玉米新选自交系产量相关性状配合力和遗传基础分析及GY220/1145组合QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国的玉米种植面积2463.4万hm2,总产12131万t,平均单产4924.5kg/hm2;世界玉米种植面积13750万hm2,总产为60220万t,平均单产为4380kg/hm2;美国玉米平均单产10000kg/hm2.我国玉米单产水平,高于世界平均水平,与美国比还有相当大的差距,杂交玉米生产能力的提高还有很大的发展空间。20世纪90年代以来,我国玉米单产增速渐缓一直处于徘徊状态。玉米产量徘徊的根本原因是所利用的种质基础狭窄。江苏沿江地区农业科学研究所近年来利用热带亚热带等外来种质进行玉米种质创新,选育了一批新的自交系。为了明确新选自交系的利用价值和进一步改良的潜力,本研究首先选择其中的9个自交系(代号s1至s9),配制双列杂交组合,在江苏南通和南京两个地点对小区产量、穗行数等11个性状进行了配合力分析和综合评价;然后选用综合评价较好的3个自交系S1、S3和S7配成S1×S3、S3xS7两个组合的P1、P2、F1、B1、B2、F2六个世代,运用主基因+多基因遗传模型和6个世代联合分析的方法,对玉米穗粒重、百粒重、行粒数、穗行数、穗长、穗粗、轴粗、穗总重性状进行了遗传分析;最后调查玉米自交系GY220与自交系1145杂交衍生的RIL群体109个家系(F10;11)及其亲本在2个环境下10个穗部性状、2个植株性状和1个粗缩病抗性的表型值,利用该群体的分子标记连锁图谱,运用WinQTLCartographer2.5软件的复合区间作图法(CIM)和基于混合线性模型的QTLNetwork2.0软件的复合区间作图法,分别对这13个性状进行了QTL检测。主要研究结果如下:
     1.9个新选自交系间杂种F1小区产量、行粒数、穗长、单株粒重的变异中,非加性遗传方差大于加性遗传方差;穗行数、千粒重、穗粗、百粒体积、单株杆重、生育期的变异中,加性遗传方差大于非加性遗传方差。株高的加性遗传方差占总遗传方差的比重在2试点间不一致。小区产量、千粒重、百粒体积、单株粒重性状一般配合力好的自交系是S7和S3。穗行数、穗粗一般配合力较好的自交系是S6和S3。行粒数、穗长一般配合力较好的自交系是S9和S2。株高高杆一般配合力好的是S7和S2,矮杆一般配合力好的是S4和S1。早熟性一般配合力最好的是S3。综合11个性状评价,s3最好,其次为s7。导入了热带亚热带种质的s9和s2等行粒数一般配合力有所提高。除行粒数和南通点株高外,其它性状的反交效应均不显著。
     2.玉米穗粒重、穗总重性状在s1×s3和s3×s72个组合中均表现为2对加性-显性-上位性主基因+加性-显性-上位性多基因遗传,以主基因遗传为主。行粒数性状在2个组合中均表现为1对加性主基因+加性-显性多基因混合遗传,主基因遗传为主;多基因位点显性总效应大于加性总效应。百粒重性状在s1×S3组合中表现为2对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传,在S3×S7组合中表现为1对加性-显性主基因+加性-显性多基因混合遗传,均以主基因遗传为主。玉米穗行数性状在S1×S3组合中表现为1对加性-显性主基因+加性-显性-上位性多基因遗传,以多基因遗传为主;在S3×S7组合中表现为2对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传,以主基因遗传为主。轴粗性状在组合S1×s3中表现为2对加性-显性-上位性主基因+加性-显性多基因混合遗传,主基因遗传为主;在S3×S7组合中表现为2对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传,多基因遗传为主。穗长性状在组合s1×s3中表现为加性-显性-上位性多基因遗传;在s3xS7组合中表现为1对加性-显性主基因+加性-显性-上位性多基因混合遗传。穗粗性状在组合S1×S3中表现为1对加性-显性主基因+加性-显性-上位性多基因遗传;在S3xS7组合中表现为1对完全显性主基因+加性-显性多基因混合遗传。穗长、穗粗性状均表现为多基因遗传为主。百粒重、穗粒重、穗总重、行粒数性状以主基因遗传为主。
     3.(1)运用WinQTLCartographer软件中复合区间作图法,13个性状共检测到63个位点。穗粒重共检测到4个QTL,解释表型变异的7.8%~25.8%,其中有2个在两个环境中被共同检测到,增效等位基因来自1145。穗行数检测到4个QTL,解释表型变异的6.4%~11.7%,其中1个2环境都存在。行粒数检测到4个位点,解释表型变异的8.4%-17.2%,其中1个2环境共同检测到。百粒重检测到6个QTL,解释表型变异的7.0%~13.8%。穗总重检测到3个QTL,解释表型变异的8.5%~10.3%。穗长检测到3个QTL,解释表型变异的11.9%~22.0%。穗粗检测到6个QTL,解释表型变异的6.7%-26.4%。轴粗检测到3个位点,解释表型变异的6.9%~17.0%。秃长检测到4个位点,解释表型变异的6.5%~25.7%。穗粒数检测到3个位点,解释表型变异的9.9%~16.5%其中2个2环境共同检测到。株高检测到5个QTL,解释表型变异的6.4%~8.6%。穗位高检测到4个QTL,解释表型变异的6.7%~12.8%。粗缩病抗性检测到6个QTL,解释表型变异的6.9%~17.6%,其中有3个在两个环境检测到。在检测到位点的连锁群区段中,发现6个多效性区段。第23连锁群的g5M5708-n55区段同时控制穗粒重、穗总重、行粒数、穗粗和穗粒数性状。第12连锁群的g4M3707-g6M6811区段同时控制穗粒重、穗总重、行粒数、穗粒数和株高性状。第9连锁群的g5M5813-g6M6808区段同时控制穗行数、穗粒数和穗位高性状。第13连锁群的g7M778-g4M3801区段同时控制穗总重和穗粒重。第16连锁群的g8M8801-g8M8811区段同时控制百粒重和穗行数。第2连锁群的g5M5804-g5M5803区段同时控制百粒重和秃长。(2)用QTLNetwork软件中复合区间作图法,检测到9个主效QTL和7对非主效QTL间的互作。9个主效QTL分别是:1个控制穗粒重的位点YE5-12,解释表型变异7.4%;1个控制穗行数的位点RE9-15,解释表型变异的11.6%;2个控制穗总重的位点TWE5-12和TWE13-1,分别解释表型变异的7.3%和6.6%;2个控制轴粗的位点CD13-1和CD18-2,分别解释表型变异的7。7%和8.4%;1个控制穗粒数的位点(?)NE12-5,解释表型变异的7.2%;1个控制株高的位点PH5-10,解释表型变异的11.2%;1个控制粗缩病抗性的位点RDD2-22,解释表型变异的9.0%。7对非主效QTL间的互作发生在第1与3、5与18、3与5、5与19、7与12、1与2、5与13连锁群间,分别控制穗粒重、穗行数、百粒重、穗长、穗粗、秃尖长、粗缩病抗性7个性状,解释表型变异4.7%~11.9%。(3)运用多元回归模型和混合线性模型同时检测到的QTL有6个,分别是:控制穗粒重的YE5-12,控制穗粒数的KNE12-5,控制粗缩病抗性的RDD2-22,控制穗行数的RE9-15,控制株高的PH5-10和控制穗总重的TWE5-12。这6个QTL可靠性高,可用于进一步深入研究。
