褐飞虱和白背飞虱落地后的发生规律及预测预报研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐飞虱Nilaparvata lugens (Stal)和白背飞虱Sogatella furcifera (Horvath)是亚洲地区一种远距离迁飞性水稻害虫,近30年来发生面积扩大,暴发频率增加,给中国的水稻生产带来了严重危害。关于这两种水稻害虫的研究有大量报道,我国的研究主要集在中东部,而西南地区稻飞虱研究相对欠缺。本研究通过2008-2009年在西南稻区秀山县两年的田间调查,结合江口县、秀山县的历史资料,基于昆虫生态学的理论与方法,运用生态学、分类学、统计学、系统论等领域的知识,结合数据处理分析软件EXCEL、SPSS、SURFER、ArcGIS的熟练掌握,对本地区褐飞虱和白背飞虱落地后的发生规律及预测预报进行了研究。主要结果如下:
     1.根据秀山县自1990年以来水稻预测圃及灯下褐飞虱和白背飞虱发生的历史资料,较系统研究二者在本地区田间及灯下的发生规律。结果表明,近20年来,褐飞虱在本地区的始见日有延后的趋势,白背飞虱的始见日有提前的趋势;白背飞虱的始见日比褐飞虱的始见日平均约早16.68士17.58天。田间稻飞虱为害呈明显双峰型,前期以白背飞虱为主,后期以褐飞虱为主,前后发生均重,发生面广。1990年代,褐飞虱田间发生高峰期主要在8月上、中旬,近10年高峰期集中在8月下旬;1990年代,褐飞虱长翅型田间发生高峰期主要在8月中旬,近10年高峰期在8月下旬,故褐飞虱田间发生高峰期和迁出期有延迟的趋势。白背飞虱在1990年代田间发生高峰日主要集中在7月中旬,近10年高峰日集中在7月上旬;1990年代,白背飞虱长翅型田间发生高峰期主要在7月中旬和8月上旬,近10年高峰期在7月中、下旬,故白背飞虱田间发生高峰期和迁出期有提前的趋势。在水稻生长期内,褐飞虱灯诱高峰期主要出现在8月下旬;白背飞虱的灯诱高峰期一般出现在7月上、中旬。水稻收获前,70%的年份,灯下白背飞虱的虫量大于褐飞虱;水稻收获后,所有年份灯下褐飞虱的虫量大于白背飞虱。褐飞虱的回迁峰在9月中旬,白背飞虱回迁峰是9月下旬至10月,褐飞虱回迁峰比白背飞虱的早。
     2.在900 m2尺度上,研究白背飞虱迁入后,其后代若虫及长翅型成虫在稻田的聚集与扩散的动态过程和空间分布规律,为综合防治提供理论依据。根据2008年在秀山县的系统调查资料,运用地统计学中的半方差函数,建立了秀山县水稻栽插至成熟期间在东西和南北两个方向上白背飞虱若虫及成虫的空间变异曲线模型。模型参数分析表明:白背飞虱若虫种群的空间分布主要呈聚集分布;由随机因数引起的空间变异平均为38.7%,由自相关因数引起的空间变异为61.3%;空间变异的随机程度有随水稻生育期而逐渐增高的趋势;各调查时间东西方向的空间相关范围都小于南北方向,前者平均为18.99 m,后者为25.09 m。白背飞虱长翅型成虫的空间分布也主要呈聚集分布,由随机因数引起的空间变异平均为37.6%,由自相关因数引起的空间变异为62.4%;各调查时间东西方向的空间相关范围都小于南北方向,前者平均为12.86 m,后者为28.85 m;虫口密度越高,空间变量的变化幅度越大。利用Surfer8.0软件对空间分布数据进行插值和模拟,结果表明白背飞虱若虫和长翅型成虫种群在稻田的聚集斑块均为南北方向比东西方向长,即在研究尺度下,南北方向是白背飞虱种群聚集和扩散的主方向。
     3.根据2003年以来重庆市秀山县比较完整的大田普查资料,应用地理信息系统(ArcGIS)研究白背飞虱和褐飞虱在全县不同乡镇的空间分布格局及动态。2003-2009年的白背飞虱种群在全县范围呈现明显的聚集分布格局,各年的聚集中心和聚集程度均处于动态变化之中。模拟分布图显示了各年白背飞虱种群聚集分布的具体位置和程度,总的分布格局是秀山县中部平坝地区的官桥、官庄、平凯镇发生较重,7年的调查数据中有4年的聚集中心位于此。而本县东、西、南、北部的三沟两岔地区发生相对较轻,7年的调查数据只有2007年聚集中心位于南部的隘口镇、兰桥镇;2008年的聚集中心位于东部的平马乡;2009年聚集中心位于北部的海洋乡和西部的塘坳乡。从近3年褐飞虱调查的结果可以看出,褐飞虱在全县的分布与白背飞虱有较大的不同,褐飞虱在全县的中西部发生较重,东南部发生较轻,主要集中在溶溪、塘坳、官庄、中和这几个乡镇。
     4.对2种不同类型田(常规稻田、杂交稻田)褐飞虱、白背飞虱与其主要天敌(蜘蛛、隐翅虫、黑肩绿盲蝽、稻红瓢虫、螯蜂)的群落结构、时间生态位宽度及生态位重叠进行了研究,分析了天敌对稻飞虱的时间跟随和控制作用、各类群在时间资源序列上分布的数量特征和资源利用状况。研究结果表明,抽穗期以前,褐飞虱种群数量很低,白背飞虱和天敌种群数量都逐渐增加;抽穗期后白背飞虱数量下降,褐飞虱数量迅速增加,天敌数量处于稳定状态,说明害虫与天敌处于高度平衡状态。不同类型稻田稻飞虱和其天敌的时间生态位宽度是不同的,但都是以蜘蛛类群的生态位宽度最大,且个体数量在时间序列上分布较为均匀;而螯蜂、稻红瓢虫、黑肩绿盲蝽在整个资源序列上分布较窄,大部分集中在某些资源序列上,因而生态位宽度指数小。稻飞虱与各天敌的生态位重叠值反映了天敌捕食或寄生稻飞虱在时间上的可能性,杂交稻田稻飞虱与蜘蛛的生态位重叠值最高,其次为隐翅虫;常规稻田中稻飞虱与蜘蛛的生态位重叠值最高,其次为黑肩绿盲蝽。
     5.用重庆市秀山县1983-2007年田间褐飞虱和白背飞虱发生程度的时间序列资料和贵州省江口县病虫测报站1977-2007年灯下褐飞虱和白背飞虱发生程度时间序列资料,运用马尔可夫链理论的转移概率预测法,构建了1-5阶转移概率矩阵,根据每一阶概率矩阵单独进行回报的历史符合率计算各阶转移概率矩阵的权重,以预报年前5年褐飞虱和白背飞虱的连续发生状态预测第6年的发生级别,回检秀山县20年田间及江口县26年灯下实际发生程度。结果表明,该模型具有较好的模拟效果,威尔科克森非参数检验实际发生与预测结果在0.05水平不存在显著差异,对2008年和2009年的预测也符合当年实际发生情况。该方法构建的5阶转移概率矩阵及其权重对于秀山县、江口县及其邻近地区褐飞虱和白背飞虱发生程度的长期预报具有重要指导意义,为害虫的长期可预测性提供了一种快速、有效的方法。
     6.利用重庆市秀山县1990-2006年的褐飞虱和白背飞虱的田间、灯下虫情及气象资料,以田间发生高峰期的调查数量为因变量,以灯下诱集虫量和气象因子为自变量,用多元逐步回归法组建了褐飞虱和白背飞虱在不同时期的发生量预测模型,对二者落地后成灾机理进行了初步探讨。结果表明,二者田间发生高峰期的发生量不仅与气候条件有关,且与前期迁入虫量有关。褐飞虱田间发生高峰期发生量与当月或近期迁入的总虫量成正相关,而与具有繁殖能力的雌成虫无显著相关;白背飞虱田间发生高峰期的发生量与前期迁入虫量成显著正相关,与近期迁入虫量无显著相关,推测褐飞虱主要是落地成灾,白背飞虱主要是靠繁殖代成灾。
     7.2008年用标准苗期鉴定法对秀山县田间褐飞虱种群进行生物型测定,种植具有不同抗性基因的5个水稻品种:TN1、Mudgo、ASD_7、Rathu Heerati、Babawee,把采自秀山县清溪镇、平凯镇田间褐飞虱分别接在5个鉴别品种上进行生物型测定。结果表明,除了TN1品种外,具有抗生物型1和3的Mudgo及抗生物型1和2的ASD7的稻苗均死亡,初步推断秀山县褐飞虱已经有生物型2和生物型3出现。
Brown planthopper, Nilaparvata lugens (Stal) and whitebacked planthopper, Sogatella furcifera (Horvath) are two important long-distance migration insect pests that cause great losses to rice yield in China. Their occurrence area and the frequency increased in late 30 years. There are many researches about the two pests in China and it is prolific about Middle and East of China but deficient about the southwest of China. The occurrence regularity and forecasting study of brown planthopper and whitebacked planthopper after their immigration are revealed in this paper by using the two years field investigation, indoor trial from 2008 to 2009 in Xiushan county and historic data of Xiushan and Jiangkou county which locate in the southwest of China. Based on the knowledge of biology ecology, taxonomy, statistics, systematic and the mastery of software of EXCEL、SPSS、SURFER、ArcGIS, the study goes well and the main results are summarized as follows:
     1. The occurrence regularity of brown planthopper and whitebacked planthopper in rice field and light-trapped was analyzed by using 20 years historic data collected in naturally-occurred rice plots and trapped by ordinary incandescent light since 1990 in Xiushan, Chongqing. The results showed that the first appearance date of brown planthopper had the tendency of postponing, while whitebacked planthopper had the tendency of advancing. The first appearance date of whitebacked planthopper was 16.68±17.58 days earlier than brown planthopper's. There were two occurrence peak of rice planthopper in naturally-occurred rice plots. The first one was mainly caused by whitebacked planthopper and the second one was by brown planthopper. The damages caused by the two insects during occurrence peaks were all great and the area was large. The occurrence peak of brown planthopper in rice field was mainly in early or middle August in 1990's but in late August from 2000 to 2009 and the occurrence peak of its macropterous was mainly in middle August in 1990s but in late August in late 