烟粉虱吡虫啉抗性的监测与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟粉虱(Bemisia tabaci Gennadius)是一种重要的农业害虫,主要分布于热带以及亚热带地区,其寄主植物超过600余种,曾被冠以“超级害虫”的称号。烟粉虱不仅可以直接对寄主植物造成危害,而且可以传播多种植物病毒,对农业生产造成了严重的危害。烟粉虱是一个处于快速进化中的复合种群,存在许多生物型,各个生物型之间存在生殖隔离,在形态上难以区分,而在生活习性,适合度,传毒能力以及抗药性等方面存在一定的差别。目前报道的烟粉虱生物型超过27种,其中B型和Q型是为害最严重、呈全球性分布的生物型,而其他生物型为局部分布。B型烟粉虱先于Q型烟粉虱入侵我国农业生态系统,但近年来Q型已逐渐取代B型。
     吡虫啉是新烟碱类杀虫剂的代表药剂,自从1991年商品化以来,被用于防治多种作物上的害虫,由于其良好的内吸活性,尤其对刺吸式害虫效果显著。吡虫啉是一种神经毒剂,作用于昆虫的烟碱型乙酰胆碱受体(nAChR).由于其具备良好的选择毒力,对昆虫高毒而对哺乳动物低毒,所以被广泛使用。随着各类杀虫剂的不合理施用,烟粉虱逐渐对多种杀虫剂如有机磷、有机氯、氨基甲酸酯、拟除虫菊酯以及昆虫生长调节剂等产生了不同程度的抗性。在烟粉虱的防治过程中,由于吡虫啉良好的防效,使得其施用过于频繁,早在1998年西班牙南部Q型烟粉虱就对其产生了抗性。
     本文对我国烟粉虱生物型和抗药性水平进行了监测,对B型烟粉虱对吡虫啉抗性遗传方式、交互抗性及抗性生化机理进行了系统研究,并运用转录组测序和实时荧光定量PCR技术成功筛选出与烟粉虱吡虫啉抗性相关的2个细胞色素P450基因。本文的研究结果明确了我国田间烟粉虱的抗性和生物型的发展状况,并为烟粉虱对新烟碱类杀虫剂抗性的治理提供重要理论依据。
     一、烟粉虱生物型及抗药性的监测
     对我国东南沿海地区7个省以及新疆维吾尔自治区在内的14个点烟粉虱的生物型及抗药性进行了监测。在这14个点中共检测到两种烟粉虱生物型(B型和Q型),9个点为Q型烟粉虱,3个点为B型,2个点为B型和Q型共存。在所监测的地区,两种生物型的所有烟粉虱已经对吡虫啉(Imidacloprid)和噻虫嗪(Thiamethoxam)产生了中到高水平的抗性(与敏感种群比较,吡虫啉28至1900倍,噻虫嗪29倍至1200倍);对αα-氯氰菊酯(alpha-cypermethrin)产生了中到高水平的抗性(22-610倍);只有部分种群对氟虫腈(Fipronil)产生了低到中等抗性(10-25倍);对多杀菌素(Spinosad)产生了低水平的抗性(5.7-6.4倍);所有调查种群对阿维菌素均保持敏感。在我国东南沿海地区,Q型烟粉虱正在逐渐取代B型烟粉虱而成为优势种群;我国烟粉虱种群已经对新烟碱类杀虫剂吡虫啉和噻虫嗪产生中高水平抗性,需要限制使用;我国烟粉虱尚未对阿维菌素产生抗性,可以与其他药剂轮换使用,以延缓烟粉虱抗药性的发展。
     二、B型和Q型烟粉虱种群竞争与抗药性的关系
     在室内用棉花植株饲养情况下,对采自浙江杭州的烟粉虱B型和Q型混合种群的生物型组成以及抗药性水平进行了多代的监测。在室内饲养的F0代,两种生物型个体比例相当;在F10代,Q型已经完全被B型所取代。与F0代相比,F1o代烟粉虱种群对吡虫啉、阿维菌素和氟虫腈的抗性水平明显下降,而对αα-氯氰菊酯的抗性保持稳定。该研究表明:在没有杀虫剂选择压力的室内条件下,B型烟粉虱比Q型更具生存优势。然而在新烟碱类杀虫剂广泛使用的田问条件下,烟粉虱Q型因比B型对新烟碱类杀虫剂具有更强的抗性而获得竞争优势。
     三、B型烟粉虱抗吡虫啉品系的筛选、交互抗性以及抗性遗传方式
     利用成虫浸叶法进行了连续30代筛选,培育了1个B型烟粉虱抗吡虫啉品系NJ-Imi,其与对照品系NJ相比有490倍的抗性。研究发现,NJ-Imi品系对其他3种新烟碱类杀虫剂啶虫脒(Acetamiprid),噻虫嗪和烯啶虫胺(Nitenpyram)存在高水平的交互抗性;与杀虫单(monosultap),巴丹(Cartap)以及多杀菌素存在低水平交互抗性;与阿维菌素无交互抗性。B型烟粉虱对吡虫啉的抗性为常染色体控制的半显性遗传。
     四、B型烟粉虱抗吡虫啉品系的抗性生化机理
     以B型烟粉虱抗吡虫啉品系(NJ-Imi)和敏感品系(NJ)为试虫,通过增效剂生物测定和解毒代谢酶活力分析,研究了B型烟粉虱吡虫啉抗性的生化机理。分别在筛选过程中的地15代(G15)和第30代(G30)测定了PBO, DEM和DEF对吡虫啉的增效作用。在抗性品系中,多功能氧化酶抑制剂PBO在G15和G30分别对吡虫啉有2.5倍和2.1倍的增效作用,而在敏感品系中没有增效作用;抗性品系细胞色素P450单加氧酶活力为敏感品系的2.5倍;在抗性和敏感品系中,谷胱甘肽S-转移酶抑制剂DEM对吡虫啉都没有增效作用,谷胱甘肽S-转移酶的活力在两品系间也没有显著差异;在G15时,在抗}性和敏感品系中,酯酶抑制剂DEF对吡虫啉有2.7倍和2.5倍的增效作用,而在G30时DEF对吡虫啉没有明显的增效作用;酯酶活力在抗性品系中比敏感品系中有所降低;这表明在抗性品系中,多功能氧化酶活力的提高可能参与了吡虫啉抗性的形成。
     五、B型烟粉虱抗吡虫啉品系转录组的测定以及数据的分析
     利用Illumina (Solexa)测序平台,结合RNA-Seq技术,对B型烟粉虱抗吡虫啉品系成虫转录组进行了测序。经测序得到3700万个reads,经聚类分析后得到7万个unigenes (平均长度619bp)。基于NCBI以及其他生物信息学数据库,对组装获得的unigenes做了Contig长度分布,Scaffold-gene长度分布,Scaffold-gene功能注释,Scaffold-gene的GO分类,蛋白功能和分类预测以及Scaffold-gene代谢通路分析。同时,还分析了转录组数据中抗药性相关的基因,包括细胞色素P450基因,酯酶基因(EST),谷胱甘肽S-转移酶基因(GST)以及烟碱型乙酰胆碱受体(nAChR)。烟粉虱转录组测序数据将为烟粉虱抗药性机理研究工作奠定了良好的基础。
     六、与吡虫啉抗性相关的烟粉虱细胞色素P450基因筛选
     从B型烟粉虱转录组数据中筛选出编码细胞色素P450的序列141条(长度从100bp到2000bp以上),去掉其中较短的序列以及重复测序的序列,共得到37条编码P450基因的序列,将这些序列与NCBI的nr数据库进行比较,并根据细胞色素P450基因的命名规则进行命名,其中有2个序列已命名(CYP6CX1V1知CYP6CM1),其余35个细胞色素P450基因均为新命名的P450基因。通过传统Sanger测序法对这些序列进行了克隆和测序验证。采用实时荧光定量PCR比较了这37个P450基因mRNA在NJ-Imi抗性品系(B型)、China-YN抗性品系(Q型)和SUD-S敏感品系(非B/Q)中的表达水平。结果表明:CYP6CX4知CYP6CM1在2个抗性品系中具有10-35倍的过量表达;3个P450基因(CYP6CX2, CYP6CX3,知CYP6DZ4)在2个抗性品系具有1.9-6.7倍的过量表达;5个P450基因(CYP4C64,CYP4G69,CYP6DW2,CYP6DW3知CYP6CX5)的mRNA表达量在3个品系中相近。为了明确CYP6CX4知CYP6CM1基因过量表达与抗药性的关系,分别用区分剂量处理了China-XJ田间品系(B型)和China-NJ田间品系(Q型)烟粉虱成虫,这2个P450基因在吡虫啉处理存活成虫中mRNA表达量均明显高于未处理成虫,表明这2个P450基因过量表达与吡虫啉抗性有关。已有研究报道了CYP6CM1过量表达与吡虫啉抗性有关,CYP6CX4与吡虫啉抗性相关为本研究首次发现。
The whitefly Bemisia tabaci (Gennadius) is one of the most devastating pest insects and occurs in subtropical and tropical agriculture as well as in greenhouse production systems. B. tabaci has been recorded from more than 600 plant specices. Over the last three decades, this pest has caused heavy losses of crop yield by direct feeding damage, excreting honey dew that favours sooty mould production and transmitting plant viruses. B. tabaci comprises a complex population with many biotypes, of which the B-biotype and Q-biotype are the most widespread biotypes. Both B-biotype and Q-biotype B. tabaci have invaded into China, and the Q-biotype is supplanting the B-biotype which used to be ubiquitous in China.