In China, the planting area for maize is24,634,000hm2, and the total yield of maize is121,310,000t with the unit area yield of4924.5kg/hm2. The planting area worldwide is137,500,000hm2, and total yield is602,200,0001with the unit area yield of4380kg/hm2. In USA unit area yield is10000kg/hm2. China's per unit area yield of maize is higher than world average level, but lag far behind that of the USA. Compared with USA there is great space for development of hybrid maize product ability. The increase of China's maize per unit yield has fluctuated since1990s, the reason for which is that the genetic basis of inbred lines is becoming narrower and narrower. Recently, new germplasm has been created and new inbred lines have been bred by introducing tropical-subtropical resources in maize in Institute of Agricultural Sciences of the Area Along Yangtse of Jiangsu. In order to evaluate the utilization value and genetic potential for further improvement of these inbred lines newly bred, we, firstly in this study, analysed general combining ability (GCA) and special combining ability (SCA) of11traits in9inbred lines (named as S1~S9) selected from the lines newly bred through seventy-two F1hybrids made by method3of Griffing diallel designs, and planted in Nantong and Nanjing, Jiangsu Province, respectively. Then, genetic analysis for9trait were conducted by using mixed major gene plus polygene inheritance models and joint segregation analytic method of P1, P2, F1, B1, B2and F2generations in two crosses made from the3elite inbred lines, S1, S3and S7. Lastly, QTL mapping was carried out for13traits by using a RIL population (109lines) made from a single cross hybrid of GY220/1145, using composite interval mapping method in both WinQTLCartographer2.5and QTLnetwork2.0softwares. Main research results obtained were as follows.
     1. Among the F1hybrids, genetic variances of non-additive were larger than those of additive in the variations of grain yield per plot, kernel number per row, ear length and kernel weigth per plant, and genetic variances of additive were greater than those of non-additive in the variations of row number per ear,1000-kernel weight, ear diameter,100-kernel volume, stalk weight per plant and growth duration. Genetic variances of additive of plant height different between Nantong and Nanjing. Inbred lines S7and S3had excellent GCA for kernel yield per plot,1000-kernel weight,100-kernel volume and kernel weigth per plant. Inbred lines S6and S3showed elite GCA for rows per ear and ear diameter. Inbred lines S9and S2showed good GCA for kernel number per row and ear length. Inbred lines S7and S2showed good GCA for high plant height and Inbred lines S4and S1showed good GCA for low plant height. Summing up the evaluation from the11traits, the best line was S3, then S7, S2,S1and S5in order, and last is S4. GCA for kernel number per row was improved in S9into which tropic and subtropic germplasm was introduced. Reciprocal effects of the traits were not significant at5%probability level except kernel number per row in both sites and plant height in Nantong.