10 years. So the occurrence peak of brown planthopper and its macropterous in the field had tendency of postponing.The occurrence peak of whitebacked planthopper in rice field was mainly in middle July in 1990s but in early July in late 10 years and the occurrence peak of its macropterous was in middle July or early August in 1990s but in middle or late July in late 10 years. So the occurrence peak of whitebacked planthopper and its macropterous in the field had tendency of advancing. The peak of light-trap catches of brown planthopper was mainly in late August and whitebacked planthopper was in early or late July. The quantity of whitebacked planthopper trapped by the light was larger than brown planthopper during rice growing stages mainly but smaller than brown planthopper after the rice harvestry in all years. The back immigration peak of brown planthopper was earlier than whitebacked planthopper because the former is in middle Sept. and the later was in late Sept. or Oct..
     2. To provide a theoretical basis for its integrated control, dynamic process and spatial pattern of the whitebacked planthopper after their immigration were studied. Models of space variation were constructed at the directions of east-west and south-north based on the geostatistical method by using survey data from the transplanting to ripening of the rice in the scale of 900 m2 in Xiushan, Chongqing in 2008. The variograms showed the higher population density was the greater space variation became for both nymphs and macropterous. Average space variation of nymphs was 38.7% caused by the random factor and 61.3%caused by the autocorrelation, and the random degree of space variation became greater as the rice grew up. Space-related distance of nymphs was 18.99 m in the direction of east-west and 25.09 m in south-north averagely. Average space variation of macropterous was 37.6%caused by the random factor and 62.4%caused by the autocorrelation and space-related distance was 12.86 m in the direction of east-west and 28.85 m in south-north averagely. The application of isoline map based on Surfer8.0 to these data provided more detailed information to the spatial dependence and structure. The result showed the aggregated scope in the south to north was larger than in the east to west for both nymphs and macropterous. That is to say south to north is the main direction for the whitebacked planthopper nymphs and macropterous to aggregate and diffuse.
     3. According to the comparatively complete investigation field data in Xiushan, Chongqing from 2003 to 2009, the spatial distribution and dynamics of brown planthopper and whitebacked planthopper were analyzed in this county. The result showed that the spatial distribution patterns of whitebacked planthopper were mainly aggregated in all years and the centers of aggregation and distribution patterns changed with time. In general, the density grades were higher in the middle area of the county including Guanqiao, Guanzhuang, Pingkai and 4 years aggregation center was in these areas. Its grades were lower in mountain area such as east, west, south and north of the county. The aggregation center in 2007 was in Aikou and Lanqiao, which is the south of the county, and it appeared in Pingma in 2008, which is the east of the county and in the north Haiyang and west Tangao in 2009. The spatial distribution of brown planthopper is different from whitebacked planthopper based the late 3 years'investigation data. The density grades were higher in middle and west, whereas its grades were lower in southeast of the county. The higher density grade appeared in Rongxi, Tangao, Guanzhuang, Zhonghe. The reasons of spatial distribution difference between brown planthopper and whitebacked planthopper need more investigation.
     4. Community structure and temporal niches of brown planthopper and whitebacked planthopper and their natural enemies including spider, staphylinid, Cyrtorhinus lividipennis, Micraspis discolor, Dryinidae in hybrid and conventional rice field were researched. The quantitative characters of the occurrence of each group and the condition of resource utilization were analyzed. The following and control function of the natural enemies to rice planthopper was inquired. The result showed that the quantity of brown planthopper is very small and whitebacked planthopper and natural enemies increased gradually before the rice heading stages. Then whitebacked planthopper decreased and brown planthopper increased and natural enemies kept in stable state which means the insect and the enemies keeps in balance state. The temporal niches breadth of every group was different in 2 paddy fields and the spiders'was greatest in both kinds field, but it was very small for Cyrtorhinus lividipennis, Micraspis discolor and Dryinidae. The niche overlap of rice planthopper and natural enemies means the time possibility of predation or parasitism. In hybrid rice field, the greatest niche overlap was rice planthopper and spider and then was rice planthopper and staphylinid. The greatest niche overlap index was rice planthopper and spider and then was rice planthopper and Cyrtorhinus lividipennis in conventional rice field.
