鸡传染性支气管炎病毒M蛋白单克隆抗体的制备及其抗原表位的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡传染性支气管炎(Avian Infectious Bronchitis,IB)是由鸡传染性支气管炎病毒(Avian Infectious Bronchitis Virus,IBV)引起的一种急性、高度接触传染性、病毒性呼吸道疾病。由于IBV易变异,不同血清型毒株之间具有较小的交叉保护性甚至无交叉保护性,因此,IB仍是危害世界养禽业的重要疫病之一。通过单克隆抗体技术对IBV抗原表位的研究,不仅有助于了解IBV抗原结构与功能的关系,而且对该病的诊断以及设计安全有效的基因工程表位疫苗等具有重要的意义。
     本研究首先通过RT-PCR克隆了IBV CK/CH/LHLJ/04Ⅴ毒株681bp的M蛋白基因,并将其克隆到pMD18-T载体进行测序,通过双酶切将羧基端387bp的M基因片段亚克隆到原核表达载体pET-30c(+)上,构建重组质粒pET-30c-M。然后将重组阳性质粒转化大肠杆菌BL21(DE3)并用IPTG于37℃诱导表达。SDS-PAGE分析显示,表达的鸡传染性支气管炎病毒重组M蛋白分子量约为20kDa。通过ProBondTM蛋白纯化试剂盒纯化此蛋白,逐步透析法对其进行复性。Western Blot检测表明重组M蛋白能与鸡抗IBV的抗血清发生特异性反应,证明重组M蛋白具有良好的抗原性。
     以表达的IBV重组M蛋白为免疫原,免疫BALB/c小鼠并通过常规杂交瘤技术制备抗IBV M蛋白的单克隆抗体。经过间接ELISA和Western Blot筛选和克隆后融合后的杂交瘤细胞,最终获得了两株能稳定分泌抗IBV M蛋白单克隆抗体的杂交瘤细胞株,分别命名为13A3和15E2。其单抗亚类均为IgG1,轻链均为κ链。这两株单克隆抗体具有良好的特异性,均能与IBV CK/CH/LHLJ/04Ⅴ毒株的M蛋白发生特异性的反应,为M蛋白功能研究及抗原表位研究奠定了基础。为了详细而精确的研究IBV M蛋白的表位结构,本研究设计表达了一组总数为13个部分重
     叠且覆盖羧基端387bp M基因的短肽融合蛋白,利用肽扫描技术对这两株M蛋白的单克隆抗体所针对的抗原表位进行了研究,鉴定出了一个新的M蛋白抗原表位:199FATFVYAK206。Western blot和同源性分析结果显示,此表位是IBV M蛋白的一个高度保守的线性B细胞抗原表位。
     本研究结果对进一步阐明了IBV M蛋白抗原结构,探讨其表位生物学功能,设计科学合理的疫苗和诊断试剂具有重要的意义。
Avian infectious bronchitis (IB) , caused by infectious bronchitis virus(IBV), is an acute and highly contagious disease in chichens. Because of the high mutation frequency of IBV and little cross-protection between serologically distinct viruses , IB is still a major health problem affecting the chicken industry in most countries of the world. Antigenic epitope information of avian infectious bronchitis virus (IBV) is not only useful for investigating the relationship between antigenic structure and function of the IBV, but also significant for diagnosis of IBV infection and developing safe and effective multi-epitope vaccines against the disease.
     To begin with, reverse transcription-polymerase chain reaction (RT-PCR) was used to amplify the 681bp membrane (M) glycoprotein gene of avian infectious bronchitis virus and the gene was cloned into the pMD18-T vector for sequencing. By digestion of restriction enzymes BamHⅠand HindⅢ, the C-terminal 387bp fragments of M gene were subcloned into pET-30c to construct recombinant plasmid pET-30c-M . Then the recombinant plasmid was transformed into E.coli BL21(DE3) and induced with IPTG. It was demonstrated by SDS-PAGE that a protein of 20 kDa (M) was expressed in E.coli. The recombinant M protein was subsequently purified by affinity chromatography. Western blotting assay indicated that the chicken antiserum against IBV could recognize this protein. The results showed that the recombinant M protein possessed a good antigenicity and laid foundation for the preparation of monoclonal antibody (McAb) agaist IBV M protein and other functional research of M protein.