     2. Kernel weight per ear and total weight per ear was controlled by two pairs of major gene with additive-dominance-epistatic effects plus polygenes with additive-dominance-epistatic effects, and the trait was mainly governed by major genes in both crosses.100-grain weight was controlled by two pairs of major gene with additive-dominance-epistatic effects plus polygenes with additive-dominance-epistatic effects in S1×S3, and by one pair of major gene with additive-dominance effects plus polygenes with additive-dominance effects in S3×S7, and was mainly governed by major genes in both crosses. Kernel row number was controlled by one additive-dominance major-gene and additive-dominance-epistasis polygenes, and was mainly governed by polygenes in cross S1×S3; whereas in cross S3×S7the trait was controlled by two additive-dominance-epistasis major-genes and additive-dominance-epistasis polygenes, and was mainly governed by major genes. Kernel number per row was controlled by one additive major-gene and additive-dominance polygenes, and was mainly governed by major gene in both crosses. Total effect of dominance was larger than that of additive in polygene loci. Ear length was controlled by additive-dominance-epistasis polygenes in cross S1×S3; whereas in cross S3×S7the trait was controlled by one additive-dominance major-gene and additive-dominance-epistasis polygenes. Ear diameter was controlled by one additive-dominance major-gene and additive-dominance-epistasis polygenes in cross S1×S3; whereas in cross S3×S7the trait was controlled by one wholly dominance major-gene and additive-dominance polygenes. Ear length and Ear diameter either was mainly governed by polygenes. Cob diameter was controlled by two additive-dominance-epistasis major-gene and additive-dominance polygenes in cross S1×S3; whereas in cross S3×S7the trait was controlled by two additive-dominance-epistasis major-gene and additive-dominance-epistasis polygenes, and was mainly governed by polygenes.100-kernel weight, kernel weight per ear, total weight per ear and kernel number per row was mainly governed by major genes.
     3.(1) Sixty-three loci were detected for the13traits by the CIM method. For trait of yield per ear,4QTLs, explaining7.8%~25.8%of phenotypic variation, were detected and2of the4were detected in both environments. For trait of rows per ear,4QTLs, explaining6.4%~11.7%of phenotypic variation, were detected and1of the4was detected in both environments. For trait of kernel number per row,4QTLs, explaining8.4%~17.2%of phenotypic variation, were detected and1of the4was detected in both environments. For trait of100-kernel weight,6QTLs, explaining7.0%~13.8%of phenotypic variation, were detected. For trait of total weight per ear,3QTLs, explaining8.5%~10.3%of phenotypic variation, were detected. For trait of ear length,3QTLs, explaining11.9%~22.0%of phenotypic variation, were detected. For trait of ear diameter,6QTLs, explaining6.7%~26.4%of phenotypic variation, were detected. For trait of cob diameter,3QTLs, explaining6.9%~17.0%of phenotypic variation, were detected. For trait of tip barren length,4QTLs, explaining6.5%~25.7%of phenotypic variation, were detected. For trait of kernel number per ear,3QTLs, explaining9.9%~16.5%of phenotypic variation, were detected and2of the3were detected in both environments. For trait of plant height,5QTLs, explaining6.4%~8.6%of phenotypic variation, were detected. For trait of ear height,4QTLs, explaining6.7%~12.8%of phenotypic variation, were detected. For trait of rough dwarf disease,6QTLs, explaining6.9%~17.6%of phenotypic variation, were detected and3of the6were detected in both environments. Six intervals with multiple effects were found among the intervals harboring loci. Locus between g5M5708-n55on23linkage conditioned yield per ear, total weight per ear, kernel number per row, ear diameter and kernel number per ear simultaneously. Locus between g4M3707-g6M6811on12linkage conditioned yield per ear, total weight per ear, kernel number per row, kernel number per ear and plant height simultaneously. Locus between g5M5813-g6M6808on9linkage conditioned row per ear, kernel number per ear and ear height simultaneously. Locus between g7M778-g4M3801on13linkage conditioned total weight per ear and yield per ear simultaneously. Locus between g8M8801-g8M8811on16linkage conditioned100-kernel weight and row per ear simultaneously. Locus between g5M5804-g5M5803on2linkage conditioned100-kernel weight and tip barren length simultaneously.(2) Nine main effect QTLs and7pairs of interaction between non main effect QTLs were detected by the QTLNetwork method. The9main effect QTLs were as follows. One was YE5-12, controlling yield per ear, explained7.4%of phenotypic variation. One was RE9-15, controlling row per ear, explained11.6%of phenotypic variation. Two were TWE5-12and TWE13-1, controlling total weight per ear, explained7.3%and6.6%of phenotypic variation respectively. Two were CD13-1and CD18-2, controlling cob diameter, explained7.7%and8.4%of phenotypic variation respectively. One was KNE12-5, controlling kernel number per ear, explained7.2%of phenotypic variation. One was PH5-10, controlling plant height, explained11.2%of phenotypic variation. One was KNE12-5, controlling kernel number per ear, explained7.2%of phenotypic variation. One was RDD2-22, controlling rough dwarf disease, explained9.0%of phenotypic variation. Seven pairs of interaction between non main effect QTLs were occurred linkages between1and3,5and18,3and5,5and19,7and12,1and2, and5and13, controlling yield per ear, row per ear,100-kernel weight, ear length, ear diameter, tip barren length and rough dwarf disease respectively, and explained4.7%-11.9%of phenotypic variation.(3) Six QTLs were detected simultaneously by the two genetic models, i.e. multiple regression model and mixed linear model. The6QTLs were YE5-12, controlling yield per ear, KNE12-5, controlling kernel number per ear, RDD2-22, controlling rough dwarf disease, RE9-15, controlling row per ear, PH5-10, controlling plant height, and TWE5-12, controlling total weight per ear. It is worth to study the6QTLs further since they are reliable QTLs.