     5. By using the transition probability method of Markov chain theory, the transition probability matrix of 1 to 5 steps was constructed based on the time series data of brown planthopper and whitebacked planthopper surveyed in rice paddy from 1983 to 2007 in Xiushan county, Chongqing, and trapped by the light from 1977 to 2007 in Jiangkou county, Guizhou province, China. The weight of every step by the rewarding accuracy of each step in transition probability matrix was calculated and the occurrence degree of the sixth years was predicted based on the occurrence status of the previous 5 consecutive years. Reexamining the 20 years actual occurrence of field in Xiushan and 26 years of light trap catches in Jinagkou.The result showed that the Markov chain theory has great simulation effect and nonparametric Wilcoxon paired sample test showed there were no significant difference between the actual and predicted occurrence in the 0.05 level for both brown planthopper and whitebacked planthopper. And the models accurately predicted the light occurrence in 2008 for both pests. The transition probability matrix and the weights constructed in this study have great guiding significance to forecast the occurrence grade of the two planthoppers for Xiushan, Jiangkou and its neighboring areas. It offers a rapid and effective method for the long-term predictability of the pests.
     6. The data of weather and rice planthopper investigated in the field and light-trapped was collected in Xiushan, Chongqing from 1990 to 2006. Taking the data of occurrence peak in the field as independent variable and the data of light-trapped and weather as dependent variable, the forecasting model of occurrence peak of brown planthopper and whitebacked planthopper in the field was constructed based on stepwise regression analysis. And then we investigated the disaster forming reason of brown planthopper and whitebacked planthopper after their immigration. The result showed that the occurrence peak was not only correlated with the weather condition but with the immigration quantity for the both insects. The occurrence peak of brown planthopper in field was positively correlated with the immigration of the month or the recent month but there was no significant relationship with the immigrated female adult which has the ability of reproduction. The occurrence peak of whitebacked planthopper in the field is positively correlated with the immigration of the previous months but has little relationship with the immigration of recent month. So the conclusion is that the brown planthopper formatted disaster soon after their immigration and whitebacked planthopper formatted disaster with their reproductive generations.
     7. Standard seedling stage test was used to identify the biotype of brown planthopper of Xiushan county in 2008. Five rice varieties with different resistance gene such as TN1, Mudgo, ASD7,Rathu Heerati, Babawee were used to study the biotypes of brown planthopper collected from countryside of Qingxi and Pingkai. The result showed that Mudgo and ASD7 which contradict biotype of 3 and 2 were all dead besides the sensitive TN1. It suggested there were biotype 2 and 3 of brown planthopper in Xiushan county.
引文
[1]程遐年,吴进才,马飞.褐飞虱研究与防治.北京:中国农业出版社.2003:96-101.
    [2]Denno, R., Roderick G. Population biology of planthoppers. Annual Review of Entomology.1990,35(1):489-520.
    [3]陈若篪,程遐年.褐飞虱起飞行为与自身生物学节律,环境因素同步关系的初步研究.南京农学院学报.1980,2(12):42-49.
    [4]张志涛.昆虫迁飞昆虫迁飞场.植物保护.1992,18(1):48-50.
    [5]翟保平.昆虫雷达让我们看到了什么?昆虫知识.2005,42(2):217-226.
    [6]程遐年,吴进才,马飞.褐飞虱研究与防治.北京:中国农业出版社.2003:84-87.
    [7]赖仲廉.贵阳地区白背飞虱的越冬及迁飞的观察.昆虫学报.1982,25(4):397-402.
    [8]江广恒,谈涵秋,沈婉贞,程遐年,陈若篪.褐飞虱远距离向南迁飞的气象条件.昆虫学报.1982,25(2):147-155.
    [9]汪毓才,胡国文,谢明霞.我国白背飞虱和褐飞虱迁飞途径的气流分析.植物保护学报.1982,9(2):73-82.
    [10]程遐年,JR R.褐飞虱在中国东部秋季回迁的雷达观察.南京农业大学学报.1994,17(3):24-32.
    [11]Rose, A., Silversides R., Lindquist O. Migration flight by an aphid, Rhopalosiphum maidis (Hemiptera: Aphididae), and a noctuid, Spodoptera frugiperda (Lepidoptera:Noctuidae). Canadian Entomologist. 1975,107:567-576.
    [12]Rosenberg, L. J., Magor J. I. Predicting windborne displacements of the brown planthopper, Nilaparva talugens from synoptic weather data 1. Long-distance displacements in the north-east monsoon. Journal of Animal Ecology. 1987,56:39-51.
    [13]Riley, J., Cheng X., Zhang X., Reynolds D., Xu G, Smith A., Cheng J., Bao A., Zhai B. The long-distance migration of Nilaparvata lugens(Staal)(Delphacidae) in China:Radar observations of mass return flight in the autumn. Ecological Entomology.1991,16(4):471-489.
    [14]程极益,包云轩,樊多琦,王海扣,程遐年.褐飞虱迁飞轨迹研究.南京农业大学学报.1995,18(3):60-67.
    [15]翟保平,张孝羲.昆虫迁飞行为的参数化.生态学报.1997,17(2):190-199.
    [16]包云轩,储长树.中国盛夏褐飞虱北迁过程的动态数值模拟.昆虫学报.2000,43(2):176-183.
    [17]包云轩,翟保平,程遐年.褐飞虱迁飞参数的数值模拟.生态学报.2005,25(5):1107-1114.
    [18]Furuno, A., Chino M., Otuka A., Watanabe T., Matsumura M., Suzuki Y. Development of a numerical simulation model for long-range migration of rice planthoppers. Agricultural and Forest Meteorology. 2005,133(1-4):197-209.
    [19]Turner, R., Song Y, Uhm K. Numerical model simulations of brown planthopper Nilaparvata lugens and white-backed planthopper Sogatella furcifera (Hemiptera:Delphacidae) migration. Bulletin of Entomological Research.2007,89(6):557-568.
    [20]Otuka, A., Watanabe T., Suzuki Y, Matsumura M., Furuno A., Chino M. Real-time prediction system for migration of rice planthoppers Sogatella furcifera (Horvath) and Nilaparvata lugens (St 1)(Homoptera: Delphacidae). Applied Entomology and Zoology.2005,40(2):221-229.
    [21]赵志模.生态学引论:科学技术文献出版社重庆分社;1984.
    [22]徐汝梅.昆虫种群生态学:北京师范大学出版社;1987.
    [23]Ma, F., Ding Z., Cheng X. Chaos and Predictable Time-Scale of the Brown Planthopper Nilaparvata Lugens Occurrence System. Journal of Asia-Pacific Entomology.2001,4(1):67-74.
    [24]Rose, A. H., Silversides R. H., H.Lindquist O. Migration flight by an aphid, Rhopalosiphum maidis (Hemiptera:Aphididae),and a noctuid, Spodoptera frugiperda (Lepidoptera:Noctuidae). Canadian Entomologist. 1975,107:567-575.
    [25]Zhu, Z.-R., Cheng J. Optimal strategies for management of white-backed planthopper, Sogatella furcifera, on second season rice in Zhejiang, China:Dynamic programming approach. Agricultural Systems. 1997,54(2):243-258.
    [26]Yadav, D. S., Chander S. Simulation of rice planthopper damage for developing pest management decision support tools. Crop Protection.In Press, Corrected Proof.