     Imidacloprid, the first commercial neonicotinoid insecticide, was introduced in 1991. As a neurotoxin, imidacloprid acts on the nicotinic acetylcholine receptor (nAChR) of insects and is selectively toxic to insects relative to mammals. Imidacloprid is used to control sucking and biting pest insects including ricehoppers, aphids, thrips, whiteflies, termites, turf insects, soil insects and some beetles. Control of B. tabaci is heavily dependent on chemical insecticides, and this pest has developed resistance to a wide range of insecticides including carbamates, organophosphates, pyrethroids, insect growth regulators and neonicotinoids. The Q-biotype B. tabaci from Spain has evolved resistance to imidacloprid since 1998.
     In the present study, the biotype and resistance status of B. tabaci collected from southeastern China was investigated. Inheritance mode, cross resistance spectrum, and biochemical mechanisms of imidacloprid resistance were studied in a resistant B-biotype B.tabaci strain. Combined transcriptome sequencing and real-time PCR,2 P450 genes associated with imidacloprid resistance were identified in both B-biotype and Q-biotype B. tabaci. These results will establish the technical basis of whitefly resistance management strategy in China.
     1. Biotype and insecticide resistance status of the whitefly B. tabaci from China
     Two different biotypes of B. tabaci (B-biotype and Q-biotype) were detected in south-eastern China, and the samples collected from geographical regions showed a prevalence of the Q-biotype and the coexistence of B-and Q-biotypes in some regions. Moderate to high levels of resistance to two neonicotinoids were established in both biotypes (28-1900-fold to imidacloprid,29-1200-fold to thiamethoxam. Medium to high levels of resistance to alpha-cypermethrin (22-610-fold) were also detected in both biotypes. Four out of 12 populations had low to medium levels of resistance to fipronil (10-25-fold). Four out of 12 populations showed low levels of resistance to spinosad (5.7-6.4-fold). All populations tested were susceptible to abamectin. We can get the conclusion that the Q-biotype B. tabaci is supplanting the B-biotype which used to be ubiquitous in China. Field populations of both B and Q-biotypes of B. tabaci have developed high levels of resistance to imidacloprid and thiamethoxam. Abamectin is the most effective insecticide against adult B. tabaci from all populations.
     2. Competition between the B- and Q-biotypes of B. tabaci and its relevance to insecticide resistance
     The insecticide resistance of specimens of a mixed population of the B- and Q-biotypes of B. tabaci collected in the city of Hangzhou, Zhejiang Province was monitored for several generations. When the population was reared on cotton without insecticides for 10 generations, the proportion of B-biotype to Q-biotype individuals in the F0 population was similar; however the B-biotype completely replaced the Q-biotype in the F10 population. Resistance to imidacloprid, abamectin and fipronil in the F10 population was significantly reduced compared with the F0 population, but resistance to a-cypermethrin was similar between the F0 and F10 populations. These results indicate that the B-biotype is competitively superior to the Q-biotype in the absence of insecticide selection pressure under laboratory conditions. However, the Q-biotype is competitively superior in field conditions where neonicotinoids are widely used, presumably because it has greater potential to develop resistance to neonicotinoids than the B-biotype.
     3. Cross-resistance and mode of inheritance in imidacloprid-resistant B-biotype B. tabaci
     The NJ-Imi strain of B-biotype B. tabaci was selected from the NJ strain with imidacloprid for 30 generations. The NJ-Imi strain exhibited 490-fold resistance to imidacloprid, high levels of cross-resistance to three other neonicotinoids, low levels of cross-resistance to monosultap, cartap and spinosad, but no cross-resistance to abamectin and cypermethrin. Imidacloprid resistance in the NJ-Imi strain was autosomal and semi-dominant.
     4. Biochemical mechanism of imidacloprid resistance in B-biotype B. tabaci
     The biochemical mechanisms of imidacloprid resistance in B-biotype B. tabaci were studied by synergism test, detoxifing enzyme activity. The synergistic effects of PBO, DEF and DEM on imidacloprid in strain NJ were compared with strain NJ-Imi at both G15 (15th generaion of selection) and G30 (30th generation of selection). The oxidase inhibitor PBO showed 2.5-and 2.1-fold synergism with imidacloprid in the NJ-Imi strain at G15 and G30 respectively, but no synergism of imidacloprid efficacy in strain NJ. P450 monooxygenase activity in strain NJ-Imi (elevated 2.5-fold) was significantly higher than in strain NJ. The glutathione depleter DEM did not show appreciable synergism in combination with imidacloprid in either the NJ or the NJ-Imi strain. The glutathione S-transferase activity towards CDNB was not significantly different between strains.The esterase inhibitor DEF synergised imidacloprid both in strain NJ (2.7-fold) and in strain NJ-Imi G15 (2.5-fold), but not in strain NJ-Imi G30. Esterase activity usingα-naphthyl acetate as substrate was significantly (0.6-fold) lower in strain NJ-Imi than in strain NJ. The results indicate oxidative degradation at least to some extent in the resistant strain.
     5. Data analysis of the transcriptome sequencing of B-biotype B. tabaci adults
     A whitefly (B-biotype) transcriptome was de novo assembled using a short read sequencing technology (Solexa). Over 37 million short reads were produced and more than 70 thousand unique sequences (mean size 619 bp) were assembled. Scaffold gene annotation, gene ontology and COG function classification were presented based on the different databases of NCBI. All these scaffold genes were further mapped to pathways. We analyzed the novel insecticide resistance-related genes including P450s, ESTs, GSTs and nAChRs from our database. Our study will provide an important basis for investigating resistance mechanisms of B. tabaci.