引文
包和平,王晓丽,李春成.玉米抗螟性主基因-多基因混合遗传分析[J].吉林农业大学学报,2007,29(3):253-255
    鲍文奎.机会与风险——40余年育种研究的思考[J].植物杂志,1990,(4):4-5
    蔡志飞,薛林,黄小兰,等.苏玉9号的选育和应用[J].南京农专学报,2001,17(2):25-30
    陈景堂,池节敏,刘克增,等.玉米粗缩病(MRDV)研究现状及展望[J].玉米科学,2000,8(3):76-78
    陈献功,刘金波,洪德林.粳稻直立穗与弯曲穗3个杂交组合6个世代穗角和每穗颖花数的遗传分析[J].作物学报,2006,32(8):1143-1150
    陈巽祯,杨满昌,刘信义,等.玉米粗缩病发生规律及综合防治研究[J].华北农学报,1986,1(2):90-97
    程宁辉.水稻杂种一代与亲本基因表达差异的分析[J].植物学报,1997,39(4):379-382
    戴景瑞.我国玉米遗传育种的回顾与展望.21世纪玉米遗传育种展望[C]//玉米遗传育种国际学术讨论会文集,北京:中国农业科技出版社,2000,1-7
    邸垫平,苗洪芹,路银贵,等.玉米抗粗缩病接种鉴定方法研究初报[J].河北农业大学学报,2005,28(2):76-78
    番兴明,谭静,杨峻芸.热带、亚热带外来玉米种质的利用[J].西南农业学报,2000,13(1):107-111
    范志忠.作物杂种优势预测原理与方法述评[J].作物研究,1995,9(2):1-2
    方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].2001,科学出版社
    盖钧镒.试验统计方法[M].北京:中国农业出版社,2000:48-192
    盖钧镒,章元明,王建康.植物数量性状遗传体系[M].北京:科学出版社,2003:8-369
    高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179
    高用明.复杂上位性与环境互作的QTL定位方法和杂种优势预测研究[D].2001,浙江大学博士学位论文
    龚祖埙,沈菊英,陈巽祯,等.我国禾谷类病毒的病原问题 Ⅷ.玉米粗缩病病原研究[J].生物化学与生物物理学报,1981,13(1):55-59
    顾慧,戚存扣.甘蓝型油菜(Brassica napus L.)抗倒伏性状的主基因+多基因遗传分析[J].作物学报,2008,34(3):376-381
    郭平仲,Gardner C O, Obaidi M.玉米单株穗数及其它数量性状的基因效应与遗传变异分析[J].遗传学报,1986,13(1):35-42
    郭平仲,张金栋,甘为牛,等.距离分析方法与杂种优势[J].遗传学报,1989,16(2):97-104
    郭启唐,李钊敏,董哲生.玉米粗缩病及自交系抗病性观察与分析[J].植物保护,1995,1:21-23
    郭媛,万志兵,陈献功,等.粳稻一次枝梗数和二次枝梗数的遗传分析[J].南京农业大学学报,2008,31(3):8-12
    何小红,徐辰武,蒯建敏,等.构建数量性状基因图谱的几种统计方法[J].遗传,2001,23(5):482-486
    胡吕浩,董树亭,王空军,等.我国不同年代玉米品种生育特性演进规律研究Ⅰ产量性状的演进[J].玉米科学,1998,6(2):44-48
    胡昌浩,董树亭,王空军,等.我国不同年代玉米品种生育特性演进规律研究Ⅱ物质生产特性的演进[J].玉米科学,1998,6(3):49-53
    胡建广,杨金水,赵相山,等.玉米果糖-6-磷酸,2-激酶P果糖-2,6-二磷酸酶基因的克隆[J].中山大学学报论丛,1997,5:68-71.
    胡月建广,赵相山,刘军,等.玉米苹果酸脱氢酶基因的分离与结构分析[J].植物学报,1999,41(1):40-44.
    黄季焜,胡瑞法.中国农业科研投资经济[M].北京:中国农业出版社,2000
    黄阳清,高之仁,荣廷昭.玉米自交系间遗传距离与产量杂种优势的关系[J].遗传学报,1991,18(3):271-276
    惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较[J].作物学报,1997,23(2):129-136
    霍仕平,张健,晏庆九,等.中国西南山区玉米杂交种的种质基础[J].玉米科学,2002,10(2):3-6
    江建华,郭媛,陈献功,等.粳稻穗角与稻米质量的相关性及稻米质量遗传分析[J].遗传,2007,29(6):714-724
    赖仲铭,杨克诚,郑有良,等.年份对玉米经济性状配合力及其与地点互作影响的初步研究[J].四川农业大学学报,1988.6(2):81-86.