    [27]徐汝梅,刘来福,朱国仁,沈嘉骥.变维矩阵模型在温室白粉虱种群动态模拟中的应用.生态学报.1981,1(2):147-158.
    [28]秦厚国,丁建,叶正襄,黄水金,罗任华.斜纹夜蛾实验种群动态的分析.华东昆虫学报.2004,13(2):45-48.
    [29]邓曙东,周世文.转Bt基因棉对非靶标害虫及害虫天敌种群动态的影响.昆虫学报.2003,46(1):1-5.
    [30]句荣辉,沈佐锐.昆虫种群动态模拟模型.生态学报.2005,25(10):2709-2716.
    [31]Shi, J., Luo Y., Wu H., Liang L. Impact on Forest Growth and Related Growth Models of the Pinus massoniana Population Invaded by Bursaphelenchus xylophilus. Acta Ecologica Sinica.2008,28(7):3193-3204.
    [32]闫香慧,赵志模,刘怀,谢雪梅,程登发.应用马尔可夫链理论对褐飞虱和白背飞虱发生程度的预测.生态学报.2009,29(11):5799-5806.
    [33]Mo, T.-L., Liu T.-X. Biology, life table and predation of Feltiella acarisuga (Diptera:Cecidomyiidae) feeding on Tetranychus cinnabarinus eggs (Acari:Tetranychidae). Biological Control.2006,39(3):418-426.
    [34]Golizadeh, A., Kamali K., Fathipour Y., Abbasipour H. Effect of temperature on life table parameters of Plutella xylostella (Lepidoptera:Plutellidae) on two brassicaceous host plants. Journal of Asia-Pacific Entomology. 2009,12(4):207-212.
    [35]Li, X., Zhang Y, Luo Y, Settele J. Life history, life table, habitat, and conservation of Byasa impediens (Lepidoptera:Papilionidae). Acta Ecologica Sinica.2006,26(10):3184-3197.
    [36]Perumalsamy, K., Selvasundaram R., Roobakkumar A., Rahman V. J., Babu A., Muraleedharan N. N. Life table and predation of Oligota pygmaea (Coleoptera:Staphylinidae) a major predator of the red spider mite, Oligonychus coffeae (Acarina:Tetranychidae) infesting tea. Biological Control.2009,51(1):96-101.
    [37]孔文军,张建华,贺玲.北疆棉铃虫自然种群生命表的初步研究.植物保护.2009,35(4):58-62.
    [38]蔡笃程,程立生.二斑叶螨实验种群的矩阵模型及其应用.热带作物研究.1997,7(3):28-32.
    [39]丁岩钦.昆虫数学生态学:科学出版社;1994.
    [40]郅军锐,任顺祥.胡瓜钝绥螨对西花蓟马的功能反应和数值反应.华南农业大学学报.2006,27(3):35-38.
    [41]张艳璇,林坚贞,季洁,康玉妹,陈霞.数值反应和实验种群生命表分析胡瓜钝绥螨对柑橘全爪螨的控制能力.中国农业科学.2004,37(12):1866-1873.
    [42]刘爱萍,徐林波,王俊清.多异长足瓢虫捕食枸杞蚜的功能反应与寻找效应研究.中国植保导刊.2008,28(7):5-7.
    [43]刘乾,刘长仲,孙鹭,窦晓青.七星瓢虫和多异瓢虫对三叶草彩斑蚜的功能反应研究.植物保护.2009,35(2):78-81.
    [44]李立,Montgomery M.,虞国跃.斑翅肩花蝽对铁杉球蚜的捕食作用.昆虫知识.2009,17(1):72-76.
    [45]吴春光,魏玉敏.十一星瓢虫捕食棉蚜的种群动力学模型及其数值模拟.科学技术与工程.2009(2):402-404.
    [46]费惠新,韦永保.水稻—稻纵卷叶螟—天敌生态系统的动态模拟.南京农业大学学报.1992,15(1):27-32.
    [47]张俊平,陈常铭.稻纵卷叶螟种群系统动态模拟.昆虫学报.1991,34(3):311-318.
    [48]Boukal, D. S., Sabelis M. W., Berec L. How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. Theoretical Population Biology.2007,72(1):136-147.
    [49]Pakyari, H., Fathipour Y, Rezapanah M., Kamali K. Temperature-dependent functional response of Scolothrips longicornis (Thysanoptera:Thripidae) preying on Tetranychus urticae. Journal of Asia-Pacific Entomology. 2009,12(1):23-26.
    [50]Suterlin, S., van Lenteren J. C. Influence of Hairiness ofGerbera jamesoniiLeaves on the Searching Efficiency of the ParasitoidEncarsia formosa. Biological Control.1997,9(3):157-165.
    [51]Preap, V., Zalucki M. P., Jahn G. C., Nesbitt H. J. Effectiveness of Brown Planthopper Predators:Population Suppression by Two Species of Spider, Pardosa pseudoannulata (Araneae, Lycosidae) and Araneus inustus (Araneae, Araneidae). Journal of Asia-Pacific Entomology.2001,4(2):187-193.
    [52]程遐年,浦茂华,陈钰英.褐飞虱防治理论研究与实践.江苏科学技术出版社.1993:63-67.
    [53]陈仕高,石登贵,谢雪梅,蒲正国,刘光杰.重庆市秀山县稻飞虱发生特点及其原因分析.昆虫知识.2003,40(2):179-182.
    [54]陈文龙,申科,彭华,黎坚,张润杰.白背飞虱灯诱种群数量季节动态.华南农业大学学报.2005,26(3):37-40.
    [55]方向群,琚为民,吴中福,范国辉,杨贤萍,陶俊,邱鑫.桐城市褐飞虱发生规律及其影响因素.安徽农业科学.2004,32(2):277-279.
    [56]胡国文,谢明霞,汪毓才.对我国白背飞虱的区划意见.昆虫学报.1988,31(1):42-49.
    [57]Kisimoto, R. Effect of crowding during the larval period on the determination of the wing-form of an adult plant-hopper. Nature.1956,178(22):641-642.
    [58]王希仁,张灿东.褐稻虱翅型分化因子的探讨.昆虫知识.1981,18(4):145-148.
    [59]Dyck, V., Misra B., Alam S., Chen C., Hsieh C., Rejesus R. Ecology of the brown planthopper in the tropics. Brown planthopper:threat to rice production in Asia.1979:61-98.
    [60]秦厚国,叶正襄,舒畅.白背飞虱种群治理理论与实践.江西科学技术出版社.2003:111.
    [61]沈君辉,燕王.,寒川一成.抗虫水稻品种上饲养的白背飞虱种群的致害性变化.中国水稻科学.2003,17:84-88.
    [62]王凤,鞠瑞亭,李跃忠,杜予州.生态位概念及其在昆虫生态学中的应用.生态学杂志.2006,25(10):1280-1284.
    [63]Schlosser, I., Doeringsfeld M., Elder J., Arzayus L. Niche relationships of clonal and sexual fish in a heterogeneous landscape. Ecology.1998,79(3):953-968.
    [64]康乐,陈永林.草原蝗虫营养生态位的研究.昆虫学报.1994,37(2):178-189.
    [65]马克平.试论生物多样性的概念.生物多样性.1993,1(1):20-22.
    [66]尤平,李后魂,王淑霞.天津北大港湿地自然保护区蛾类的多样性.生态学报.2006,26(4):999-1004.