     Subsequently, SPF BALB/c mice were immunized subcutaneously(S/C)and intraperitoneally(I/P) with the recombinant M protein as antigen for the preparation of McAbs against M protein.Two McAbs against IBV M protein ,designated as 13A3 and 15E2, were finally identified by the indirect ELISA and Western blot assays using recombinant M protein and IBV as antigens. The results of subtype analysis showed that McAbs 13A3 and 15E2 all belonged to IgG1 and the light chains of all McAbs were theκchain. The two McAbs had good specificity and could specifically recognize both the recombinant M protein and IBV M protein,which were significant for the studies of both the function of M protein and epitope identification.
     In order to accurately study epitope structures of IBV M protein, 13 partially overlapping or consecutive peptides (MP3-1—MP12) spanning 387bp C-terminus of M gene were expressed for epitopes screening by Pepscan technology. One linear epitope of IBV M protein,199FATFVYAK206, was finally identified. The results of Western blot and homologous analysis indicated that the epitope was a highly conserved linear B-cell epitope of IBV M protein.
     To conclude, this study is not only significant for further understanding the epitope structure and immunological function of IBV M protein, but also useful for designing the diagnostic reagent and epitope vaccines.In addition, this study will lay foundation for the genetic and variant studies of the avian infectious bronchitis virus.
引文
1.白雪帆,张英,汪毅等.应用PEPSCAN技术研究单克隆抗体L13F3识别的抗原表位.第四军医大学学报,2000,21(7): 850-852.
    2. B.W.卡尔尼克.禽病学(高福,苏敬良译).第十版.北京:中国农业出版社,1999, 653-673.
    3.步志高,江国托,王秀荣,等.传染性支气管炎病毒S1基因DNA免疫质粒的构建及其免疫原性.中国预防兽医学报,1998,18(6):527-530.
    4.步志高,赵晓岩,刘长军,等.DNA免疫防制鸡传染性支气管炎的探索研究.中国预防兽医学报,2000,22 (4):252-255.
    5.陈洪岩,江国托,杨奇伟,等.鸡传染性支气管炎病毒S1基因免疫对鸡的保护作用.中国预防兽医学报,1997,21(4):250-253.
    6.陈天杰,梁眷衡,廖丽春,等.鸡传染性支气管炎D41株弱毒疫苗的研究.广东农业科学,1987,5:46-47.
    7.戴亚斌,丁铲,刘梅,等.重组杆状病毒表达的2株传染性支气管炎病毒S1蛋白的免疫原性评价.中国兽医学报,2003,23(1):18-21.
    8.黄亚东.鸡传染性支气管炎病毒S1基因在毕赤酵母中的表达.病毒学报,2003,19:144-148.
    9.江国托,步志高,刘思国,等.鸡传染性支气管炎病毒中国流行株免疫原S1基因的分子克隆序列分析及其DNA免疫的初步研究.生物工程学报,1999,15(3):305-309.
    10.金伯泉.细胞和分子免疫学[M].第二版,北京:科学出版社,2001, 439-443.
    11.廖明,辛朝安,王林川.鸡传染性支气管炎病毒S1基因在昆虫细胞中的表达.中国兽医学报,1997, 17(6):539-543.
    12.刘胜旺,杜恩岐,孔宪刚,等.鸡传染性支气管炎病毒LX4株mRNA5和mRNA6 cDNA的分子特征.中国病毒学,2003,18(3):265-270.
    13.刘思国,康丽娟,江国托,等.鸡传染性支气管炎病毒核蛋白基因重组真核表达载体的构建.中国兽医学报,2001,21(1):14-16.
    14.刘兴友,汪德刚,金玲,等.用IBV组织灭活苗及油乳剂灭活苗防制鸡肾型传染性支气管炎试验.中国兽医科技,1999,29(8):22-23.