    兰海,高世斌,樊庆琦,等.玉米种子休眠性的数量遗传分析[J].作物学报,2006,32(10):1586-1588
    黎裕,王天宇,贾继增.玉米抗病虫性的分子标记研究进展[J].生物工程进展,2001,21(3):42-48
    李常保,宋建成,姜丽君.玉米粗缩病及其研究进展[J].植物保护,1999,25(5):34-37
    李春波,钟永旺,张旭东,等.水稻黑条矮缩病毒第9基因片段的克隆表达[J].微生物学报,2003,43(3):330-334
    李春丽.应用分子标记差异性预测作物杂种优势的研究进展[J].遗传,1997,19(1):46-48
    李广军,程利国,张国政,等.大豆对豆卷叶螟抗性的主基因+多基因混合遗传[J].大豆科学,2008,27(1):33-36,41
    李济宸,高立起,李青松.灰飞虱发生规律研究[J].北京农业科学,1988,16(6):24-27
    李建红,洪德林.新选粳稻BT型同质恢复系农艺和质量性状的配合力研究[J].作物学报,2005,31(7):851-857.
    李竞雄,周洪生.粮棉油作物雄性不育杂种优势基础研究的现状与展望[J].作物杂志,1993,(4):1-3
    李明顺,张世煌,李新海,等.根据产量特殊配合力分析玉米自交系杂种优势群[J].中国农业科学,2002,35(6):600-605.
    李任华,才宏伟,王象坤.一条重要水稻酯酶同工酶带的发现[J].科学通报,1994,39(22)2095-2096
    李任华,徐才国,何予卿,等.水稻亲本遗传分化程度与籼粳杂种优势的关系[J].作物学报,1998,24(5):564-576
    李任华,杨振玉,罗孝和,等.论水稻优良常规稻品系参与杂种优势育种的遗传基础[J].中国水稻科学,1999,13(4):239-241
    李小琴,刘纪麟,熊秀珠.玉米自交系产量配合力综合评价方法探讨[J].华中农业大学学报,1996,15(3):205-209
    刘纪麟主编.玉米育种学[M].中国农业出版社,2000
    刘来福.作物数量遗传[M].北京:中国农业出版社,1982:211-250.
    刘世建,荣廷昭,杨俊品,等.四川地方玉米种质的SSR聚类分析[J].作物学报,2004,30:221-226
    刘志增,池书敏,宋占权,等.玉米自交系及杂交种抗粗缩病鉴定与分析[J].玉米科学,1996,4(4):68-70
    刘治先.山东省玉米杂交种的种质基础[J].作物品种资源,1994,(01):4-6
    刘治先,张发军,孟昭东,等.热带亚热带玉米种质的利用研究进展[J].山东农业科学,2000,(4):49-51
    龙漫远.玉米遗传距离测定方法及其与产量的杂种优势和特殊配合力的关系[J].作物学报,1987,13(3):193-200
    陆作楣.论杂交稻育种的配合力选择[J].中国水稻科学,1999,13(1):1-5
    路银贵,苗洪芹,田兰芝,等.国外及国内玉米自交系抗粗缩病鉴定及分析[J].河北农业科学,2001,5(4):22-25
    马延华,金益,孙德全,等.部分高油玉米自交系产量性状配合力分析[J].杂粮作物,2009,29(5):303-306
    马育华.植物育种的数量遗传学基础[M].南京.江苏科学技术出版社,1982:391-426.
    毛传澡,程序华.水稻农艺性状QTL定位精确性及其影响因素的分析[J].农业生物技术学报,1999,7(4):386-395
    毛建昌,张世煌,李向拓.选育高产、高配合力玉米自交系的途径与方法[J].中国农业科学,2006, 39(5):872-878
    苗洪芹,陈巽祯.河北玉米粗缩病的发生和防治[J].植物保护,1997,23(6):17-18
    苗洪芹,田兰芝,路银贵,等.简便易行的玉米粗缩病严重度分级标准[J]。植物保护,2005,31(6):87-89
    莫惠栋.农业试验统计[M].上海:上海科学技术出版社,1984:196-307
    倪中福,孙其信,吴利民,等.小麦种间与品种间杂交种及其亲本之问基因差异表达比较研究[J].农业生物技术学报,2001,9(4):366-370
    骈跃斌,许晶,武岩军.紧凑型玉米自交系主要性状配合力及遗传参数分析[J].种子,2009,28(9):53-55
    乔保建,黄柳柳,江建华,等.水稻4个异交习性相关性状QTL定位研究[J].南京农业大学学报.2007,30(2):23-27
    乔保建,洪德林.水稻苗高和叶鞘长度对不同方式GA3处理的敏感性及其QTL定位研究[J].西北植物学报.2007,27(4):0684-0692。
    乔保建,王盈盈,朱晓彪,等.不同生长环境下水稻穗抽出度相关性状QTL分析研究[J].作物学报,2008,34(3):389-396
    乔保建,王盈盈,朱晓彪,等.不同生长环境下水稻最上节间长度QTL定位研究[J].遗传,2007,29(8),1001-1007。
    任丽娟,张旭,周淼平,等.苏麦3号抗赤霉病性的主基因+多基因混合模型分析[J].江苏农业学报,2008,24(6):774-779
    荣廷昭.西南生态区玉米育种[M].中国农业出版社,2003
    阮义理,蒋文烈,林瑞芬.稻病毒病介体昆虫灰飞虱的研究[J].昆虫学报,1981,24(3):283-289
    沈高中,赖仲铭.玉米自交系主要性状的配合力与环境互作的研究[J].作物学报,1987,13(1):69-76.