    [67]郭玉人.沈阳地区稻田节肢动物群落结构及群落生态研究.生态学报.2001,21(11):1854-1862.
    [68]欧阳志云,符贵南.生态位适宜度模型及其在土地利用适宜性评价中的应用.生态学报.1996,16(2):113-120.
    [69]尚玉昌.现代生态学中的生态位理论.生态学进展.1988,5(2):77-84.
    [70]Polechov, J., Storch D., Sven Erik J., Brian F. Ecological Niche. Encyclopedia of Ecology. Oxford:Academic Press; 2008.1088-1097.
    [71]徐汝梅,成新跃.昆虫种群生态学.北京:科学出版社;2005.
    [72]Shea, K., Chesson P. Community ecology theory as a framework for biological invasions. Trends in Ecology & Evolution.2002,17(4):170-176.
    [73]Hurlbert, S. The measurement of niche overlap and some relatives. Ecology.1978,59(1):67-77.
    [74]Borenstein, E., Kendal J., Feldman M. Cultural niche construction in a metapopulation. Theoretical Population Biology.2006,70(1):92-104.
    [75]Lewis, W. M., Gene E. L. The Ecological Niche in Aquatic Ecosystems. Encyclopedia of Inland Waters. Oxford:Academic Press; 2009.411-415.
    [76]Wang, J. The models of niche and their application. Ecological Modelling.1995,80(23):279-291.
    [77]Vandermeer, J. The niche construction paradigm in ecological time. Ecological Modelling.2008,214(4):385-390.
    [78]杨效文.生态位有关术语的定义及计算公式评述.生态学杂志.1992,11(2):44-49.
    [79]韩路,王海珍.生态位理论的发展及其在农业生产中的应用.新疆环境保护.1999,21(4):10-15.
    [80]李契,朱金兆,朱清科.生态位理论及其测度研究进展.北京林业大学学报.2003,25(1):100-107.
    [81]张飞萍,王辉阳.毛竹叶螨及其天敌捕食螨的生态位研究.林业科学.2001,37(2):56-60.
    [82]王智,宋大祥,朱明生.稻田蜘蛛和害虫的生态位研究.华南农业大学学报.2005,26(2):47-51.
    [83]丁伟,赵志模,王进军,陈贵红.三种玉米蚜虫种群的生态位分析.应用生态学报.2003,14(9):1481-1484.
    [84]朱克响,周全恩.淮北棉田主要害虫及其天敌生态位的研究.植物保护.2000,26(2):16-20.
    [85]吴伟坚.几种十字花科蔬菜害虫生态位的研究.昆虫知识.2003,40(1):42-44.
    [86]吕仲贤,王桂跃.玉米螟和桃蛀暝在玉米上的生态位及其种间竞争.浙江农业学报.1995,7(1):31-34.
    [87]缪勇,邹运鼎,孙善教,叶成瑞,李桃春,叶世炉,邢建国.棉蚜及其捕食性天敌时空生态位研究.应用生态学报.2003,14(4):549-552.
    [88]罗跃进,田学志.双季早稻田主要捕食性天敌及稻飞虱的生态位的研究.安徽农业科学.1998,26(3):244-246.
    [89]张文庆,张古忍,古德祥.稻飞虱及其节肢类捕食者的生态位关系研究.中山大学学报论丛.1995.2:21-26.
    [90]罗淑萍,张永强,黄寿山.不同抗性品种稻田稻飞虱及其主要捕食性节肢动物生态位研究.华南农业大学学报.2006,27(1):37-40.
    [91]李典谟,马祖飞.展望数学生态学与生态模型的未来.生态学报.2000,20(6):1083-1089.
    [92]李哲,季荣,谢宝瑜,李典谟.论昆虫空间生态学研究.昆虫知识.2004,41(1):1-6.
    [93]周立阳,费惠新.多维时间序列分析在稻纵卷叶螟长期预测预报上的试用.植物保护学报.1995,22(1):1-6.
    [94]周强,张润杰,古德祥,邹寿发,徐起峰.大尺度下褐飞虱种群空间结构初步分析.应用生态学报.2001,12(2):249-252.
    [95]马飞,许晓凤,张夕林,程遐年.神经网络预警系统及其在害虫预测中的应用.昆虫知识.2002,39(2):115-119.
    [96]王东生,曹磊.混沌,分形及其应用.安徽中国科技大学出版社.1995.
    [97]Levin, S. The problem of pattern and scale in ecology:the Robert H. MacArthur award lecture. Ecology. 1992,73(6):1943-1967.
    [98]丁岩钦,陈玉平.棉田内棉铃虫卵分布型参数特征及其应用.生态学报.1985,5(1):54-63.
    [99]石根生,李典谟.不同松林马尾松毛虫蛹及其寄生天敌群子的空间格局分析.生态学报.1997,17(4):386-392.
    [100]Kitron, U. Spatial analysis of the distribution of tests flies in the Lambwe valleys, Kenya, using Landsat TM satellite imagery and GIS. Animal Ecology.1998,65:508-518.
    [101]Zhu, M., Song Y. H., Uhm K.-B, Turner R. W., Lee J.-H., Roderick G. K. Simulation of the Long Range Migration of Brown Planthopper, Nilaparvata lugens (Stal), by Using Boundary Layer Atmospheric Model and the Geographic Information System. Journal of Asia-Pacific Entomology.2000,3(1):25-32.
    [102]黄杏元.地理信息系统概论.北京:高等教育出版社;2001.
    [103]周立阳,李典谟.害虫预测预报的生态学基础和应用技术研究进展.生态学报.2001,21(6):1013-1019.
    [104]王正军,程家安,史舟.早稻二化螟一代卵块的区域性空间分布格局及动态.浙江大学学报:农业与生命科学版.2000,26(5):465-473.
    [105]王正军,程家安.地理信息系统及其在害虫综合治理中的应用.浙江农业学报.2000,12(4):233-238.
    [106]闫宏娟,李典谟.河北省棉铃虫地理信息系统的设计与建立.昆虫知识.1999,36(3):174-177.
    [107]马小明,叶文虎,李天生.松毛虫综合管理信息系统研究.林业科学研究.1993,6:28-32.
    [108]季荣,谢宝瑜,李哲,李典谟,孟冬丽.基于GIS和GS的东亚飞蝗卵块空间格局的研究.昆虫学报.2006,49(3):410-415.
    [109]王正军,李典谟,谢宝瑜.基于GIS和GS的棉铃虫卵空间分布与动态分析.昆虫学报.2004,47(1):33-40.
    [110]陈林,Korzukhin M.,程登发,陆庆光,王福祥.基于GIS和气候,种群动态模型的红火蚁适生性分析.植物保护学报.2006,33(4):384-390.
    [111]吕昭智,田长彦,沈佐锐,程登发.基于WebGIS的新疆棉区棉铃虫发生期预测.干旱区地理.2006,29(4):582-587.
    [112]Viranen, T. Modeling topclimatic patterns of egg mortality of Epirrita autumnata(Lepidoptera:Geometridae) with a geographic information system:prediction for current climate and warmer climate scenarios. Journal of Applied Ecology.1998,35:311-322.