    15.马孟根,王红宁,余勇,等.鸡传染性支气管炎病毒四川分离株N基因DNA免疫质粒的构建.中国兽医科技,2005,35(1):17-21.
    16.荣骏弓,谷守林,胡守萍,等.腺胃病变型鸡传染性支气管炎病毒(IBV-D971株)致弱的研究.中国预防兽医学报,2001,23(6):466-469.
    17.沈倍奋,黄君健,邵宁生.分子文库[M].科学出版社,北京,2001: 24-47.
    18.宋延华,刘福安.含有IBV S1基因的昆虫杆状病毒表达载体的构建.华南农业大学学报, 1998,19(4):1-4.
    19.宋延华,刘福安.鸡传染性支气管炎病毒S1基因在昆虫细胞中表达水平初探.中国病毒学,1999,14 (3):255-258.
    20.王红宁,廖德惠,钟妮娜,等.鸡肾病变型传染性支气管炎的诊治.中国兽医杂志,1994,20(3):18-19.
    21.王志伦,肖玉芳.鸡传染性支气管炎嗜肾性W93株活疫苗研究.中国兽药杂志,2000,34(2):1-2.
    22.吴敬,吴梧桐. B细胞蛋白质抗原表位的研究方法进展.药物生物技术,2000,7(4): 239-242.
    23.徐志凯.细胞融合技术.实用单克隆抗体技术[M].西安:陕西科学技术出版社,1992, 28-30
    24.薛庆善.体外培养的原理与技术[M].北京:科学出版社,2001,940-957.
    25.殷震,刘景华.动物病毒学.第二版.北京:科学出版社,1997, 671-703.
    26.朱立平,陈学清.免疫学常用实验方法[M].北京:人民军医出版社,2000, 352-355.
    27. Abbas A.K., Lichtman A.H., Pober J.S. Cel1ular and MolecuIar Immunology. W B Saunders Company, 2000, 4: 56-101.
    28. Afzelius, B.A. Ultrastructure of human nasal epithelium during an episode of coronavirus infection. Virchows Arch., 1994, 424: 295-300.
    29. Alvarado I R, Villegas P, El-Attrache J, et al. Evaluation of the protection conferred by commercial vaccines against the California 99 isolate of infectious bronchitis virus. Avian Dis, 2003, 47(4): 1298-1304.
    30. Armstrong, J., Niemann, H., Smeekens, S.,et al. Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature, 1984, 308: 751-752.
    31. Armstrong, J., Patel, S., Riddle, P. Lysosomal sorting mutants of coronavirus E1 protein, a Golgi membrane protein. J. Cell Sci, 1990, 95: 191-197.
    32. Balasuriya U.B., Maclachlan N.J., De Vries A.A., et al. Identification of a neutralization site in the major envelope glycoprotein (GL) of equine arteritis virus. Virology, 1995, 207(2): 518-527.
    33. Baudoux, P., Besnardeau, L., Carrat, C., et al. Interferonαinducing property of coronavirus particles and pseudoparticles. Adv. Exp.Med. Biol, 1998a, 440: 377-386.
    34. Baudoux, P., Carrat, C., Besnardeau, L., et al. Coronavirus pseudoparticles formed with recombinant M and E proteins induce a interferon synthesis by leukocytes. J. Virol, 1998b, 72: 8636-8643.
    35. Binder M., Vogtle F.N., Michelfelder S., et al. Identification of their epitope reveals the structural basis for the mechanism of action of the immunosuppressive antibodies basiliximab and daclizumab. Cancer Res, 2007, 67(8): 3518-3523.
    36. Boots A M, Kusters J G, Noort J M, et al. Localization of a T-cell epitope within the nucleocapsid protein of avian coronavirus. Immunology, 1991, 74(1): 8-13.
    37. Boris T., Shmuel C., Meir W. The epitopes for natural polyreactive antibodies are rich in praline. Immunology, 1997, 94: 6335-6339.
    38. Bos, E.C.W., Luytjes, W., van der Meulen, H.,et al. The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology, 1996, 218: 52-60.
    39. Boursnell M E G, Brown T D K, Foulds L J, et al. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol, 1987, 68:57-77.
