986. Amplification of an esterase gene is responsible for insecticide resistance in a california culexmosquito. Science,233:778~779
    Muhammad A, Tatheer A N, Maria K, Faisal R, Abdul H, Safia A.2012. Detection of theorganophosphate degrading gene opdA in the newly isolated bacterial strain Bacillus pumilus W1. AnnMicrobiol,62:233~239
    Müller P, Warr E, Stevenson B J, Pignatelli P M, Morgan J C, Steven A, Yawson A E, Mitchell S N,Ranson H, Hemingway J, Paine M J I, Donnelly M J.2008. Field-caught permethrin-resistant Anophelesgambiae overexpress cyp6p3, a P450that metabolises pyrethroids. PLOS genetics,4(11):1~10
    Munnecke D M.1980. Hydrolysis of organophosphate insecticides by an immobilized-enzyme system.Biotechnol. Bioeng,21:2247~2261
    Mutero A, Fournier D.1992. Post-translational modifications of Drosophila acetylcholinesterase. J.Biol. Chem,267:1695~1700
    Mutero A, Pralavorio M, Bride J M, Fournier D.1994. Resistance-associated point mutations ininsecticide-insensitive acetylcholinesterase. Proc. Natl. Acad. Sci. USA,91:5922~5926
    Narahashi T.2002. Nerve membrane ion channels as the target site of insecticides. Mini Rev. Med.Chem,2:419~432
    Needham P H, Sawicki R M.1971. Diagnosis of resistance to organophosphorus insecticides in Myzuspersicae. Nature,230:125~126
    Newcomb R, Campbell P, Russell R, Oakeshott J.1997a. cDNA cloning, baculovirus-expression andkinetic properties of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina, InsectBiochem. Mol. Biol,27:15~25
    Newcomb R D, Campbell P M, Ollis D L, Cheah E, Russell R J, Oakeshott J G.1997b. A singleamino acid substitution converts a carboxylesterase to an organophosphorous hydrolase and confersinsecticide resistance on a blowfly. Proc. Natl. Acad. Sci. USA,94:7464~7468
    Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps J C, Nachon F.2003. Crystal structure of humanbutyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem,278:41141~41147
    Nishi K, Huang H, Kamita S G, Kim I H, Morisseau C, Hammock B D.2006. Characterization ofpyrethroid hydrolysis by the human liver carboxylesterases hCE-1and hCE-2. Arch. Biochem. Biophys,445(1):115~123
    Oakeshott J G, Claudianos C, Campbell P M, Newcomb R D., Russell R J.2005. Biochemicalgenetics and genomics of insect esterases. In: Gilbert L I, Latrou K, Gill S S.(Eds.). ComprehensiveMolecular Insect Science-Pharmacology. Vol.(5), Oxford: Elsevier:309~381
    Oakeshott J G, Collett C, Phillist R W, Nielsen K, Russell M R J, Chambers G K, Ross V, Richmond RC.1987. Molecular cloning and characterization of esterase-6, a serine hydrolase of Drosophila. Proc. Natl.Acad. Sci. USA,84:3359~3363
    Oppenoorth F J, van Asperen K.1960. Allelic genes in the housefly producing modified enzymes thatcause organophosphate resistance. Science,132:298~299
    Oppenoorth F J.1959. Genetics of resistance to organophosphorus compounds and low ali-esteraseactivity in the housefly. Entomol. Exp. Appl,2:304~319
    Oppenoorth F J, Van der Pas L J T, Houx N W H.1979. Glutathione S-transferases and hydrolyticactivity in a tetrachlorovinphos-resistant strain of housefly and their influence on resistance. Pestic.Biochem. Physiol,11:176~188
    Pan Y, Guo H, Gao X.2009. Carboxylesterase activity, cDNA sequence, and gene expression inmalathion susceptible and resistant strains of the cotton aphid, Aphis gossypii. Comp. Biochem. Physiol.Part B,152:266~270
    Parker A G, Russell R J, Delves A C, Oakeshott J G.1991. Biochemistry and physiology of esterases inorganophosphate-susceptible and organophosphate-resistant strains of the Australian sheep blowfly, Luciliacuprina. Pestic. Biochem. Physiol,41:305~318
    Park Y, Taylor M F J.1997. A novel mutation L1029H in sodium channel gene hscp associated withpyrehtroid resistance for Heliothis virescens (Lepidoptera: Noctuidae). Insect Biochem. Mol. Biol,27:9~13