     6. Genome wide screen of imidacloprid resistance related P450 genes in B. tabaci.
     A total of 141 unique sequences annotated as cytochrome P450 genes (partial or full length cDNA, from~100bp to over 2000bp) were identified from the transcriptome database, and 35 new P450 genes were named based on the database of NCBI. Real-time quantitative PCR was used to analyse the relative expression of the 37 P450 genes between resistant and susceptible strains. Of these, two P450 genes (CYP6CX4 and CYP6CM1) were upregulated in two resistant strains compared with a susceptible SUD-S strain (from 10 to 35 fold). Another 3 P450 genes were also upregulated in two strains (CYP6CX2, CYP6CX3, and CYP6DZ, from 1.9 to 6.7 fold). The expression levels of five P450 genes (CYP4C64, CYP4G69, CYP6DW2, CYP6DW3, and CYP6CX5) were similar among three strains (different biotypes). An evidently elevation of expression level of CYP6CX4 and CYP-6CM1 were observed in survivors after exposure to a high dose of imidacloprid compared with untreated adults, which confirmed that overexpression of these two P450 genes are involved in imidacloprid resistance in B. tabaci.
引文
1 陈庭慧,张帆,贾栋伟等,2009.一种标定烟粉虱若虫位置及判断若虫发育阶段的方法.昆虫知识46(6):974-977.
    2 封云涛,徐宝云,吴青君等,2009.杀虫剂分子靶标烟碱型乙酰胆碱受体研究进展.农药学学报11(2):149-158.
    3 姜京宇,2001.河北省爆发烟粉虱.植保技术与推广21(1):42-43.
    4 刘彩峰,董双林,2008.不同地区烟粉虱对几种杀虫剂相对抗药性测定.中国棉花35:9-10.
    5 罗晶,2004.宁夏地区烟粉虱生活习性及发生规律研究.宁夏农林科技4:2003-2004.
    6 邱高辉,韩召军,2007.麦长管蚜烟碱型乙酰胆碱受体基因的克隆和序列分析.昆虫学报50(8):762-768.
    7 王利华,2005.烟粉虱对高效氯氰菊酯和阿维菌素抗性的生化和分子机理[D].南京:南京农业大学.
    8 王利华,吴益东,2004.与拟除虫菊酯抗性相关的烟粉虱钠通道基因突变及其检测.昆虫学报47:449-453.
    9 吴益东,杨亦桦,陈进等,2000.增效醚(PBO)对棉铃虫细胞色素P450的抑制作用及对拟除虫菊酯的增效作用.昆虫学报43(2):138-142.
    10吴益东,2000.增效醚(PBO)对棉铃虫细胞色素P450的抑制作用及对拟除虫菊酯的增效作用.昆虫学报43:138-142.
    11 张冬梅,2005.西葫芦银叶病叶片的光合生理与解剖学特征.植物病理学报35:327-332.
    12张慧杰,张战备,雷逢进等,2002.重要经济害虫烟粉虱的发生.昆虫知识39(1):79-80.
    13张慧杰,段国琪,张战备等,2005.西葫芦银叶病叶片的光合生理与解剖学特征.植物病理学报35(4):327-332.
    14 Adams, M., Kelley, J., Gocayne, J., Dubnick, M., Polymeropoulos, M., Xiao, H., Merril, C., Wu, A., Olde, B., Moreno, R., et, al,1991. Complementary DNA sequencing:expressed sequence tags and human genome project. Science 252,1651-1656.
    15 Alon, M., Alon, F., Nauen, R., Morin, S.,2008. Organophosphates' resistance in the B-biotype of Bemisia tabaci (Hemiptera:Aleyrodidae) is associated with a point mutation in an ace 1-type acetylcholinesterase and overexpression of carboxylesterase. Insect Biochemistry and Molecular Biology 38,940-949.
    16 Alon, M., Benting, J., Lueke, B., Ponge, T., Alon, F., Morin, S.,2006. Multiple origins of pyrethroid resistance in sympatric biotypes of Bemisia tabaci (Hemiptera:Aleyrodidae). Insect Biochemistry and Molecular Biology 36,71-79.
    17 Bass, C., Lansdell, S.J., Millar, N.S., Schroeder, I., Turberg, A., Field, L.M., Williamson, M.S., 2006. Molecular characterisation of nicotinic acetylcholine receptor subunits from the cat flea, Ctenocephalides felis (Siphonaptera:Pulicidae). Insect Biochemistry and Molecular Biology 36, 86-96.
    18 Baumann, A., Jonas, P., Gundelfinger, E.,1990. Sequence of Dα2, a novel a-like subunit of Drosophila nicotinic acetylcholine receptors. Nucleic Acids Research 18,3640.
    19 Bedford, I.D., Briddon, R.W., Brown, J.K., Rosell, R.C., Markham, P.G.,1994. Geminivirus transmission and biological characterisation of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Annals of Applied Biology 125,311-325.
    20 Betz, H., Eckart, D.G,1986a. Primary structure of a developmentally regulated nicotinic acetylcholine receptor protein from Drosophila. EMBO Journal 5,1503-1508.
    21 Borras, T., Morozova, T.V., Heinsohn, S.L., Lyman, R.F., Mackay, T.F.C., Anholt, R.R.H.,2003. Transcription Profiling in Drosophila Eyes That Overexpress the Human Glaucoma-Associated Trabecular Meshwork-Inducible Glucocorticoid Response Protein/Myocilin (TIGR/MYOC). Genetics 163,637-645.
    22 Bossy, B., Ballivet, M., Spierer, P.,1988. Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. The EMBO journal 7,611-618.
    23 Bowers, W., Ohta, T., Cleere, J., Marsella, P.,1976. Discovery of insect anti-juvenile hormones in plants. Science 193,542-547.
    24 Boykin, L.M., Shatters, R.G., Rosell, R.C., McKenzie, C.L., Bagnall, R.A., Paul, Frohlich, D.R., 2007. Global relationships of Bemisia tabaci (Hemiptera:Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Molecular phylogenetics and evolution 44, 1306-1319.
    25 Bradford, M.M.,1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72,248-254.
    26 Brandt, A., Scharf, M., Pedra, J.H.F., Holmes, G, Dean, A., Kreitman, M., Pittendrigh, B.R.,2002. Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst(2)DDT locus. Insect Molecular Biology 11,337-341.
    27 Brooks, GT., Pratt, G.E., Mace, D.W., Cocks, J.A.,1985. Inhibitors of juvenile hormone biosynthesis in corpora allata of the cockroach Periplaneta americana (L.) in vitro. Pesticide Science 16,132-142.
    28 Brown, J.K., Coats, S.a., Bedford, I.D., Markham, P.G., Bird, J., Frohlich, D.R.,1995a. Characterization and distribution of esterase electromorphs in the whitefly, Bemisia tabaci (Genn.) (Homoptera:Aleyrodidae). Biochemical genetics 33,205-214.
    29 Brown, J.K., Frohlich, D.R., Rosell, R.C.,1995b. The Sweetpotato or Silverleaf Whiteflies: Biotypes of Bemisia tabaci or a Species Complex? Annual Review of Entomology 40,511-534.
    30 Brown, J.K., Perring, T.M., Cooper, a.D., Bedford, I.D., Markham, P.G.,2000. Genetic analysis of Bemisia (Hemiptera:Aleyrodidae) populations by isoelectric focusing electrophoresis. Biochemical genetics 38,13-25.
    31 Brun, A., Cuany, A., Le Mouel, T., Berge, J., Amichot, M.,1996. Inducibility of the Drosophila melanogaster cytochrome P450 gene, CYP6A2, by phenobarbital in insecticide susceptible or resistant strains. Insect Biochemistry and Molecular Biology 26,697-703.