    40. Casais R, Dove B, Cavanagh D, el al. Recombinant avain infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. JVirol, 2003, 16(77): 9084-9089.
    41. Casais R, Thiel V, Siddell S G, et al. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol, 2001, 75(24): 12359-12369.
    42. Cavanagh D, Davis P J, Darbyshire J H, et al. Coronavirus IBV viral retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination- inhibiting antibody, or induce chicken tracheal protection. J Gen Virol, 1986b, 67: 1435-1442.
    43. Cavanagh D, Davis P J, Darbyshire J H, et al. Induction of humoral neutralizing and haemgglutination-inhibiting antibody by the spike protein of avian infectious bronchitis virus. Avian Pathol, 1984, 13: 573-583.
    44. Cavanagh, D., Davis, P.J., Pappin, D.J. Coronavirus IBV glycopolypeptides: Locational studies using proteases and saponin, a membrane permeablizer. Virus Res, 1986, 4: 145-156.
    45. Cavanagh D, Davis P J. Evolution of avian coronavirus IBV: sequence of the Matrix glycoprotein gene and intergenic region of several serotypes. J Gen Virol, 1988, 69:621-629.
    46. Cavanagh D, Davis PJ, Cook JKA. Infectious bronchitis virus: evidence for recombination within the Massachusetts serotype. Avian Pathol, 1992, 21: 401-408.
    47. Cavanagh D, Naqi S. Infectious bronchitis. In: Saif Y M, Barnes H J, Glisson J R, Fadly A M, McDougald L R, Swayne D E (Eds.), Diseases of Poultry. 11th edn, Ames: Iowa State University Press, 2003:101-119.
    48. Cavanagh D. Coronavirus IBV: further evidence that the surface projections are associated with two glycopolypeptides. J Gen Virol, 1983a, 64: 1787-1791.
    49. Cavanagh D. Coronavirus IBV: structural characterization of the spike protein. J Gen Virol, 1983b, 64: 2577-2583.
    50. Cavanagh D. Coronaviruses in poultry and other birds. Avian Pathol, 2005, 34(6):439-448.
    51. Cavanagh D. Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol, 1997, 142(3):629-633.
    52. Cavanagh D. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus . Avian pathol, 2003, 32(6):567-582.
    53. Charley, B., Laude, H. Induction ofαinterferon by transmissible gastroenteritis coronavirus: Role of transmembrane glycoprotein E1. J. Virol, 1988, 62: 8-11.
    54. Chasey, D., Alexander, D.J. Morphogenesis of avian infectious bronchitis virus in primary chick kidney cells. Arch. Virol, 1976, 52: 101-111.
    55. Corse E and Machamer C E. Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles .J Virol, 2000,74(9): 4319-4326.
    56. Corse E, Machamer C E. The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction. Virology, 2003, 312 (1): 25-34.
    57. de Haan, C.A., Kuo, L., Masters,P S.,et al. Coronavirus particle assembly: Primary structure requirements of the membrane protein. J. Virol, 1998a, 72: 6838-6850.
    58. de Haan, C.A., Roestenberg, P., deWit, M.,et al. Structural requirements for O-glycosylation ofthe mouse hepatitis virus membrane protein. J. Biol. Chem, 1998b, 273: 29905-29914.
    59. de Haan, C.A., Smeets, M., Vernooij, F.,et al. Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein. J. Virol, 1999, 73: 7441-7452.
    60. de Haan, C.A., Vennema, H., Rottier, P.J. Assembly of the coronavirus envelope: Homotypic interactions between the M proteins. J. Virol, 2000, 74: 4967-4978.
    61. de Haan, C.A., deWit, M., Kuo, L.,et al. O-glycosylation of the mouse hepatitis coronavirus membrane protein. Virus Res, 2002a, 82: 77-81.
    62. de Haan, C.A., deWit, M., Kuo, L.,et al.The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain. Virology, 2003, 312: 395-406.
    63. Dennis D S, Brian D A. RNA-dependent RNA polymerase activity in coronavirus-infected cells. J Virol, 1982, 42: 153-164.