    Pasteur N, Marquine M, Hoang T H, Nam V S, Failloux A B.2001. Overproduced esterases in Culexpipiens quinquefasciatus (Diptera: Culicidae) from Vietnam. J. Med. Entomol,38:740~745
    Pierleoni A, Martelli P L, Casadio R.2008. PredGPI: a GPI-anchor predictor. BMC Bioinformatics,9:392
    Pittendrigh B, Aronstein K, Zinkovsky E, Andreev O, Campbell B, et al.1997. Cytochrome P450genes from Helicoverpa armigera: expression in a pyrethroid-susceptible and resistant strain. InsectBiochem. Mol. Biol,27:507~512
    Pruett J H, Guerrero F D, Hernandez R.2002. Isolation and identification of an esterase from aMexican strain of Boophilus microplus (Acari: Ixodidae). J. Econ. Entomol,95(5):1001~1007
    Qiao C L, Marquine M, Pasteur N, Raymond M.1998. A new esterase gene amplification involved inOP resistance in Culex pipiens mosquitoes from China. Biochem. Genet,36(11-12):417~25
    Qiao C L, Raymond M.1995. The same esterase B1haplotype is amplified in insecticide-resistantmosquitoes of the Culex pipiens complex from the Americas and China. Heredity,74:339~345
    Qin G, Jia M, Liu T, Xuan T, Yan Zhu K, Guo Y, Ma E and Zhang J.2011. Identification andcharacterisation of ten glutathione S-transferase genes from oriental migratory locust, Locusta migratoriamanilensis (Meyen). Pest Manag. Sci,67(6):697~704
    Qiu X H, Li W, Tian Y and Leng X F.2003. Cytochrome P450monooxygenases in the cottonbollworm (Lepidoptera: Noctuidae): tissue difference and induction. J. Econo. Entomol,96:1283~1289
    Ranasinghe C, Headlam M, Hobbs A A.1997. Induction of the mRNA for CYP6B2, a pyrethroidinducible cytochrome P450, in Helicoverpa armigera (Hübner) by dietary monoterpenes. Arch. InsectBiochem. Physiol,34:99~109
    Ranasinghe C, Hobbsa A.1998. Isolation and characterization of two cytochrome P450cDNA clonesfor CYP6B6and CYP6B7from Helicoverpa armigera (Hubner): possible involvement of CYP6B7inpyrethroid resistance. Insect Biochem. Mol. Biol,28(8):571~580
    Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, et al.2002. Evolution of supergenefamilies associated with insecticide resistance. Science,298:179~181
    Ray D E, Fry J R.2006. A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacol.Ther,111(1):174~193
    Reed W, Pawar.1982. Heliothis: a global problem. Proceeding of the International Workshop onHeliothis Management,15~20
    Riddles P W, Davey P A, Nolan J.1983. Carboxyleseterases from Boophilus microplus hydrolyzetrans-Permethrin. Pestic. Biochem. Physiol,20:133~140
    Roberts T R and Hutson D H.1999. Metabolic pathways of agrochemicals. Vol.(2), Cambridge: RoyalSociety of Chemistry:579~725
    Ross M K, Borazjani A, Edwards C C, Potter P M.2006. Hydrolytic metabolism of pyrethroids byhuman and other mammalian carboxylesterases. Biochem. Pharmacol,71(5):657~669
    Rubsam L A, Boucher P D, Murphy P J, KuKuruga M, Shewach D S.1999. Cytotoxicity andaccumulation of ganciclovir triphosphate in bystander cells cocultured with Herpes Simplex Virus Type1Thymidine Kinase-expressing human glioblastoma cells. Canc. Res,59:669~675
    Rufingier C, Pasteur N, Lagnel J, Martin C, Navajas M.1999. Mechanisms of insecticide resistance inthe aphid Nasonovia ribisnigri (Mosley)(Homoptera: Aphididae) from France. Insect Biochem. Mol. Biol,29:385~391
    Russell R J, Robin G C, Kostakos P, Newcomb R D, Boyce T M, et al.1996. Molecular cloning of analpha-esterase gene cluster on chromosome3R of Drosophila melanogaster. Insect Biochem. Mol. Biol,26:235~247
    Ruzo L O, Cohen E, Capua S.1988. Comparative metabolism of the pyrethroids bifenthrin anddeltamethrin in the bulb mite Rhizoglyphus robini. J. Agric. Food Chem,36:1040~1043
    Sabourault C, Guzov V M, Koener J F, Claudianos C, Plapp F W.2001. Overproduction of a P450thatmetabolizes diazinon is linked to a loss-of-function in the chromosome2ali-esterase (MdaE7) gene inresistant house flies. Insect Mol. Biol,10:609~618