    32 Byrne, F.,1997. Kinetics of Insensitive Acetylcholinesterases in Organophosphate-Resistant Tobacco Whitefly,Bemisia tabaci(Gennadius) (Homoptera:Aleyrodidae). Pesticide Biochemistry and Physiology 58,119-124.
    33 Byrne, F.J., Castle, S., Prabhaker, N., Toscano, N.C.,2003. Biochemical study of resistance to imidacloprid in B biotype Bemisia tabaci from Guatemala. Pest management science 59,347-352.
    34 Byrne, F.J., Gorman, K.J., Cahill, M., Denholm, I., Devonshire, A.L.,2000. The role of B-type esterases in conferring insecticide resistance in the tobacco whitefly, Bemisia tabaci (Genn). Pest management science 56,867-874.
    35 Cahill, M., Jarvis, W., Gorman, K., Denholm, I.,1996. Resolution of baseline responses and documentation of resistance to buprofezin in Bemisia tabaci (Homoptera:Aleyrodidae). Bulletin of Entomoloical Research 86 (2),117-122.
    36 Carino, F., Koener, J.F., Plapp, F.W., Feyereisen, R.,1992. Expression of the Cytochrome P450 Gene CYP6A1 in the Housefly, Musca domestica. Molecular Mechanisms of Insecticide Resistance. American Chemical Society, pp.31-40.
    37 Carino, F.A., Koener, J.F., Plapp Jr, F.W., Feyereisen, R.,1994. Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochemistry and Molecular Biology 24,411-418.
    38 Chu, D., Liu, G.X. and Fan, ZX.,2006. Genetic differentiation in the Bemisia tabacispecies complex from different regions (in Chinese). Scientia Agricultura Sinica 49,687-694.
    39 Cloonan, N., Grimmond, S.M.,2008. Transcriptome content and dynamics at single-nucleotide resolution. Genome biology 9,234-234.
    40 Daborn, Boundy, Yen, Pittendrigh, ffrench, C.,2001. DDT resistance in Drosophila correlates with Cyp6gl over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Molecular Genetics and Genomics 266 (4), pp.556-563.
    41 Daborn, P.J., Yen, J.L., Bogwitz, M.R., et al.,2002. A Single P450 Allele Associated with Insecticide Resistance in Drosophila. Science 297,2253-2256.
    42 Schena, M., Shalon, D., Davis, R.W., Brown, P.O.,1995. Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science 270,467-470.
    43 De Barro, P.J., Driver, F., Trueman, J.W., Curran, J.,2000. Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Molecular phylogenetics and evolution 16,29-36.
    44 Devine, G.J., Harling, Z.K., Scarr, A.W., Devonshire, A.L.,1996. Lethal and Sublethal Effects of Imidacloprid on Nicotine-Tolerant Myzus nicotianae and Myzus persicae. Pesticide Science 48, 57-62.
    45 Dinsdale, A., Cook, L., Riginos, C., Buckley, Y.M., Barro, P.D.,2010. Refined global analysis of Bemisia tabaci (Hemiptera:Sternorrhyncha:Aleyrodoidea:Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Annals of the Entomological Society of America 103,196-208.
    46 Dong, C., Fanghao, W., Baoyun, X., Qingjun, W., Youjun, Z.,2008. Comparative Analysis of Population Genetic Structure in Bemisia tabaci (Gennadius) Biotypes B and Q Based on ISSR Marker, pp.1348-1354.
    47 Eastham, H.M., Lind, R.J., Eastlake, J.L., Clarke, B.S., Towner, P., Reynolds, S.E., Wolstenholme, A.J., Wonnacott, S.,1998. Characterization of a nicotinic acetylcholine receptor from the insect Manduca sexta. European Journal of Neuroscience 10,879-889.
    48 El Kady, H., Devine, G..J.,2003. Insecticide resistance in Egyptian populations of the cotton whitefly, Bemisia tabaci (Hemiptera:Aleyrodidae). Pest management science 59,865-871.
    49 Elbert, A., Nauen, R.,2000. Resistance of Bemisia tabaci (Homoptera:Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Management Science 56,60-64.
    50 Feyereisen, R.,2005. Insect Cytochrome P450. in:Lawrence, I.G., Kostas, I., Sarjeet, S.G. (Eds.). Comprehensive Molecular Insect Science. Elsevier, Amsterdam, pp.1-77.
    51 Feyereisen, R., Koener, J.F., Farnsworth, D.E., Nebert, D.W.,1989. Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica. Proceedings of the National Academy of Sciences of the United States of America 86, 1465-1469.
    52 Feyereisen, R., Pratt, G.E., Hamnett, A.F.,1981. Enzymic Synthesis of Juvenile Hormone in Locust Corpora Allata:Evidence for a Microsomal Cytochrome P-450 Linked Methyl Farnesoate Epoxidase. European Journal of Biochemistry 118,231-238.
    53 Fujii, S., Amrein, H.,2002. Genes expressed in the Drosophila head reveal a role for fat cells in sex-specific physiology. The EMBO Journal 21,5353-5363.
    54 Georghiou, G.P.,1990. Overview of insecticide resistance. In:Green, M.B., LeBaron, H.M. Moberg, W.K. (Eds.), Managing Resistance to Agrochemicals. American Chemical Society, Washington, DC, pp.18-41.
    55 Gilbert, L.I., Warren, J.T.,2005. A Molecular Genetic Approach to the Biosynthesis of the Insect Steroid Molting Hormone. in:Gerald, L. (Ed.). Vitamins & Hormones. Academic Press, pp.31-57.
    56 Guzov, V.M., Unnithan, G.C., Chernogolov, A.A., Feyereisen, R.,1998. CYP12A1, a Mitochondrial Cytochrome P450 from the House Fly. Archives of Biochemistry and Biophysics 359,231-240.
    57 Hammock, B.D.,1975. NADPH dependent epoxidation of methyl farnesoate to juvenile hormone in the cockroach L. Life Sciences 17,323-328.
    58 Hammock, B.D., Mumby, S.M.,1978. Inhibition of epoxidation of methyl farnesoate to juvenile hormone III by cockroach corpus allatum homogenates. Pesticide Biochemistry and Physiology 9, 39-47.
    59 Helvig, C., Koener, J.F., Unnithan, G.C., Feyereisen, R.,2004. CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone Ⅲ in cockroach corpora allata. Proceedings of the National Academy of Sciences of the United States of America 101,4024-4029.
    60 Hermsen, B., Stetzer, E., Thees, R., Heiermann, R., Schrattenholz, A., Ebbinghaus, U., Kretschmer, A., Methfessel, C., Reinhardt, S., Maelicke, A.,1998. Neuronal Nicotinic Receptors in the Locust Locusta migratoria. Journal of Biological Chemistry 273,18394-18404.
    61 Horowitz, A.T., Nick., Youngman, Rogerr., Georghiou, Georgep.,1988. Synergism of Insecticides with DEF in Sweetpotato Whitefly (Homoptera:Aleyrodidae). Journal of Economic Entomology 81, 110-114.
    62 Horowitz, A.R., Kontsedalov, S., Khasdan, V., Ishaaya, I.,2005. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology 58,216-225.
    63 Houndete, T.a., Ketoh, G.K., Hema, O.S.a., Brevault, T., Glitho, I.a., Martin, T.,2010. Insecticide resistance in field populations of Bemisia tabaci (Hemiptera:Aleyrodidae) in West Africa. Pest management science 66,1181-1185.
    64 Hughes, P.B., and Devonshire, A.L.,1982. The biochemical basis of resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina. Pesticide Biochemistry and Physiology 18, 289-297.
    65 Hung, C.F., Harrison, T.L., Berenbaum, M.R. and Schuler, M.A.,1995. CYP6B3:a second furanocoumarin-inducible cytochrome P450 expressed in Papilio polyxenes. Insect Molecular Biology 4,149-160.