    64. Escors, D., Camafeita, E., Ortego, J.,et al. Organization of two transmissible gastroenteritis coronavirus membrane protein topologies within the virion and core. J. Virol, 2001, 75: 12228-12240.
    65. Gomez-Roman V.R., Cao C., Bai Y., et al. Phage-displayed mimotopes recognizing a biologically active anti-HIV-1 gp120 murine monoclonal antibody. J Acquir Immune Defic Syndr, 2002, 31(2): 147-153.
    66. Hideo G., Nobuyuki M., Hiroshi I., et al. Mapping of epitopes and structural analysis of antigenic sites in the nucleoprotein of rabies virus. Journal of General Virology, 2000, 81:119-127.
    67. Hodgson T, Casais R, Dove B, et al. Recombinant infectious bronchitis coronavirus Beaudette with the spike protein gene of the pathogenic M41 strain remains attenuated but induces protective immunity. J Virol, 2004 , 78(24):13804-13811.
    68. Hu J.Q., Li Y.F., Guo J.Q., et al. Production and characterization of monoclonal antibodies to (poly100)S1 protein of avian infectious bronchitis virus. Zoonoses Public Health, 2007, 54: 69-77.
    69. Huang Y P, Lee H C, Cheng M C, et al. S1 and N gene analysis of avian infectious bronchitis viruses in Taiwan. Avian Dis, 2004, 48(3): 581-589.
    70. Ignjatovic J , Galli L. Structural proteins of avian infectious bronchitis virus : role in immunity and protection .Adv Exp Med Biol , 1993 , 342 :449-453.
    71. Ignjatovic J, Galli L. Immune responses to structural proteins of avian infectious bronchitis virus. Avian Pathology, 1995, 22:313-332.
    72. Ignjatovic J, Galli L. The S1 glycoprotein but not the N or M protein of avian infectous bronchitis virus induces protection in vaccinated chickens. Arch Virol, 1994, 138:117-134.
    73. Ignjatovic J, Sapats S, Ashton F. A long-term study of Australian infectious bronchitis viruses indicates a major antigenic change in recently isolated strains. Avian Pathology, 1997, 26:535-552.
    74. Ignjatovic J, Sapats S. Identification of previously unknown antigenic epitopes on the S and Nproteins of avian infectious bronchitis virus. Archives of Virology, 2005, 150(9):1813-1831
    75. Isman M M, Cho K O, Hasoksuz M, et al. Antigenic and genomic relatedness of turkey origi ntoronaviruses, bovine coronaviruses, and infectious bronchitis virus of chickens. Virus Res, 2001, 45:978-984.
    76. Johnson M A, Pooley C, Ignjatovic J, et al. A recombinant fowl adenovirus expressing the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus. Vaccine, 2003, (21-22):2730-2736.
    77. Kapczynski D R, Hilt D A, Shapiro D, et al. Protection of Chickens from Infectious Bronchitis by In Ovo and Intramuscular Vaccination with a DNA Vaccine Expressing the S1 Glycoprotein.Avian Disease, 2003, 47:272-285.
    78. Karaca K, Naqi S A. Monoclonal antibody blocking ELISA to detect serotype-specific infectious bronchitis virus antibodies. Vet Microbiol, 1993, 34(3):249-257.
    79. Klumperman, J., Locker, J.K., Meijer, A., et al. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J. Virol, 1994, 68: 6523-6534.
    80. Koch G, Hartog L, Kant A, et al. Antigenic domains of the peplomer protein of avian infectious bronchitis virus: correlation with biological functions.J Gen Virol, 1990, 71: 1929-1935.
    81. Kopecky S A, Lyles D S. Constrasting effects of matrix protein on apoptosis in HeLa and BHK cells infected with vesicular stomatitis virus are due to inhibition of host gene expression.J Virol, 2003, 77(8): 4658-4669.
    82. Kopecky S A, Willingham M C, Lyles D S. Matrix protein and another viral component contribute to induction of apoptosis in cells infected with vesicular stomatitis virus. J Virol, 2001, 75(24):12169-12181.