    Sawicki R M.1985. The relevance of resistance in the study of the insecticidal activity of pyrethroids.Abst. Pap. Am. Chem. Soc,190:23-30
    Schmidt-Krey I, Murata K, Hirai T, Mitsuoka K, Cheng Y, et al.1999. The projection structure of themembrane protein microsomal glutathione transferase at3A resolution as determined fromtwo-dimensional hexagonal crystals. J. Mol. Biol,288:243~253
    Schuler T H, Martinez-Torres D, Thompson A J, Denholm I, Devonshire A L, Duce I R, WilliamsonM S.1998. Toxicological electrophysiological, and molecular characterisation of knockdown resistance topyrethroid insecticides in the diamondback moth, Plutella xylostella (L.). Pestic. Biochem. Physiol,59:169~192
    Scott J G.1999. Cytochromes P450and insecticide reisitance. Insect Biochem. Mol. Biol,29:757~777
    Shan G, Hammock B D.2001. Development of sensitive esterase assays based on R-cyano-containingesters. Anal. Biochem,299:54~62
    Sheehan D, Meade G, Foley V M, Dowd C A.2001. Structure, function and evolution of glutathionetransferases: implications for classification of non-mammalian members of an ancient enzyme superfamily.Biochem. J,360:1~16
    Small G, Hemingway J.2000. Molecular characterization of the amplified carboxylesterase geneassociated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvata lugens.Insect Mol. Biol,9:647~653
    Smith G E, Summers M D, Fraser M J.1983b. Production of human beta interferon in insect cellsinfected with a baculovirus expression vector. Mol. Cell. Biol,3:2156~2165
    Smith G E, Vlak J M, Summers M D.1983a. Physical analysis of Autographa californica nuclearpolyhedrosis virus transcripts for polyhedrin and10,000-molecular weight protein. J. Virol,45:215~225
    Soderlund D M.2005. Sodium Channels. In: Gilbert L I, Latrou K, Gill S S.(Eds.). ComprehensiveMolecular Insect Science-Pharmacology. Vol.(5), Oxford: Elsevier:1~24
    Soderlund D M.2008. Pyrethroids, knockdown resistanceand sodium channels. Pest Manag. Sci,64:610~616
    Soderlund D M, Casida J E.1977. Substrate speificity of mouse-liver microsomal enzymesinpyrethroid metabolism. In Elliott, M.(Ed.). Synthetic Pyrethroids. Washington D.C.: American ChemicalSociety:137~150
    Soderlund D M, Clark J M, Sheets L P, Mullin L S, Piccirillo V J, Sargent D, Stevens J T, Weiner M L.2002. Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology,171(1):3~59
    Soderlun D M, Knipple D C.2003. The molecular biology of knockdown resistance to pyrethroidinsecticides. Insect Biochem. Mol. Biol,33:563~577
    Soderlund D M, Sanborn J R, Lee P W.1983. Metabolism of pyrethrins and pyrethroids in insects. In:Hutson D H, Roberts T R.(Eds.). Progress in Pesticide Biochemistry and Toxicology. Vol.(3), Chichester:401~435
    Sogorb and Eugenio.2002. Enzymes involved in the detoxification of organophosphorus, carbamateand pyrethroid insecticides through hydrolysis. Toxicol. Lett,128:215~228
    Spackman M E, Oakeshott J G, Smyth K A, Medveczky K M, Russell R J.1994. A cluster of esterasegenes on chromosome3R of Drosophila melanogaster includes homologues of esterase genes conferringinsecticide resistance in Lucilia cuprina. Biochem. Genet,32(1-2):39~62
    Srinivas R, Jayalakshmi S K, Sreeramulu K, Sherman N E, Rao J.2006. Purification andcharacterization of an esterase isozyme involved in hydrolysis of organophosphorus compounds from aninsecticide resistant pest, Helicoverpa armigera (Lepidoptera: Noctuidae). Biochim. Biophys.Acta,1760:310~317
    Srinivas R, Udikeri S S, Jayalakshmi S K, Sreeramulu K.2004. Identification of factors responsiblefor insecticide resistance in Helicoverpa armigera. Comp. Biochem. Physiol. Part C: Toxicol. Pharmcol,137:261~269
    Stegeman J J, Livingstone D R.1998. Forms and functions of cytochrome P450. Comp. Biochem.Physiol,212:1~3
    Summers M D, Smith G G.1987. A manual of methods for baculovirus vectors and insect cell cultureprocedures. Texas: Texas Agricultural Experiment Station Bulletin:155.