    66 Hurban, P., Thummel, C.S.,1993. Isolation and characterization of fifteen ecdysone-inducible Drosophila genes reveal unexpected complexities in ecdysone regulation. Molecular and cellular biology 13,7101-7111.
    67 Jarcho, M.P., Gilbert, L.I., Kahler, J., Petryk, A., Warren, J.T., Marque, G, Parvy, J.-p., Li, Y., Dauphin-villemant, C., Connor, M.B.O.,2003. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Sciences-New York 100.
    68 Jeschke, P., Nauen, R.,2008. Neonicotinoids-from zero to hero in insecticide chemistry. Pest management science 1098,1084-1098.
    69 Jones, A.K., Elgar, G, Sattelle, D.B.,2003. The nicotinic acetylcholine receptor gene family of the pufferfish, Fugu rubripes[small star, filled]. Genomics 82,441-451.
    70 Jones, A.K., Sattelle, D.B.,2004. Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. BioEssays 26,39-49.
    71 Jones, A.K., Grauso, M., Sattelle, D.B.,2005. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics 85,176-187.
    72 Jones, C.M., Gorman, K., Denholm, I., Williamson, M.S.,2008. High-throughput allelic discrimination of B and Q biotypes of the whitefly, Bemisia tabaci, using TaqMan allele-selective PCR. Pest management science 15,12-15.
    73 Karunker, I., Benting, J., Lueke, B., Ponge, T., Nauen, R., Roditakis, E., Vontas, J., Gorman, K., Denholm, I., Morin, S.,2008. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera:Aleyrodidae). Insect Biochemistry and Molecular Biology 38,634-644.
    74 Karatolos, N., Pauchet, Y, Wilkinson, P., Chauhan, R., Denholm, I., Gorman, K., Nelson, D.R., Bass, C., Ffrench-Constant, R.H., Williamson, M.S.,2011. Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes. BMC genomics 12,56-56.
    75 Karunker, I., Morou, E., Nikou, D., Nauen, R., Sertchook, R., Stevenson, B.J., Paine, M.J.I., Morin, S., Vontas, J.,2009. Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. Insect Biochemistry and Molecular Biology 39,697-706.
    76 Kasai, S., Scott, J.G.,2000. Overexpression of Cytochrome P450 CYP6D1 is Associated with Monooxygenase-Mediated Pyrethroid Resistance in House Flies from Georgia. Pesticide Biochemistry and Physiology 68,34-41.
    77 Kasai, S., Tomita, T.,2003. Male specific expression of a cytochrome P450 (Cyp312a1) in Drosophila melanogaster. Biochemical and Biophysical Research Communications 300,894-900.
    78 Korytko, P.J., Scott, J.G.,1998. CYP6D1 protects thoracic ganglia of houseflies from the neurotoxic insecticide cypermethrin. Archives of Insect Biochemistry and Physiology 37,57-63.
    79 Kranthi, K.,2002. Insecticide resistance in five major insect pests of cotton in India. Crop Protection 21,449-460.
    80 Komori, M., Kitamura, R., Fukuta, H., Inoue, H., Baba, H., Yoshikawa, K. and Kamataki. T.,1993. Transgenic Drosophila carrying mammalian cytochrome P-4501A1:an application to toxicology testing. Carcinogenesis 14,1683-1688.
    81 Kotze, A.C.,1995. Induced Insecticide Tolerance in Larvae of Lucilia cuprina (Wiedemann) (Diptera:Calliphoridae) Following Dietary Phenobarbital Treatment. Australian Journal of Entomology 34,205-209.
    82 Korytko, P.J., and Scott, J.G.,1998. CYP6D1 protects thoracic ganglia of houseflies from the neurotoxic insecticide cypermethrin. Archives of Insect Biochemistry and Physiology 37:57-63.
    83 Kranthi, K.2002. Insecticide resistance in five major insect pests of cotton in India. Crop Protection 21,449-460.
    84 Le Goff, G, Boundy, S., Daborn, P.J., Yen, J.L., Sofer, L., Lind, R., Sabourault, C, Madi-Ravazzi, L., ffrench-Constant, R.H.,2003. Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila. Insect Biochemistry and Molecular Biology 33,701-708.
    85 Li F.,2005. Alternative splicing, multiple transcription initiation sites of nico tinic acetylcholine receptor subunits from the cotton aphid Aphis. Race 51,867-878.
    86 Liu, N., Scott, J.G.,1996. Genetic analysis of factors controlling high-level expression of cytochrome P450, CYP6D1, cytochrome b5, P450 reductase, and monooxygenase activities in LPR house flies, Musca domestica. Biochemical genetics 34,133-148.
    87 Liu, Z., Williamson, M.S., Lansdell, S.J., Denholm, I., Han, Z., Millar, N.S.,2005. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proceedings of the National Academy of Sciences of the United States of America 102,8420-8425.
    88 Ln, C., Centre, J.I.,1999. A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Science,1683-1691.
    89 Luo, C., Jones, C.M., Devine, G, Zhang, F., Denholm, I., Gorman, K.,2010. Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera:Aleyrodidae) from China. Crop Protection 29,429-434.
    90 Maibeche-Coisne, M., Monti-Dedieu, L., Aragon, S. and Dauphin-Villemant, C.,2000. A New Cytochrome P450 from Drosophila melanogaster, CYP4G15, Expressed in the Nervous System. Biochemical and Biophysical Research Communications 273:1132-1137.
    91 Maibeche-Coisne, M., Jacquin-Joly, E., Francois, M.C., Nagnan-Le Meillour, P.,2002. cDNA cloning of biotransformation enzymes belonging to the cytochrome P450 family in the antennae of the noctuid moth Mamestra brassicae. Insect Molecular Biology 11,273-281.
    92 Ma, D., Gorman, K., Devine, G, Luo, W., Denholm, I.,2007. The biotype and insecticide-resistance status of whiteflies, Bemisia tabaci (Hemiptera:Aleyrodidae), invading cropping systems in Xinjiang Uygur Autonomous Region, northwestern China. Crop Protection 26,612-617.
    93 Maitra, S., Dombrowski, S.M., Waters, L.C. and Ganguly, R.,1996. Three second chromosome-linked clustered Cyp6 genes show differential constitutive and barbital-induced expression in DDT-resistant and susceptible strains of Drosophila melano gaster. Gene 180, 165-171.
    94 Maitra, S., Dombrowski, S.M., Basu, M., Raustol, O., Waters, L.C., Ganguly, R.,2000. Factors on the third chromosome affect the level of Cyp6a2 and Cyp6a8 expression in Drosophila melanogaster. Gene 248,147-156.
    95 Makino, M., Sugimoto, H., Shiro, Y., Asamizu, S., Onaka, H., Nagano, S.,2007. Crystal structures and catalytic mechanism of cytochrome P450 StaP that produces the indolocarbazole skeleton. Proceedings of the National Academy of Sciences of the United States of America 104, 11591-11596.
    96 Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., et al., 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437,376-380.
    97 Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., Gilad, Y,2008. RNA-seq:An assessment of technical reproducibility and comparison with gene expression arrays. Genome Research, 1509-1517.
    98 Marshall, J., Buckingham, S.D., Shingai, R., Lunt, G.G., Goosey, M.W., Darlison, M.G., Sattelle, D.B., Barnard, E.a.,1990. Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor. The EMBO journal 9,4391-4398.
    99 Maruthi, M.N., Colvin, J., Thwaites, R.M., Banks, G.K., Gibson, G, Seal, S.E.,2004. Reproductive incompatibility and cytochrome oxidase I gene sequence variability amongst host-adapted and geographically separate Bemisia tabaci populations (Hemiptera:Aleyrodidae). Systematic Entomology 29,560-568.