    盛志廉,陈瑶生.数量遗传学[M].北京:科学出版社,1999:42-108
    石明亮,洪德林,沈锦根,等.江苏沿江地区新选玉米自交系产量及其构成性状的配合力分析[J].玉米科学,2009,17(5):38-43,48
    石明亮.玉米选系窄基础材料组配规律的初步研究[J].玉米科学.1997.5(4):11-14,22.
    石云素.玉米重要自交系遗传多样性分析及产量相关性状QTL研究[D].中国农业科学院,2008
    石云素.玉米种质资源描述规范和数据标准[M].中国农业出版社,2006.
    史新海,李可敬,孙为森,等.山东省不同年代玉米杂交种主要农艺性状演变规律的研究[J].玉米科学,2000,8(2):33-35
    史新海,隋方功,宋再华,等.中熟高产玉米杂交种主要农艺性状演变规律的研究[J].作物学报,1996,22(6):750-756
    苏俊,刘志增.热带种质在北方早熟春玉米改良中的利用[J].玉米科学,2005,13(4):8-12.
    孙国荣,朱鹏,刘文芳,等.谷氨酰胺合成酶活性与水稻杂种优势预测[J].武汉植物学研究,1994,12(2):149-153
    孙其信.农作物杂种优势机理研究及展望[J].作物杂志,1998,(4):31-33
    孙世贤.种植业结构调整中的玉米生产问题[J].种子,2000,(5):30-31
    汤华,严建兵,黄益勤,等.玉米5个农艺性状的QTL定位[J].遗传学报,2005,32:203-209
    滕文涛,曹靖生,陈彦惠,等.十年来中国玉米杂种优势群及其模式变化的分析[J].中国农业科学,2004,37(12):1804-1811
    田清震,张世煌,李新海,等.玉米育种发展动态[J].玉米科学,2007,15(1):24-28
    佟屏亚.中国玉米科技史[M].中国农业科技出版社,2000
    王安乐,王娇娟,陈朝辉,等.网棚控制灰飞虱传毒感病鉴法[J].山西农业科学,1998,26(2):68-69
    王安乐,赵德发,陈朝辉,等.玉米自交系抗粗缩病特性的遗传基础及轮回选择效应研究[J].玉米科学,2000,8(1):80-82
    王朝辉,周益军,范永坚,等.江苏省水稻黑条矮缩病毒的S110的cDNA克隆序列分析[J].中国病毒学,2002,17(2):142-144
    王朝辉.水稻黑条矮缩病毒玉米分离物的分子特性及其侵染体系[D].中国农业大学博士学位论文,2004
    王飞.玉米粗缩病抗病位点的分子标记定位[D].山东大学博士学位论文,2007
    王河成,段运平,石红卫,等.热带亚热带种质不同导入量对玉米自交系配合力的影响[J].玉米科学,1995,3(3):9-11
    王嘉宇,徐正进,陈温福.粳稻直立穗型的主基因+多基因混合遗传分析[J].湖北农业科学,2009,48(1):4-8.
    王庆成,柴兰高,李宗新,等.山东省玉米的生产现状与发展策略[J].玉米科学,2006,14(5):159-162
    王守才,杜鸣銮.几个骨干自交系在玉米配合力育种中的应用潜力分析[J].作物杂志,1994(3):14-16,11
    王寿伦,邹振润,郭振中,等.山东省玉米病毒病严重发生情况考察报告[J].玉米科学,1997,5:61-65
    王懿波,王振华,陆利行,等.中国玉米种质基础、杂种优势群划分与杂优模式研究[J].玉米科学,1998.6:9-13
    王懿波,王振华,王永普,等.中国玉米主要种质杂种优势群的划分及其改良利用[J].华北农学报,1998,13(1):74-80.
    王元东,段民孝,邢锦丰,等.P群种质在玉米杂种优势利用和种质创新中的作用及展望[J].玉 米科学,2004,12:10-12,15
    王振华,王义波,王永普,等.玉米自交系株形和产量性状的遗传改良效果[J].作物杂志,2001,(1):15-16
    魏昕,李丽华,_王娟,等.玉米丝裂病发生的数量遗传分析[J].中国农业科学,2008,41(8):2235-2240
    吴景锋.我国玉米杂交种发展的主要历程、差距和对策[J].玉米科学,1995,3(1):1-5
    吴景锋.我国主要玉米杂交种种质基础评述[J].中国农业科学,1983,16(2):1-8
    吴利民,倪中福,王章奎.小麦杂种及其亲本苗期叶片家族基因差异表达及其与杂种优势关系的初步研究[J].遗传学报,2001,28(3):256-266.