    Sussman J L, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Israel S.1991. Atomic structure ofacetyicholinesterase from Torpedo cal fornica: a prototypic acetyicholine-binding protein. Science,253:872~879
    Teese M G, Campbell P M, Scott C, Gordon K H J, Southon A, Hovan D, Robin C, Russell R J,Oakeshott J G.2010a. Gene identification and proteomic analysis of the esterases of the cotton bollwormHelicoverpa armigera. Insect Biochem. Molec. Biol,40:1~16
    Teese M G.2010b. The carboxyl/cholinesterases of Helicoverpa armigera: A comparative genomic,proteomic and expression analysis of a diverse gene superfamily.[Ph.D Thesis]. Canberra, Australia:Australian National University
    The International Silkworm Genome Consortium.2008. The genome of a lepidopteran model insect,the silkworm Bombyx mori. Insect Biochem. Mol. Biol,38(12),1036~1045
    Tomita T, Scott J G.1995. cDNA and deduced protein sequence of CYP6D1: the putative gene for acytochrome P450responsible for pyrethroid resistance in housefly. Insect Biochem. Mol. Biol,25:275~283
    Tsubota T, Shiotsuki S.2010. Genomicc analysis of carboxyl/cholinesterase genes in the silkwormBombyx mori. BMC Genomics,11:377
    Ugurlu S, Konus M, Isgor B, Iscan M.2007. Note: pyrethroid resistance and possible involvement ofglutathione S-transferases in Helicoverpa armigera from Turkey. Phytoparasitica,35:23~26
    Vaughan A, Rodriguez M, Hemingway J.1995. The independent gene amplification ofelectrophoretically indistinguishable Beta-esterases from the insecticide resistant mosquito Culexquinquefasciatus. Biochem. J,305:651~658
    Vernick K D, Collins F H, Seeley D C, Gwadz R W, Miller L H.1988. The genetics and expression ofan esterase locus in Anopheles gambiae. Biochem. Gene,26:367~379
    Vontas J G, Small G J, Hemingway J.2000. Comparison of esterase gene amplification, geneexpression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper,Nilaparvata lugens (Sta l). Insect Mol. Biol,9:655~660
    Wang X P, Hobbs A A.1995. Isolation and sequence analysis of a cDNA clone for a pyrethroidinducible cytochrome P450from Helicoverpa armigera. Insect Biochem. Molec. Biol,25:1001~1009
    Wee C W, Lee S F, Robin C, Heckel D G.2008. Identification of candidate genes for fenvalerateresistance in Helicoverpa armigera using cDNA-AFLP. Insect Mol. Bio,17(4):351~336
    Weill M, Fort P, Berthomieu A, Dubois M P, Pasteur N, et al.2002. A novel acetylcholinesterase genein mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proc.Roy. Soc. London B,269:2007~2016
    Wei S H, Clark A G, Syvanen M.2001. Identification and cloning of a key insecticide-metabolizingglutathione S-transferase (MdGST-6A) from a hyper insecticide-resistant strain of the housefly Muscadomestica. Insect Biochem. Mol. Biol,31:1145~1153
    Wheelock C E, Shan G M, Ottea J.2005. Overview of carboxylesterases and their role in themetabolism of insecticides. J. Pestic. Sci,30(2):75~83
    Wheelock C E, Wheelock A M, Zhang R, Stok J E, Morisseau C, Le Valley S E, Green C E, HammockB D.2003. Evaluation of a-cyanoesters as fluorescent substrates for examining interindividual variation ingeneral and pyrethroid-selective esterases in human liver microsomes. Anal. Biochem,315(2):208~222
    Williamson M S, Denholm I, Bell C A, Devonshire A L.1993. Knockdown resistance (kdr) to DDTand pyrethroid insecticides maps to a sodium channel gene locus in the housefly (Musca domestica). Mol.Gen. Genet,240:17~22