    83. Kusters J G, Niesters H G, Lenstra J A. Phylogeny of antigenic variants of avian coronavirus IBV. Virology, 1989, 169:217-221.
    84. Laude, H., Gelfi, J., Lavenant, L.,et al. Single amino acid changes in the viral glycoprotein M affect induction ofαinterferon by the coronavirus transmissible gastroenteritis virus. J. Virol, 1992, 66: 743-749.
    85. Lee C W, Jackwood M W. Spike gene analysis of the DE072 strain of infectious bronchitis virus: Origin and Evolution. Virus Genes, 2001, 22:85-91.
    86. Li D, Cavanagh D. Coronavirus IBV-induced membrane fusion occurs at near neutral pH. Arch Virol, 1992, 122:307-316.
    87. Lim K P, Liu D X. Characterization of the two overlapping papain-like proteinase domains encoded in gene1 of the coronavirus infectious bronchitis virus and determination of the C-terminal cleavage site of an 87-kD protein. Virology, 1998, 245:303-312.
    88. Lim K.P., Lisa F P Ng, Liu D X. Identification of a novel cleavage acticity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus avian infectious bronchitis virus and characterization of the cleavage products. J Virol, 2000, 74(4): 1674-1685.
    89. Lisa F P Ng, Liu D X. Identification of a 24-kD polypeptide processed from the coronavirusinfectious bronchitis virus 1a polyprotein by the 3c-like proteinase and determination of its cleavage sites. Virology, 1998, 243:388-395.
    90. Liu D X, Brierley I, Tibbles K W, et al. A 100-Kilodalton polypepide encoded by open reading frame (ORF1b) of the coronavirus infectious bronchitis virus is processed by ORF1a products. J Virology, 1994, 68:5772-5780.
    91. Liu D X, Brown T D K. Characterization and mutational analysis of an ORF 1a-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus 1a/1b polyprotein. Virology, 1995b, 209:420-427.
    92. Liu D X, Cavanagh D, Green P, et al. A polycistronic mRNA specified by the coronavirus infectious bronchitis virus. Virology, 1991, 184(2):531-544.
    93. Liu D X, Inglis S G, et al. Identification of two new polypeptides encoded by mRNA5 of the coronavirus infectious bronchitis virus. Virology, 1992, 186(1):342-347.
    94. Liu D X, Tibbles K W, Cavanagh D, et al. Identification, expression, and processing of an 87-kD polypeptide encoded by ORF1a of the coronavirus infectious bronchitis virus. Virology, 1995a, 208:48-57.
    95. Liu D X, Xu H Y, Brown T D K. Proteolytic processing of the coronavirus infectious bronchitis virus 1a polyprotein: Identification of a 10-Kilodalton polypeptide and determination of its cleavage sites. J.Virology, 1997, 71(3): 1814-1820.
    96. Liu S W, Chen J F, Chen J D, et al. Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas). J Gen Virol, 2005, 86: 719-725.
    97. Liu S W, Kong X G. A new genotype of nephropathogenic infectious bronchitis virus circulating in vaccinated and non-vaccinated flocks in China. Avian Pathol, 2004, 33 (3): 321-327.
    98. Liu S W, Zhang Q X, Chen J D, et al. Genetic diversity of avian infectious bronchitis coronavirus strains isolated in China between 1995 and 2004. Arch Virol , 2006 , 151(6) :1133-1148.
    99. Locker, J.K., Griffiths, G., Horzinek, M.C., et al. O-glycosylation of the coronavirus M protein. Differential localization of sialyltransferases in N- and O-linked glycosylation. J. Biol. Chem, 1992, 267: 14094-14101.
    100. Locker, J.K., Klumperman, J., Oorschot, V., et al. The cytoplasmic tail of mouse hepatitis virus M protein is essential but not sufficient for its retention in the Golgi complex. J. Biol. Chem, 1994, 269: 28263-28269.
    101. Maceyka, M., Machamer, C.E. Ceramide accumulation uncovers a cycling pathway for the cis-Golgi network marker, infectious bronchitis virus M protein. J. Cell Biol, 1997, 139: 1411-1418.