    100 Menozzi, P., Shi, M.A., Lougarre, A., Tang, Z.H., Fournier, D.,2004. Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations Background. BMC Evolutionary Biology 7,1-7.
    101 Millar, N., Denholm, I.,2007. Nicotinic acetylcholine receptors:targets for commercially important insecticides. Invertebrate Neuroscience 7,53-66.
    102 Moores, G.D., Philippou, D., Borzatta, V., Trincia, P., Jewess, P., Gunning, R., Bingham, G,2009. An analogue of piperonyl butoxide facilitates the characterisation of metabolic resistance. Pest management science 65,150-154.
    103 Morin, S., Williamson, M.S., Goodson, S.J., Brown, J.K., Tabashnik, B.E., Dennehy, T.J.,2002. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochemistry and Molecular Biology 32,1781-1791.
    104 Morozova, O., Hirst, M., Marra, M.a.,2009. Applications of new sequencing technologies for transcriptome analysis. Annual review of genomics and human genetics 10,135-151.
    105 Mota-Sanchez, D., Hollingworth, R.M., Grafius, E.J., Moyer, D.D.,2006. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera:Chrysomelidae). Pest management science 62,30-37.
    106 Mound, L.A., Halsey, S.H.,1978. Whitefly of the World:a Systematic Catalogue of the Aleyrodidae (Homoptera) with Host Plant and Natural Enemy Data. Wiley, New York, pp 340.
    107 Murataliev, M. B., and Feyereisen, R.,1999. Mechanism of cytochrome P450 reductase from the house fly:evidence for an FMN semiquinone as electron donor. FEBS Letters 453,201-204.
    108 Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., Snyder, M.,2008. The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing. Science 320, 1344-1349.
    109 Narahashi, T.,1989. The role of ion channels in insecticide action. In:Narahashi, T., Chambers, J.E. (Eds.), Insecticide Action. From Molecule to Organism. Plenum Press, New York and London, pp. 55-84.
    110 Naumann, C., Hartmann, T., and Ober, D.,2002. Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxification of host plant-acquired pyrrolizidine alkaloids in the alkaloid-defended arctiid moth Tyria jacobaeae. Proceedings of the National Academy of Sciences of the United States of America 99,6085-6090.
    111 Nauen, R., Stumpf, N., Elbert, A.,2002. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera:Aleyrodidae). Pest management science 58, 868-875.
    112 Nauen, R., Denholm, I.,2005. Resistance of insect pests to neonicotinoid insecticides:current status and future prospects. Archives of Insect Biochemistry and Physiology 58,200-215.
    113 Neal, J. J., and Wu, D.,1994. Inhibition of Insect Cytochromes P450 by Furanocoumarins. Pesticide Biochemistry and Physiology 50,43-50.
    114 Nitao, J.K.,1990. Metabolism and excretion of the furanocoumarin xanthotoxin by parsnip webworm,Depressaria pastinacella. Journal of Chemical Ecology 16,417-428.
    115 Nikou, D., Ranson, H., Hemingway, J.,2003. An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae. Gene 318,91-102.
    116 Prabhaker, N., Castle, S., Henneberry, T.J. and Toscano, N.C.,2005. Assessment of cross-resistance potential to neonicotinoid insecticides in Bemisia tabaci (Hemiptera:Aleyrodidae). Bulletin of Entomological Research,95, pp 535-543 doi:10.1079/BER2005385.
    117 Oakeshott, J.G., Devonshire, A.L., Claudianos, C., Sutherland, T.D., Home, I., Campbell, P.M., Ollis, D.L., Russell, R.J.,2005. Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin- and carboxyl-esterases. Chemico-biological interactions 157-158, 269-275.
    118 Oesch-Bartlomowicz, B., and Oesch, F.,2003. Cytochrome-P450 phosphorylation as a functional switch. Archives of Biochemistry and Biophysics 409,228-234.
    119 Oliveira, M.R.V., Henneberry, T.J., Anderson, P.,2001. History, current status, and collaborative researchprojects for Bemisia tabaci. Crop Protection 2020,709-723.
    120 Omura, T., and Sato, R.,1964. The Carbon Monoxide-binding Pigment of Liver Microsomes. Journal of Biological Chemistry 239,2370-2378.
    121 Pedra, J.H.F., McIntyre, L.M., Scharf, M.E., Pittendrigh, B.R.,2004. Genome-wide transcription profile of field and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. Proceedings of the National Academy of Sciences of the United States of America 101,7034-7039.
    122 Perring, T.,2001. The Bemisia tabaci species complex. Crop Protection 20,725-737.
    123 Perry, T., Heckel, D.G., McKenzie, J.A., Batterham, P.,2008. Mutations in Dal or Dβ2 nicotinic acetylcholine receptor subunits can confer resistance to neonicotinoids in Drosophila melanogaster. Insect Biochemistry and Molecular Biology 38,520-528.
    124 Perry, T., McKenzie, J.A., Batterham, P.,2007. A Dα6 knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad. Insect Biochemistry and Molecular Biology 37, 184-188.
    125 Petersen, R. A., Zangerl, A. R., Berenbaum, M. R. and Schuler, M. A.,2001. Expression of CYP6B1 and CYP6B3 cytochrome P450 monooxygenases and furanocoumarin metabolism in different tissues of Papilio polyxenes (Lepidoptera:Papilionidae). Insect Biochemistry and Molecular Biology 31,679-690.
    126 Pikuleva, I. A., Cao, C. and Waterman, M.R.,1999. An Additional Electrostatic Interaction between Adrenodoxin and P450c27 (CYP27A1) Results in Tighter Binding Than between Adrenodoxin and P450scc (CYP11A1). Journal of Biological Chemistry 274,2045-2052.
    127 Pittendrigh, B., Aronstein, K., Zinkovsky, E., Andreev, O., Campbell, B., Daly, J., Trowel], S., Ffrench-Constant, R.H.,1997. Cytochrome P450 genes from Helicoverpa armigera:Expression in a pyrethroid-susceptible and -resistant strain. Insect Biochemistry and Molecular Biology 27, 507-512.
    128 Plettner, E., Slessor, K. N. and Winston, M. L.,1998. Biosynthesis of Mandibular Acids in Honey Bees (Apis mellifera):De novo Synthesis, Route of Fatty Acid Hydroxylation and Caste Selective β-Oxidation. Insect Biochemistry and Molecular Biology 28,31-42.
    129 Poulos, T. L., Finzel, B.C., Gunsalus, I.C., Wagner, G.C. and Kraut, J.,1985. The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. The Journal of biological chemistry 260, 16122-16130.
    130 Pratt, G.E., Kuwano, E., Farnsworth, D.E., Feyereisen, R.,1990. Structure/activity studies on 1,5-disubstituted imidazoles as inhibitors of juvenile hormone biosynthesis in isolated corpora allata of the cockroach Diploptera punctata. Pesticide Biochemistry and Physiology 38,223-230.
    131 Ranasinghe, C., Headlam, M., Hobbs, A.A.,1997. Induction of the mRNA for CYP6B2, a pyrethroid inducible cytochrome p450, in Helicoverpa armigera (Hubner) by dietary monoterpenes. Archives of Insect Biochemistry and Physiology 34,99-109.
    132 Ranasinghe, C., Hobbs, A.A.,1998. Isolation and characterization of two cytochrome P450 cDNA clones for CYP6B6 and CYP6B7 from Helicoverpa armigera (Hubner):possible involvement of CYP6B7 in pyrethroid resistance. Insect Biochemistry and Molecular Biology 28,571-580.