    [113]Lefko, S., Pedigo L., Batchelor W., Rice M. Spatial modeling of preferred wireworm (Coleoptera:Elateridae) habitat. Environmental Entomology.1998,27(2):184-190.
    [114]陈欢欢,李星,丁文秀.Suffer 8.0等值线绘制中的十二种插值方法.工程地球物理学报.2007,4(1):52-57.
    [115]王凤花,张淑娟,高丽红.基于Surfer软件的田间信息制图与分析.山西农业大学学报:自然科学版.2006,26(1):88-90.
    [116]白世彪,王军见,闾国年.Surfer软件在水下地形三维可视化与分析中的应用.海洋测绘.2004,24(5):51-53.
    [117]武俊红,汪云甲.基于Surfer的煤矿等值线空间插值方法有效性评价.中国矿业.2007,16(1):108-110.
    [118]白文斌,焦晓燕,王立革,王劲松.利用3D Surfer实现田间土壤信息的三维可视化.山西农业科学.2008,36(3):51-54.
    [119]Rossi, R., Mulla D., Journel A., Franz E. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs.1992,62(2):277-314.
    [120]周强,张润杰,古德祥.地质统计学在昆虫种群空间结构研究中的应用概述.动物学研究.1998,19(6):482-488.
    [121]蒋勇军,袁道先,谢世友,李林立.典型岩溶流域土壤有机质空间变异—以云南小江流域为例.生态学报.2007,27(5):2040-2047.
    [122]李哈滨,王政权.空间异质性定量研究理论与方法.应用生态学报.1998,9(6):651-657.
    [123]Burgess, T., Webster R. Optimal interpolation and isarithmic mapping of soil properties. European Journal of Soil Science.1980,31(2):315-331.
    [124]周国法,徐汝梅.生物地理统计学—生物种群时空分析的方法及其应用.北京:科学出版社;1998.
    [125]冯益明,唐守正,李增元.空间统计分析在林业中的应用.林业科学.2004,40(3):149-155.
    [126]于鑫,陆永跃,梁广文,曾玲,林进添.桔小实蝇雄成虫空间分布的地理统计学分析.华南农业大学学报.2006,27(2):28-31.
    [127]陈强,吴伟坚,张振飞,梁广文.越北腹露蝗若虫空间格局的地学统计学分析.应用生态学报.2007,18(2):467-470.
    [128]陆永跃,梁广文.棉铃虫卵空间分布的地理统计学分析.华中农业大学学报.2002,21(1):13-17.
    [129]梁文举,姜勇,李琪.定位试验地耕层土壤植物寄生线虫空间分布特征.生态学报.2006,26(1):33-39.
    [130]Hohn, M. E., Liebhold A. M, Gribko L. S. Geostatistical model for forecasting spatial dynamics of defoliation caused by the gypsy moth (Lepidoptera:Lymantriidae). Environmental Entomology.1993,22(5):1066-1075.
    [131]Liebhold, A., Elkinton J., Zhou C, Hohn M., Rossi R., Boettner G., Boettner C, Burnham C., McManus M. Regional correlation of gypsy moth (Lepidoptera:Lymantriidae) defoliation with counts of egg masses, pupae, and male moths. Environmental Entomology.1995,24(2):193-203.
    [132]Pringle, M., Lark R. Spatial analysis of model error, illustrated by soil carbon dioxide emissions. Vadose Zone Journal.2006,5(1):168.
    [133]刘庆年,刘俊展,刘京涛,张路生,李建庆.二代棉铃虫种群动态的地统计学分析.生态学杂志.2007(3):378-382.
    [134]袁哲明,张中霏,胡湘粤.基于地统计学的三化螟种群时间格局分析.中国水稻科学.2005,19(4):366-370.
    [135]王正军,李典谟,商晗武,程家安.地质统计学理论与方法及其在昆虫生态学中的应用.昆虫知识.2002,39(6):405-411.
    [136]周强,张润杰.白背飞虱在稻田内空间结构的分析.昆虫学报.2003,46(2):171-177.
    [137]周强,张润杰,古德祥.地质统计学在昆虫种群空间结构研究中的应用概述动物学研究.1998,19(6):482-488.
    [138]毕守东,刘丽,高彩球,邹运鼎,丁程成,曹传旺,刘小林,孟庆雷.枣园中枣瘿蚊和草间小黑蛛的空间分布格局及空间依赖性.应用生态学报.2005,16(11):2126-2129.
    [139]余昊,王运兵,王国昌,刘洋.中黑盲蝽空间格局的地质统计学分析.安徽农业科学.2006,34(24):6410-6411.
    [140]王政权.地统计学及在生态学中的应用.北京:科学出版社;1999.
    [141]孙英君,王劲峰,柏延臣,李道波.地统计学的GIS空间分析功能扩展.华侨大学学报:自然科学版.2004,25(4):435-439.
    [142]吕昭智,包安明,陈曦,马英杰,沈佐锐.地统计学软件在害虫管理中的应用.生态学杂志.2003,22(6):132-136.
    [143]邓聚龙.灰色预测与决策:华中理工大学出版社;1986.
    [144]李大庆,杨再学,谈孝凤,李大群.第3代白背飞虱发生虫量及发生期预测模型.贵州农业科学.2008,36(5):66-68.
    [145]卿雨文,刘勇.泸州地区白背飞虱种群动态及预测预报.西南农业大学学报.2000,22(1):49-52.
    [146]高苹,武金岗,陈宁.大气环流特征量的水稻白背飞虱发生程度预报模型的研究.生态学杂志.2005,24(2):146-152.
    [147]高苹.水稻白背飞虱发生程度的长期预测模型.中国植保导刊.2004,24(12):48-48.
    [148]李军,蒋耀培,杨秋珍,王志雄.单季晚稻褐飞虱发生程度综合客观预报模型.昆虫知识.2004,41(1):24-29.
    [149]吕冬红,王海青,刘素萍,袁昌洪,刘方.水稻褐飞虱发生程度气象预报方法的研究.安徽农业科学. 2009,37(2):668-671.
    [150]吕雨土. 褐稻虱灰色灾变长期预测初探.昆虫知识.1989,26(5):257-260.
    [151]吕雨土, 毛文彬.白背飞虱种群动态关联分析及预测模型的研究.昆虫知识.1996,33(4):193-195.
    [152]陈建明, 黄次伟,冯炳灿. 周期图分析法在晚稻褐飞虱主害代长期预报中的应用.植物保护.1994,20(3):2-3.
    [153]马飞,程遐年.害虫预测预报研究进展安徽农业大学学报.2001,28(1):92-97.
    [154]Song, Y., Heong K. Use of geographical information systems in analyzing large area distribution and dispersal of rice insects in South Korea. Korean Journal of Applied Entomology (Korea Republic).1993.
    [155]Zhou, G, Liebhold A. Forecasting gypsy moth defoliation with a geographical information system. Insect Science.1995,2(1):83-94.
    [156]张云慧, 陈林, 程登发, 张跃进, 姜玉英, 蒋金炜. 旋幽夜蛾迁飞的雷达观测和虫源分析.昆虫学报.2007,50(5):494-500.
    [157]张孝羲, 周立阳. 害虫预测预报的理论基础.昆虫知识.1995,32(1):55-60.
    [158]Furuno, A., Chino M., Otuka A., Watanabe T., Matsumura M., Suzuki Y. Development of a numerical simulation model for long-range migration of rice planthoppers. Agricultural and Forest Meteorology. 2005,133(14):197-209.