    102. Machamer, C.E., Rose, J.K. A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. J. Cell Biol, 1987, 105: 1205-1214.
    103. Machamer, C.E., Mentone, S.A., Rose, J.K., et al. The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. Proc. Natl. Acad. Sci. USA, 1990, 87: 6944-6948.
    104. Macnaughton, M.R., Davies, H.A. Two particle types of avian infectious bronchitis virus. J. Gen.Virol, 1980, 47: 365-372.
    105. Maeda, J., Maeda, A., Makino, S. Release of coronavirus E protein in membrane vesicles from virus-infected cells and E protein-expressing cells. Virology, 1999, 263: 265-272.
    106. Mase M, Tsukamoto K, Imai K, et al. Phylogenetic analysis of avian infectious bronchitis virus strains isolated in Japan. Arch Virol, 2004, 149(10): 2069-2078.
    107. Masters P S. The molecular biology of coronaviruses. Adv Virus Res, 2006, 66: 193-292.
    108. Mayer T, Tamura T, Falk M, et al. Membrane integration and intracellular transport of the coronavirus glycoprotein El, a classⅢmembrane glycoprotein. J Biol Chem, 1988, 263:14956-14963.
    109. Mebatsion T., Koolen M.J.M., Leonie T.C., et al. Newcastle Disease Virus (NDV) marker vaccine: an immunodominant epitope on the nucleoprotein gene of NDV can be deleted or replaced by a foreign epitope. Journal of Virology, 2002, 76(20): 10138-10146.
    110. Mockett A P, Cavanagh D, Brown T D K. Monoclonal antibodies to the S1 spike and membrane proteins of avian infectious bronchitis coronavirus strain Massachusetts M41. J Gen Virol, 1984, 65(12):2281-2286.
    111. Narayanan, K., Chen, C.J., Maeda, J., et al. Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal. J. Virol, 2003,77: 2922-2927.
    112. Niesters H G M, Bleumink-Pluym N M C, Osterhaus A D M E, et al. Epitopes on the peplomer protein of infectious bronchitis virus strain M41 as defined by monoclonal antibodies. Virology, 1987, 161: 511-519.
    113. Opstelten, D.J., Raamsman, M.J., Wolfs, K., et al. Envelope glycoprotein interactions in coronavirus assembly. J. Cell Biol, 1995, 131: 339-349.
    114. Parr R.L., Collissor E.W. Epitopes on the spike protein of a nephropathogenic strain of infectious bronchitis virus. Arch Virol, 1993, 133: 369-383.
    115. Raamsman, M.J., Locker, J.K., de Hooge, A., et al. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J. Virol, 2000, 74: 2333-2342.
    116. Risco, C., Anton, I. M., Sune, C.,et al. Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion. J. Virol, 1995, 69: 5269-5277.
    117. Rob H.M., Langeveld P.M., Wim M.M., et al. Slootstra. Synthetic Peptide Vaccines: Unexpected Fulfillment of Discarded Hope. Biologicals, 2001, 29: 233-236.
    118. Rottier, P., Brandenburg, D., Armstrong, J., et al. Assembly in vitro of a spanning membrane protein of the endoplasmic reticulum: The E1 glycoprotein of coronavirus mouse hepatitis virus A59. Proc. Natl. Acad. Sci. USA, 1984, 81:1421-1425.
    119. Rottier P J M, Welling G W, et al. Predicted membrane topology of the coronavirus protein E1. Biochmiatry, 1986, 25:1335-1339.
    120. Rottier, P.J.M., Rose, J.K. Coronavirus E1 glycoprotein expressed from cloned cDNA localizes in the Golgi region. J. Virol, 1987, 61: 2042-2045.
    121. Rottier, P.J.M. In“The Coronaviridae”(S. G. Siddell, ed.). Plenum, New York, 1995, 115-139.
    122. Seah J N, Yu L, Kwang J. Localization of linear B cell epitopes on infectious bronchitis virus nucleocapsid protein. Vet Microbiol, 2000, 75(1): 11-16.