    133 Ranson, H., Nikou, D., Hutchinson, M., Wang, X., Roth, C.W., Hemingway, J., and Collins, F. H., 2002. Molecular analysis of multiple cytochrome P450 genes from the malaria vector, Anopheles gambiae. Insect Molecular Biology 11,409-418.
    134 Rao, Q., Luo, C., Zhang, H., Guo, X., Devine, G.J.,2011. Distribution and dynamics of Bemisia tabaci invasive biotypes in central China. Bulletin of Entomological Research 101,81-88.
    135 Rauch, N., Nauen, R.,2003. Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera:Aleyrodidae). Archives of Insect Biochemistry and Physiology 54,165-176.
    136 Reed, J. R., Vanderwel, D., Choi, S., Pomonis, J.G., Reitz, R.C. and Blomquist, G. J.,1994. Unusual mechanism of hydrocarbon formation in the housefly:cytochrome P450 converts aldehyde to the sex pheromone component (Z)-9-tricosene and CO2. Proceedings of the National Academy of Sciences 91,10000-10004.
    137 Robertson, H. M., Martos, R., Sears, C. R., Todres, E. Z., Walden, K. K. O. and Nardi, J. B.,1999. Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Molecular Biology 8,501-518.
    138 Roditakis, E., Grispou, M., Morou, E., Kristoffersen, J.B., Roditakis, N., Nauen, R., Vontas, J., Tsagkarakou, A.,2009. Current status of insecticide resistance in Q biotype Bemisia tabaci populations from Crete. Pest management science 65,313-322.
    139 Roditakis, E., Roditakis, N.E., Tsagkarakou, A.,2005. Insecticide resistance in Bemisia tabaci (Homoptera:Aleyrodidae) populations from Crete. Pest management science 61,577-582.
    140 Roditakis, E., Grispou, M., Morou, E., Kristoffersen, J.B., Roditakis, N., Nauen, R., Vontas, J. and Tsagkarakou, A.,2009. Current status of insecticide resistance in Q biotype Bemisia tabaci populations from Crete. Pest management science 65,313-322.
    141 Rose, R.L., Goh, D., Thompson, D.M., Verma, K.D., Heckel, D.G., Gahan, L.J., Roe, R.M., Hodgson, E.,1997. Cytochrome P450 (CYP)9A1 in Heliothis virescens:the first member of a new CYP family. Insect Biochemistry and Molecular Biology 27,605-615.
    142 Sabourault, C., Guzov, V.M., Koener, J.F., Claudianos, C., Plapp, F.W., Feyereisen, R.,2001. Overproduction of a P450 that metabolizes diazinon is linked to a loss-of-function in the chromosome 2 ali-esterase (MdaE7) gene in resistant house flies. Insect Molecular Biology 10, 609-618.
    143 Sawruk, E., Schloss, P., Betz, H., Schmitt, B.,1990a. Heterogeneity of Drosophila nicotinic acetylcholine receptors:SAD, a novel developmentally regulated alpha-subunit. The EMBO journal 9,2671-2677.
    144 Sawruk, E., Udri, C., Betz, H., Schmitt, B.,1990b. SBD, a novel structural subunit of the Drosophila nicotinic acetylcholine receptor, shares its genomic localization with two [alpha]-subunits. FEBS Letters 273,177-181.
    145 Scharf, M.E., Parimi, S., Meinke, L.J., Chandler, L.D., Siegfried, B.D.,2001. Expression and induction of three family 4 cytochrome P450 (CYP4)* genes identified from insecticide-resistant and susceptible western corn rootworms, Diabrotica virgifera virgifera. Insect Molecular Biology 10,139-146.
    146 Schenkman, J.B., and Jansson, I.,2003. The many roles of cytochrome b5. Pharmacology & Therapeutics 97,139-152.
    147 Schlichting, I., Berendzen, J., Chu, K., Stock, A.M., Maves, S.A., Benson, D.E., Sweet, R.M., Ringe, D., Petsko, GA., Sligar, S.G.,2000. The Catalytic Pathway of Cytochrome P450cam at Atomic Resolution. Science 287,1615-1622.
    148 Schuler, M.A.,1996. The role of cytochrome P450 monooxygenases in plant-insect interactions. Plant physiology 112,1411-1419.
    149 Scott, J.G.,1999. Cytochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology 29,757-777.
    150 Scott, J.G., Foroozesh, M., Hopkins, N.E., Alefantis, T.G. and Alworth W.L.,2000. Inhibition of Cytochrome P4506D1 by Alkynylarenes, Methylenedioxyarenes, and Other Substituted Aromatics. Pesticide Biochemistry and Physiology 67,63-71.
    151 Scott, J.,2003. The house fly aliesterase gene (Md α E7) is not associated with insecticide resistance or P450 expression in three strains of house fly. Insect Biochemistry and Molecular Biology 33,139-144.
    152 Scott, J.G., Kasai, S.,2004. Evolutionary plasticity of monooxygenase-mediated resistance. Pesticide Biochemistry and Physiology 78,171-178.
    153 Sgard, F., Fraser, S.P., Katkowska, M.J., Djamgoz, M.B.A., Dunbar, S.J., Windass, J.D.,1998. Cloning and Functional Characterisation of Two Novel Nicotinic Acetylcholine Receptor a Subunits from the Insect Pest Myzus persicae. Journal of Neurochemistry 71,903-912.
    154 Shen, B., Dong, H.Q., Tian, H.S., Ma, L., Li, X.L., Wu, G.L., Zhu, C.L., Cytochrome P450 genes expressed in the deltamethrin-susceptible and -resistant strains of Culex pipiens pallens. Pesticide Biochemistry and Physiology 75,19-26.
    155 Shono, T., Kasai, S., Kamiya, E., Kono, Y., Scott, J.G.,2002. Genetics and mechanisms of permethrin resistance in the YPER strain of house fly. Pesticide Biochemistry and Physiology 73, 27-36.
    156 Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., Flook, P., Evolution,1994. weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87,651-701.
    157 Stathopoulos, A., Van Drenth, M., Erives, A., Markstein, M., Levine, M.,2002. Whole-Genome Analysis of Dorsal-Ventral Patterning in the Drosophila Embryo. Cell 111,687-701.
    158 Stevens, J.L., Snyder, M.J., Koener, J.F., and Feyereisen, R.,2000. Inducible P450s of the CYP9 family from larval Manduca sexta midgut. Insect Biochemistry and Molecular Biology 30,559-568.
    159 Sutherland, T.D., Unnithan, G.C., Andersen, J.F., Evans, P.H., Murataliev, M.B., Szabo, L.Z., Mash, E.A., Bowers, W.S., Feyereisen, R.,1998. A cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis. Proceedings of the National Academy of Sciences of the United States of America 95,12884-12889.
    160 Sutherland, T.D., Unnithan, G.C. and Feyereisen, R.,2000. Terpenoid [Ω]-hydroxylase (CYP4C7) messenger RNA levels in the corpora allata:a marker for ovarian control of juvenile hormone synthesis in Diploptera punctata. Journal of Insect Physiology 46,1219-1227.
    161 Tamura, T., Thibert, C., Royer, C., Kanda, T., Eappen, A., Kamba, M., Komoto, N., Thomas, J. L., Mauchamp, B., Chavancy, G., Shirk, P., Fraser, M., Prudhomme, J.C. and Couble, P.,2000. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nature Biotechnology 18,81-84.
    162 Taylor, M., and Feyereisen, R.,1996. Molecular biology and evolution of resistance of toxicants. Molecular Biology and Evolution 13,719-734.
    163 Thany, S.H., Lenaers, G, Crozatier, M., Armengaud, C., Gauthier, M.,2003. Identification and localization of the nicotinic acetylcholine receptor α3 mRNA in the brain of the honeybee, Apis mellifera. Insect Molecular Biology 12,255-262.