    席章营,朱芬菊,台国琴,等.作物QTL分析的原理与方法[J].中国农学通报,2005,21(1):88-92
    向道权,曹海河,曹永国,等.玉米SSR遗传图谱的构建及产量性状基因定位[J].遗传学报,2001,28(8):778-784.
    向道权,黄烈健,戴景瑞.玉米产量QTL和杂种优势遗传基础研究进展[J].中国农业大学学报,1999,4(增刊):1-7
    谢惠玲,冯晓曦,吴欣,等.玉米穗部性状的QTL分析[J].河南农业大学学报,2008,42(2)145-149.
    许海涛,许波,王友华,等.玉米主要农艺性状的遗传变异、相关性和主成分分析[J].湖南农业科学,2007(1):16-18,19.
    严建兵,汤华,黄益勤,等.玉米产量及构成因子主效和上位性的全基因组扫描分析[J].科学通报,2006,51(12):1413-1421.
    杨爱国,张世煌,李明顺,等.CIMMYT和我国玉米种质群体的配合力及杂种优势分析[J].作物学报,2006,32(9):1329-1337.
    杨安贵.玉米几个经济性状的基因效应[J].作物学报,1982,8(8):153-162
    杨金水.杂种优势机理探讨.作物雄性不育及杂种优势研究进展[M].北京:农业出版社,1997
    杨俊品,荣廷昭,向道权,等.玉米数量性状基因定位[J].作物学报,2005,31(2):188-196.
    杨示英,冯云敢,吴子恺.玉米几个数量性状的基因效应分析[J].广西农学院学报,1990,9(3)23-28
    杨雪,胡学爱,杨荣,等.几个玉米自交系主要性状的配合力分析[J].西南农业学报,2009,22(3):572-574
    杨引福,郭强,钱劲华.8个玉米自交系主要穗部性状配合力的遗传分析[J].玉米科学,2008,16(3):30-33
    易琼华.水稻三系及其杂种F1的酯酶同工酶比较及杂种优势预测[J].植物学报,1984,26(5):506-512
    尹燕枰,童玉森.玉米主要性状的基因效应与其杂种优势关系的研究[J].山东农业大学学报,]987,18(1):19-32
    余四斌,周芳.植物杂种优势遗传基础的研究进展[J].种子,1998,(6):53-56,58
    曾三省.中国玉米杂交种的种质基础[J].中国农业科学,1990,23(4):1-9
    张恒木,雷娟利,陈剑平,等.浙江和河北发生的一种水稻、小麦、玉米矮缩病是水稻黑条矮缩病毒引起的[J].中国病毒学,2001,16(3):246-251
    张启发,李建雄.水稻杂种优势的遗传和分子生物学基础的研究进展[C]//王连铮,戴景瑞主编.全国作物育种学术讨论会论文集.北京:中国农业出版社,1998:1-9
    张秋芝,潘金豹,郝玉兰.玉米自交系穗部主要性状的配合力分析[J].北京农学院学报,2000,15(4):1-5.
    张世煌,彭泽斌,李新海.玉米杂种优势与种质扩增、改良和创新[J].中国农业科学,2000,33(增刊):34-39
    张世煌,田清震,李新海,等.玉米种质改良与相关理论研究进展[J].玉米科学,2006,14(1):1-6
    张世煌.论杂种优势利用的循环育种策略[J].作物杂志,2006(6):1-3
    张世煌.玉米的杂种优势群和杂种优势模式[J].作物杂志,1998(增刊):84-85
    张世煌.玉米种质创新和商业育种策略[J].玉米科学,2006,14(4):1-3,6
    张向群.玉米配合力育种方法的研究[J].华北农学报,1989(增刊):31-36
    张向群.玉米配合力育种方法的研究[J].作物学报,1987,13(2):135-142
    张永生.玉米遗传图谱构建和花粉管通道法转化玉米的研究[D].山东大学博士论文,2005
    张振文,许瑞丽,叶剑秋.5个玉米自交系数量遗传分析[J].中国农学通报,2008,24(2):155-159
    赵刚,吴子恺,王兵伟.微胚乳超高油玉米株高和穗位高的主基因+多基因遗传模型[J].安徽农业科学,2007,35(17):5096-5098,5134
    赵刚,张亚平,席世丽,等.微胚乳超高油玉米产量性状的主基因+多基因遗传分析[J].玉米科学,2009,17(2):7-11
    赵久然.超级玉米指针及选育模式[J].玉米科学,2005,13(1),3-4,9.
    郑康乐RFLP在作物遗传和育种中的应用[M].南京:江苏科学技术出版社,1991,23-30
    钟永旺,周洁,李毅,等.水稻黑条矮缩病毒第7号基因片段的cDNA克隆[J].微生物学报,2003,43(4):42-47
    周小辉,岳尧海,赵万庆,等.温热种质改良玉米自交系主要农艺性状配合力分析[J].杂粮作物,2009,29(5):299-302.