    [159]Xian, X., Zhai B., Zhang X., Cheng X., Wang J. Teleconnection between the early immigration of brown planthopper and ENSO indices:implication for its medium-and long-term forecast. Acta Ecologica Sinica. 2007,27(8):3144-3154.
    [160]刘嘉煜, 王公恕.应用随机过程(第二版).北京:科学出版社;2004.
    [161]韩博平. 生态网络中物质、能量流动的时间链分析.生态学报.1995,15(2):163-168.
    [162]祝小文. 稻褐飞虱生物型鉴定.西南农业大学学报.1989,11(4):353-354.
    [163]马巨法, 健唐.,胡国文. 我国白背飞虱生物型分化问题研究初报.植物保护.1989,3(15):28.
    [164]冯强, 王昂生.用马尔柯夫模型预测长江中下游地区旱涝灾害的试验.中国减灾.1997,7(4):33-39.
    [165]孙才志, 林学钰. 降水预测的模糊权马尔可夫模型及应用.系统工程学报.2003,18(4):294-299.
    [166]冉景江, 赵燮京, 梁川. 基于加权马尔可夫链的降水预测应用研究.人民黄河.2006,28(4):32-34.
    [167]贾宝全, 慈龙骏,任一萍.绿洲景观动态变化分析.生态学报.2001,21(11):1947-1951.
    [168]韩博平. 生态网络中物质, 能量流动的时间链分析.生态学报.1995,15(2):163-168.
    [169]阳含熙, 潘愉德, 伍业钢.长白山阔叶红松林马氏链模型.生态学报.1988,8(3):211-219.
    [170]臧淑英,黄樨,郑树峰.资源型城市土地利用变化的景观过程响应——以黑龙江省大庆市为例.生态学报.2005,25(7):1699-1706.
    [171]李任波, 李永和, 刘菊华, 谢开立. 应用马尔可夫链预测华山松木蠹象发生趋势.西南林学院学报,.2005,25(2):50-52.
    [172]谢成君. 用马尔可夫链法预报黑绒金龟发生程度.昆虫知识.1997(2):88-90.
    [173]Xiang, L., Xinyuan W., Wei S., Linyi X., Guangsheng Z., Bing T., Wenda L., Peng P. Forecast of Flood in Chaohu Lake Basin of China Based on Grey-Markov Theory.+中国地理科学:英文版.2007,17(1):64-68.
    [174]Lennartsson, J., Baxevani A., Chen D. Modelling precipitation in Sweden using multiple step markov chains and a composite model. Journal of Hydrology.2008,363(1-4):42-59.
    [175]台文志. 利用马尔可夫链模型预测股票市场的近期走势.西南民族大学学报(自然科学版).2008(3):477-481.
    [176]刘俊, 田崇新, 张小燕. 马尔可夫链在地价预测模型中的应用研究.南京师大学报(自然科学版).
    2005,28(3):121-126.
    [177]Malyshkina, N. V., Mannering F. L., Tarko A. P. Markov switching negative binomial models:An application to vehicle accident frequencies. Accident Analysis & Prevention.2009,41(2):217-226.
    [178]Elek, P., Zempldni A. Modelling extremes of time-dependent data by Markov-switching structures. Journal of Statistical Planning and Inference.2009,139(6):1953-1967.
    [179]Chiquet, J., Limnios N., Eid M. Piecewise deterministic Markov processes applied to fatigue crack growth modelling. Journal of Statistical Planning and Inference.2009,139(5):1657-1667.
    [180]孙泉,赵旭峰,钱存华.基于多点加权马尔可夫链模型的股价预测分析.南京工业大学学报(自然科学版).2008,30(3):89-92.
    [181]贾春生.利用马尔可夫链方法测报马尾松毛虫发生级别.东北林业大学学报.2006,34(5):16-22.
    [182]田红霞,郭晨.马尔可夫链在预测太原市降水量中的应用.太原科技大学学报.2008,29(6):444-446.
    [183]武文华,付和平,武晓东,杨玉平,董维惠,徐胜利.应用马尔可夫链模型预测长爪沙鼠和黑线仓鼠种群数量.动物学杂志.2007,42(6):69-78.
    [184]王彦集,刘峻明,王鹏新,韩萍,朱德海,张树誉.基于加权马尔可夫模型的标准化降水指数干旱预测研究.干旱地区农业研究.2007,25(5):198-203.
    [185]夏乐天,朱元牲,沈永梅.加权马尔可夫链在降水状况预测中的应用.水利水电科技进展.2006,26(6):20-27.
    [186]韩文权,常禹.景观动态的Markov模型研究—以长白山自然保护区为例.生态学报.2004,24(9):1958-1965.
    [187]崔振洋,李晓亮.马尔可夫链预测模型及其在农业病虫害预报中的应用.山西农业大学学报:自然科学版.1994,14(1):96-98.
    [188]顾正远,张存政,刘贤进,肖英方.褐飞虱生物型研究中几个问题的商榷.昆虫知识.2001,38(3):234-235.
    [189]吴荣宗,江志强.褐稻虱生物型的研究进展.华南农业大学学报.1992,13(4):113-120.
    [190]江志强,吴荣宗.褐稻虱生物型田间监测技术的研究.植物保护学报.1994,21(1):1-6.
    [191]Pathak, P., Saxena R., Heinrichs E. Parafdm sachet for measuring honeydew excretion by Nilaparvata lugens on Rice. Journal of economic entomology.1982,75(2):194-195.
    [192]乌慧玲,许晓风.褐飞虱生物型的分子生物学研究进展.植物保护.2004,30(4):11-14.
    [193]周亦红,韩召军.褐飞虱生物型研究进展:致害性变异的遗传机制.昆虫知识.2003,40(3):199-203.
    [194]Sogawa, K. Quantitative morphological variations among biotypes of the brown planthopper. International Research Newsletters.1978,3:9-10.
    [195]Claridge, M., Den Hollander J., Furet I. Adaptations of brown planthopper (Nilaparvata lugens) populations to rice varieties in Sri Lanka. Entomologia experimentalis et applicata.1982,32(3):222-226.
    [196]赵惠燕,张改生.现代生物技术与蚜虫种下分类.西北农业大学学报.1995,23(5):115-120.
    [197]Black, W. C. Use of the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) to delect DNA potymophisms in aphids Bull Entomology Research.1992,82:152-159.
    [198]Shufran, K., Whalon M. Genetic analysis of brown planthopper biotypes using random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Insect Science and Its Application.1995,16:27-34.
    [199]王桂荣,樊叶杨,庄杰云, 郑康乐, 张志涛. 稻褐飞虱的DNA遗传变异性分析.昆虫学报.2001,44(1):123-126.
    [200]Jung, J. K., Im D. J. Feeding Inhibition of the Brown Planthopper, Nilaparvata lugens (Homoptera: Delphacidae) on a Resistant Rice Variety. Journal of Asia-Pacific Entomology.2005,8(3):301-308.
    [201]姜人春,赖凤香.稻褐飞虱实验种群致害性的遗传分析.西南农业大学学报.1998,20(5):438-441.
    [202]李青,罗善昱.褐飞虱生物型测定及其与迁飞关系分析.昆虫知识.1999,36(5):257-260.