    164 Thany, S.H., Crozatier, M., Raymond-Delpech, V., Gauthier, M., Lenaers, G.,2005. Apisa2, Apisa7-1 and Apisa7-2:three new neuronal nicotinic acetylcholine receptor a-subunits in the honeybee brain. Gene 344,125-132.
    165 Tomizawa,M., Casida, J.E.,2003. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annual Review of Entomology 48,339-364.
    166 Tomizawa, M., Casida, J.E.,2005. Neoncotinoid insecticide toxicology:Mechanisms of Selective Action. Annual Review of Pharmacology and Toxicology 45,247-268.
    167 Tomancak, P., Beaton, A., Weiszmann, R., Kwan, E., Shu, S., Lewis, S.E., Richards, S., Ashburner, M., Hartenstein, V., Celniker, S.E., Rubin, G.M.,2002. Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome biology 3,1-14.
    168 Tomita, T., and Scot, J.G.,1995. cDNA and deduced protein sequence of Cyp6D1:the putative gene for a cytochrome p450 responsible for pyrethroid resistance in house fly. Insect Biochemistry and Molecular Biology 25:275-283.
    169 Ugaki, M., Shono, T., Fukami, J.I.,1985. Metabolism of fenitrothion by organophosphorus-resistant and -susceptible house flies, Musca domestica L. Pesticide Biochemistry and Physiology 23,33-40.
    170 Unnithan, G.C., Andersen, J.F., Hisano, T., Kuwano, E., Feyereisen, R.,1995. Inhibition of juvenile hormone biosynthesis and methyl farnesoate epoxidase activity by 1,5-disubstituted imidazoles in the cockroach, Diploptera punctata. Pesticide Science 43,13-19.
    171 Wan, F., Zhang, G, Liu, S., Luo, C., Chu, D., Zhang, Y., Zang, L., Jiu, M., Lii, Z., Cui, X., Zhang, L., Zhang, F., Zhang, Q., Liu, W., Liang, P., Lei, Z., Zhang, Y.,2009. Invasive mechanism and management strategy of <i>Bemisia tabaci</i> (Gennadius) biotype B:Progress report of 973 Program on invasive alien species in China. Science in China Series C:Life Sciences 52, 88-95.
    172 Wang, L., Wu, Y,2007. Cross-resistance and biochemical mechanisms of abamectin resistance in the B-type Bemisia tabaci. Journal of Applied Entomology 131,98-103.
    173 Wang, Z., Yan, H., Yang, Y., Wu, Y.,2010. Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. Pest management science 66,1360-1366.
    174 Wang, Z., Yao, M., Wu, Y.,2009. Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci. Pest management science 65,1189-1194.
    175 Warren, J.T., Petryk, A., Marques, G., Jarcho, M., Parvy, J.P., Dauphin-Villemant, C., O'Connor, M.B., Gilbert, L.I.,2002. Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 99,11043-11048.
    176 Waters, L.C., Zelhof, A.C., Shaw, B.J., Ch'ang, L.Y.,1992. Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila. Proceedings of the National Academy of Sciences 89,4855-4859.
    177 Wei, P., Zhang, J., Egan-Hafley, M., Liang, S. and Moore, D.D.,2000. The nuclear receptor CAR mediates specific xenobiotic induction of drug metabolism. Nature 407,920-923.
    178 Wen, Z., Scott, J.G.,2001. Cytochrome P450 CYP6L1 is specifically expressed in the reproductive tissues of adult male German cockroaches, Blattella germanica (L.). Insect Biochemistry and Molecular Biology 31,179-187.
    179 Werck-reichhart, D., Feyereisen, R.,2000. Protein family review Cytochromes P450:a success story. Genome,1-9.
    180 Wheelock, G.D. and Scott, J.G.,1992. The role of cytochrome P4501pr in deltamethrin metabolism by pyrethroid-resistant and susceptible strains of house flies. Pesticide Biochemistry and Physiology 43,67-77.
    181 Wilhelm, B.T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., Penkett, C.J., Rogers, J., Bahler, J.,2008. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453,1239-1243.
    182 Williams, D.R., Chen, J.H., Fisher, M.J. and Rees, H.H.,1997. Induction of Enzymes Involved in Molting Hormone (Ecdysteroid) Inactivation by Ecdysteroids and an Agonist,1, 2-Dibenzoyl-1-tert-butylhydrazine (RH-5849). Journal of Biological Chemistry 272,8427-8432.
    183 Williams, P.A., Cosme, J., Sridhar, V., Johnson, E.F. and McRee, D.E.,2000. Mammalian Microsomal Cytochrome P450 Monooxygenase:Structural Adaptations for Membrane Binding and Functional Diversity. Molecular Cell 5,121-131.
    184 Wilson, T.G.,2001. Resistance of drosophila to toxins. Annual Review of Entomology 46,545-571.
    185 Wilhelm, B.T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., Penkett, C.J., Rogers, J. and Bahler, J.,2008. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453,1239-1243.
    186 Wojtasek, H., Leal, W.S.,1999. Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. The Journal of biological chemistry 274,30950-30956.
    187 Young, S.J., Gunning, R.V., Moores, G.D.,2005. The effect of piperonyl butoxide on pyrethroid-resistance-associated esterases in Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Pest management science 61,397-401.
    188 Young, S.J., Gunning, R.V., Moores, G.D.,2006. Effect of pretreatment with piperonyl butoxide on pyrethroid efficacy against insecticide-resistant Helicoverpa armigera (Lepidoptera:Noctuidae) and Bemisia tabaci (Sternorrhyncha:Aleyrodidae). Pest management science 62,114-119.
    189 Zdobnov, E.M., von Mering, C., Letunic, I., Torrents, D., Suyama, M., Copley, R.R., Christophides, G.K., Thomasova, D., Holt, R.A., Subramanian, G.M., Mueller, H.M., Dimopoulos, G, Law, J.H., Wells, M.A., Birney, E., Charlab, R., Halpern, A.L., Kokoza, E., Kraft, C.L., Lai, Z., Lewis, S., Louis, C., Barillas-Mury, C., Nusskern, D., Rubin, G. M., Salzberg, S. L.,. Sutton, G. G., Topalis, P., Wides, R., Wincker, P., Yandell, M., Collins, F. H., Ribeiro, J., Gelbart, W. M., Kafatos, F.C., Bork, P.,2002. Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster. Science 298,149-159.
    190 Zhang, L., Kasai, S. and Shono. T.,1998. In vitro metabolism of pyriproxyfen by microsomes from susceptible and resistant housefly larvae. Archives of Insect Biochemistry and Physiology 37, 215-224.
    191 Zhang, L.P., Zhang, Y.J., Zhang, W.J., Wu, Q.J., Xu, B.Y., Chu, D.,2005. Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China. Journal of Applied Entomology 129,121-128.
    192 Zhao, J.H.,2002. Cloning and Sequence of Nicotinic Acetylcholine Receptor a Subunit from Chilo suppressalis. Zoological Research 23,7-13.
    193 Zhou, Y,1949. The list of whiteflies in China (in Chinese). China Entomol 3,1-18.
    194 Zhu, Y.C., Snodgrass, G.L.,2003. Cytochrome P450 CYP6X1 cDNAs and mRNA expression levels in three strains of the tarnished plant bug Lygus lineolaris (Heteroptera:Miridae) having different susceptibilities to pyrethroid insecticide. Insect Molecular Biology 12,39-49.
    195 Zou, S., Meadows, S., Sharp, L., Jan L.Y. and Jan Y N.,2000. Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proceedings of the National Academy of Sciences 97,13726-13731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700