    Williamson M S, Martinez-Torres D, Hick C A, Devonshire A L.1996. Identification of mutations inthe housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroidinsecticides. Mol. Gen. Genet,252:51~60
    Wirth M C, Georghiou G P.1996. Organophosphate resistance in Culex pipiens from Cyprus. J. Am.Mosq. Control Assoc,12:112~118
    Wolff M A, Wingate V P.1998. Characterization and comparative pharmacological studies of afunctional gamma-aminobutyric acid (GABA) receptor cloned from the tobacco budworm, Heliothisvirescens (Noctuidae:Lepidoptera). Invert. Neurosci,3:305~315
    Wu S,Yang Y, Yuan G, Campbell P, Teese M, Russell R, Oakeshott J, Wu Y.2011. Overexpressedesterases in a fenvalerate resistant strain of the cotton bollworm, Helicoverpa armigera. Insect Biochem.Mol. Biol,41(1):14~21
    Yang M L, Zhang J Z, Zhu K Y, Tao X, Liu X J, Guo Y P, Ma E B.2009. Mechanisms oforganophosphate resistance in a field population oforiental migratory locust, Locusta migratoria manilensis(Meyen). Arch Insect Biochem. Physio,71(1):3~15
    Yang Y, Chen S, Wu S, Yue L, Wu Y.2006. Constitutive overexpression of multiple cytochrome P450genes associated with pyrethroid resistance in Helicoverpa armigera. J. Econ. Entomol,99:1784~1789
    Yang Y, Wu Y, Chen S, Devine G J, Denholm I, Jewess P, Moores G D.2004: The involvement ofmicrosomal oxidases in pyrethroid resistance in Helicoverpa armigera from Asia. Insect Biochem. Mol.Biol,34:76~773
    Yang Y, Yue L, Chen S, Wu Y.2008. Functional expression of Helicoverpa armigera CYP9A12andCYP9A14in Saccharomyces cerevisiae. Pestic. Biochem. Physiol,92:101~105
    Yu Q Y, Lu C, Li W L, Xiang Z H, Zhang Z.2009. Annotation and expression of carboxylesterases inthe silkworm, Bombyx mori. BMC Genomics,10:553
    Zhang H, Tang T, Cheng Y, Shui R, Zhang W, Qiu L.2010a. Cloning and expression of cytochromeP450CYP6B7in fenvalerate-resistant and susceptible Helicoverpa armigera (Hübner) from China. J. Appl.Ento,134(9-10):754~761
    Zhang J, Zhang J, Yang M, Jia Q, GuoY, Ma E, Zhu K.2011. Genomics-based approaches toscreening carboxylesterase-like genes potentially involved inmalathion resistance in oriental migratorylocust (Locusta migratoria manilensis). Pest Manag. Sci,67:183~190
    Zhang L, Gao X W, Liang P.2007. Beta-cypermethrin resistance associated with highcarboxylesterase activities in a strain of house fly, Musca domestica (Diptera: Muscidae). Pestic. Biochem.Physiol,89:65~72
    Zhang L, Shi J, Shi X, Liang P, Gao J, Gao X W.2010b. Quantitative and qualitative changes of thecarboxylesterase associated with beta-cypermethrin resistance in the housefly, Musca domestica (Diptera:Muscidae). Comp. Biochem. Physiol. Part B,156:6~11
    Zhang M, Scott J G.1996. Cytochrome b5is essential for cytochrome P4506D1-mediatedcypermethrin resistance in LPR house flies. Pestic. Biochem. Physiol,55:150~156
    Zhou X, Sheng C, Li M, Wan H, Liu D, Qiu X.2010. Expression responses of nine cytochrome P450genes to xenobiotics in the cotton bollworm, Helicoverpa armigera. Pestic. Biochem. Physiol,97:209~213
    Zhu Y C, Dowdy A K, Baker J E.1999a. Detection of single-base substitution in an esterase gene andits linkage to malathion resistance in the parasitoid Anisopteromalus calandrae (Hymenoptera:Pteromalidae). Pestic. Sci,55:398~404
    Zhu Y C, Dowdy A K, Baker J E.1999b. Differential mRNA expression levels and gene sequences ofa putative carboxylesterase-like enzyme from two strains of the parasitoid Anisopteromalus calandrae(Hymenoptera: Pteromalidae). Insect Biochem. Mol. Biol,29:417~425

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700