    [203]Yu, X., Lu Z., Wu G, Tao L., Chen J., Zheng X., Xu H. The Biotypes, Wing-forms and the Immigration of Brown Planthopper, Nilaparvata lugens Stal, in Zhejiang Province, China. Journal of Asia-Pacific Entomology. 2001,4(2):201-207.
    [204]丁锦华.中国动物志第45卷,昆虫纲,同翅目,飞虱科;2006.
    [205]Wen, Y., Liu Z., Bao H., Han Z. Imidacloprid resistance and its mechanisms in field populations of brown planthopper, in China. Pesticide Biochemistry and Physiology.2009,94(1):36-42.
    [206]程家安.水稻害虫.北京:中国农业出版社.1996:10-20.
    [207]朱德峰,张玉屏,林贤青.浅述2008年全球水稻生产、价格和技术.中国稻米.2009(1):71-73.
    [208]秦厚国,叶正襄,舒畅.白背飞虱种群治理理论与实践.江西科学技术出版社.2003:37.
    [209]程遐年,吴进才,马飞.褐飞虱研究与防治.北京:中国农业出版社.2003:29-49.
    [210]李汝铎,丁锦华,胡国文,苏德明.褐飞虱及其种群管理.上海:复旦大学出版社.1996:162.
    [211]肖晓华,谢雪梅,刘春,卢福刚.武陵山区秀山县稻飞虱发生的演变.现代农业科学.2008(2):36-39.
    [212]陈仕高,蒲正国,谢雪梅,田茂仁,朱明华.重庆秀山褐飞虱田间种群动态及其应用.昆虫知识.2008(2):282-287.
    [213]肖晓华.褐飞虱田间种群数量动态研究.安徽农业科学.2008(6):2377-2379.
    [214]华丘林,周岳义.白背飞虱不同虫态的空间分布型及变动规律.应用基础与工程科学学报.1998,6(3):256-260.
    [215]黄寿山,胡慧建.二化螟越冬幼虫空间分布图式的地理统计学分析.生态学报.1999,19(2):250-253.
    [216]张润杰,周强.褐飞虱田间种群空间结构分析和空间分布模拟.西南农业大学学报.1998,20(5):450-455.
    [217]周国法.应用一维空间序列方法研究空间分布型与时空相关.生态学报.1997,17(2):200-208.
    [218]Rossi, R. E., Mulla D. J., Journel A. G, Franz E. H. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs.1992,62:277-314.
    [219]Taylor, L. Assessing and interpreting the spatial distributions of insect populations. Annual Review of Entomology.1984,29(1):321-357.
    [220]张蓉,朱猛蒙,马建华,王芳.基于地理信息系统的耕地苜蓿斑蚜种群发生的适宜生境.应用生态学报.2009,20(8):1998-2004,
    [221]Guinan, J., Brown C, Dolan M. F. J., Grehan A. J. Ecological niche modelling of the distribution of cold-water coral habitat using underwater remote sensing data. Ecological Informatics.2009,4(2):83-92.
    [222]Miller, J. Niche relationships among parasitic insects occurring in a temporary habitat. Ecology. 1980,61(2):270-275.
    [223]Santana, F. S., de Siqueira M. F., Saraiva A. M., Correa P. L. P. A reference business process for ecological niche modelling. Ecological Informatics.2008,3(1):75-86.
    [224]黄保宏,邹运鼎,毕守东,李恒奎,朱巧丽.梅园昆虫群落特征,动态及优势种生态位.应用生态学报.2005,16(2):307-312.
    [225]李剑泉,赵志模.重庆市稻田动物群落及农田蜘蛛资源考察.西南农业大学学报.2001,23(4):312-316.
    [226]任爽,邓新平.板栗树冠节肢动物群落的时间生态位研究.中国森林病虫.2005,24(6):8-12.
    [227]李志胜,黄咏俏,尤民生.芥蓝田主要害虫种群生态位研究3.昆虫知识.2005,42(4):4009-4012.
    [228]王艳妮,周材权,张君,周友兵,胡锦矗,熊耀武.唐家河自然保护区夏季啮齿类的空间生态位.兽类学报.2005,25(1):39-44.
    [229]周洪旭,丁立孝.春季3种十字花科蔬菜昆虫群落的时间生态位.莱阳农学院学报.2000,17(3):218-221.
    [230]夏乐天,彭志行,沈永梅.加权马尔可夫链在农作物年景预测中的应用.数学的实践与认识.2005,35(12):30-35.
    [231]Wilcoxon, F. Probability tables for individual comparisons by ranking methods. Biometrics.1947,3(3):119-122.
    [232]胡尧.两样本问题中的非参数检验.贵州大学学报:自然科学版.2005,22(3):232-235.
    [233]刘俊魁.逐步回归模型在早稻白背飞虱预报上的应用.昆虫知识.1999(1):40.
    [234]邵崇斌,董丽芬,赵文英,王琳.应用马尔科夫链预测杨树天牛发生量.陕西林业科技.1996(4):28-37.
    [235]姜运良,卢浩泉,李玉春,王玉山,张学栋.山东阳谷县黑线仓鼠种群数量预测预报.兽类学报.1994,14(3):195-202.
    [236]苏庆玲,张孝羲.逐步回归在稻纵卷叶螟中期预测上的应用.南京农业大学学报.1995,18(3):43-47.
    [237]黄次伟,冯炳灿.水稻白背飞虱,褐飞虱取食动态研究.昆虫学报.1993,36(2):251-255.
    [238]顾伟欣,周红.基于逐步回归分析的孔隙度预测方法.石油地质与工程.2008,22(1):37-39.
    [239]王冬梅,沈颂东.逐步回归分析法.工业技术经济.1997,16(3):54-55.
    [240]包凤达,翁心真.多元回归分析的软件求解和案例解读.数理统计与管理.2000,19(5):56-61.
    [241]刘泽文,韩召军.白背飞虱抗药性研究进展.植保技术与推广.2002,22(10):38-39.
    [242]李文红,高聪芬,王彦华,庄永林,戴德江,沈晋良.褐飞虱对噻嗪酮的抗药性监测.中国水稻科学(ChineseJRiceSci).2008,22(2):197-202.
    [243]王彦华,王强,沈晋良,吴声敢,俞瑞鲜,赵学平,苍涛,吴长兴,陈丽萍.褐飞虱抗药性研究现状.昆虫知识.2009(4):518-524.
    [244]Wen, Y, Liu Z., Bao H., Han Z. Imidacloprid resistance and its mechanisms in field populations of brown planthopper, in China. Pesticide Biochemistry and Physiology.2009,94(1):36-42.
    [245]Nagata, T. Monitoring on Insecticide Resistance of the Brown Planthopper and the White Backed Planthopper in Asia. Journal of Asia-Pacific Entomology.2002,5(1):103-111.
    [246]李汝铎,丁锦华,胡国文,苏德明.褐飞虱及其种群管理.上海:复旦大学出版社;1996.
    [247]程遐年,吴进才,马飞.褐飞虱研究与防治.北京:中国农业出版社.2003:55.
    [248]曾宪森,周文通.福建省褐稻虱生物型研究.福建农业学报.2000,15(4):6-11.
    [249]Denno, R., Perfect T. Planthoppers:their ecology and management. New York & London:Chapman & Hall; 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700