    123. Seo H S, Wang L, Smith R. The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus from nucleocapsid induces cytotoxic T lymphocytes and protects chickens acute infection. J Virol, 1997, 71(10):7889-7894.
    124. Smothers J.F., Henikoff S., Carter P., et al. Phage display Affinity selection from biological libraries. Seience, 2002, 298(5593): 621-622.
    125. Song C S, Lee Y J, Lee C W, et al. Induction of protective immunity in chickens vaccinated with infectious bronchitis virus S1 glycoprotein expressed by a recombinant baculovirus. J Gen Virol, 1998, 79 (4): 719-723.
    126. Sturman L S, Holmes K V and Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid . J Virol, 1980, 33:449-462.
    127. Tian L, Wang H N, Lu D, et al. The immunoreactivity of a chimeric multi-epitope DNA vaccine against IBV in chichens. Biochem Biophys Res Commun, 2008, 377(1): 221-225.
    128. Tibbles K W, Brierley I, Cavanagh D, et al. Characterization in Vitro of autocatalytic processing activity associated with the predicted 3C-Like proteinase domain of the coronavirus Avian Infectious Bronchitis Virus. J Virology, 1996, 70 (3): 1923-1930.
    129. Tomley F, Mockett A P, Boursnell M, et al. Expression of the infectious bronchitis virus spike protein by recombinant vaccinia virus and induction of neutralizing antibodies in vaccinated mice. J Gen Virol, 1987, 68: 2291-2298.
    130. Vennema, H., Godeke, G.J., Rossen, J.W.,et al. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J, 1996, 15: 2020-2028.
    131. Wang L, Parr R L, King D J, et al. A highly conserved epitope on the protein of infectious bronchitis virus. Arch Virol, 1995, 140: 2201-2213.
    132. Wang X, Schnitzlein W M, Tripathy D N, et al. Construction and immunogenicity studies of recombinant fowlpoxvirus containing the S1 gene of Massachusetts 41 strain of infectious bronchitis virus. Avian Dis, 2002, 46(4): 831-838.
    133. Wang X.N., Zhang G.P., Zhou J.Y., et al. Identification of neutralizing epitopes on the VP2 protein of infectious bursal disease virus by phage-displayed heptapeptide library screening and synthetic peptide mapping. Viral Immunology, 2005, 18: 549-557.
    134. Wu H.C., Yeh C.T., Huang Y.L., et al. Structural relationship between nucleocapsid-binding activity of the rabies virus phosphoprotein (P) and exposure of epitope 402-13 located at the C terminus. Journal of General Virology, 2002, 83: 3035-3043.
    135. Xiao Y., Lu Y., Chen Y.H. Epitope-vaccine as a new strategy against HIV-1 mutation. Immunology Letters, 2001, 77: 3-6.
    136. Yamada, Y.K., Yabe, M., Ohtsuki, T., et al. Unique N-linked glycosylation of murine coronavirusMHV-2 membrane protein at the conserved O-linked glycosylation site. Virus Res, 2000, 66: 149-154.
    137. Zhou J Y, Cheng L Q, Zheng X J, et al. Generation of the transgenic potato expressing full-length spike protein of infectious bronchitis virus. J Biotechnol, 2004, 111(2): 121-130.
    138. Zhou J Y, Wu J X, Cheng L Q, et al. Expression of immunogenic S1 glycoprotein of infectious bronchitis virus in transgenic potatoes. J Virol, 2003, 77(16): 9090-9093.
    139. Zhou M L, Williams A K, Chung S I, et al. The infectious bronchitis virus nucleocapsid protein binds RNA sequences in the 3' terminus of the genome. Virology, 1996, 217(1): 191-199.
    140. Zhou Y.J., An T.Q., He Y.X., et al. Antigenic structure analysis of glycosylated protein 3 of porcine reproductive and respiratory syndrome virus. Virus Res, 2006, 118(1-2): 98-104.
    141. Ziegler A F, Ladman B S, Dunn P A, et al. Nephropathogenic infectious bronchitis in Pennsylvania chickens 1997-2000. Avian Dis, 2002, 46(4): 847-858.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700