    周益军,程兆榜,范永坚,等.江苏玉米粗缩病发生规律和防治技术研究.面向21世纪植物保护发展战略[J].北京:农业出版社,2001,1141-1143
    朱军.复杂数量性状基因定位的混合线性模型方法[C]//王连铮,戴景瑞主编,全国作物育种学术 讨论会论文集.北京:中国农业科技出版社,1998,11-20
    朱鹏,孙国荣,肖翊华,等.MDH和GDH活性与水稻杂种优势预测[J].武汉大学学报,1991,(4):89-94
    庄杰云,樊叶杨,吴建利,等.超显性效应对水稻杂种优势的重要作用[J].中国科学(C辑),2001,31(2):106-113
    庄杰云,樊叶杨,吴建利,等.应用二种定位法比较不同世代水稻产量性状QTL的检测结果[J].遗传学报,2001,28(5):458-464
    Abadassi J, Herve Y. Introgression of temperate germplasm to improve an elite tropical maize population[J]. Euphytica,2000,113(2):125-133
    Agrama H A, Moussa M E, Naser M E, et al. Mapping of QTL for downy mildew resistance in maize[J].Theor Appl Genet.,1999,99:519-523
    Agrama H A, Moussa M E. Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.) [J]. Euphytica,1996,91:89-97
    Ajala S O. The potential of some tropical maize genotypes as sources of high-yielding inbred lines[J]. Discov Innovat,1992,4(4):79-83
    Ajmone-Marsan P, Monfredini G, Ludwig W F, et al. In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield[J]. Theor Appl Genet,1995, 90(3-4):415-424
    Ajmone-Marsan P, Monfredini G, Brandolini A, et al. Identification of QTL for grain yield in an elite hybrid of maize:Repeatability of map position and effects in independent samples derived from the same population[J]. Maydica,1996,41(1):49-57
    Ajmone-Marsan P, Monfredini G, Ludwig W F, et al. Identification of genomic regions affecting plant height and their relationship with grain yield in an elite maize cross[J]. Maydica,1994, 39(2):133-139
    Alika J E. Genetic variability among S-1 families for ogi yield in maize (Zea mays L.) [J]. Indian J Genet Plant Breed 1994,54:27-31
    Alvarez A, Garay G, Gimenez J, et al. Heterosis in crosses between two synthetics of corn based on morphologic and reproductive traits[J]. Invest Agrar Prod Prot Veg,1993,8:333-340
    Austin D F, Lee M. Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize[J]. Theor Appl Genet,1996,92:817-826
    Austin D, Lee M, Veldboom L R, et al. Genetic mapping in maize with hybrid progeny across testers and generations:Grain yield and grain moisture[J]. Crop Sci,2000,40(1):30-39
    Ayrault S, Gouesnard B, Panouille A, et al. Evaluation of late inbred lines in order to improve early single maize crosses by the biadditive model and predictive genetic models[J]. Maydica,1999, 44(3):183-194
    Azuhata F, Uyeda I, Kimura I, et al. Close similarity between genome structures of rice black-streaked dwarf and maize rough dwarf viruses[J]. J. Gen. Viro.,1993,74:1227-1232.
    Bai F W, Qu Z C, Yan J, et al. Identification of rice blackstreaked dwarf virus in different cereal crops with dwarfing symptoms in China[J]. Acta Viro.,2001,45:335-39.
    Barriere Y, Hebert Y, Julier B, et al. Genetic variation for silage and NIRS traits in an half-diallel design of 21 inbred lines of maize[J]. Maydica,1993,38(1):7-13
    Beavis W D, Grant D, Albertsen M C, et al. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci[J]. Theor Appl Genet,1991, 83(2):141-145
    Beavis W D, Smith O S, Grant D, et al. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize[J]. Crop Sci,1994,34:882-896
    Beavis W D. The power and deceit of QTL experiments:lessons from comparative QTL studies[J]. Proc Annu Corn Sorghum Ind Res Conf,1994,49:250-266
    Benson D L, Hallauer A R. Inbreeding depression rates in maize populations before and after recurrent selection[J]. J Hered,1994,85(2):122-128
    Berke T, Rocheford T R. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize[J]. Crop Sci,1995,35(6):1542-1549
    Berzsenyi Z, Ragab A Y, Lap D Q. Use of the Richards function to study the effect of sowing date on the growth dynamics of the grain yield in maize (Zea mays L.) [J]. Novenytermeles,1999, 48(2):167-187
    Bhat G M. Multivariate analysis approach to selection of parents for hybridization aiming at yield improvement in self-pollinated crops[J]. Aust J Agric Res,1970,21:1-7
    Bhatnagar S, Ranwah B, Sundersan R. Heterosis in early exotic maize[J]. Indian J Genet Plant Breed, 1993,53:94-96
    Bockstaller C, Girardin P. Effects of seed size on maize growth from emergence to silking[J]. Maydica, 1994,39(3):213-218
    Bohn M, Khairallah M, Gonzalez de Leon D, et al. QTL mapping in tropical maize.1. Genomic regions affecting leaf feeding resistance to sugarcane borer and other traits[J]. Crop Sci,1996, 36(5):1352-1361
    Bohn M, Schulz B, Kreps R, et al. QTL mapping for resistance against the European corn borer (Ostrinia nubilalis H.) in early maturing European dent germplasm[J]. Theor Appl Genet 2000, 101(5-6):907-917
    Boppenmaier J, Melchinger A E, Seitz G, et al. Genetic diversity for RFLPs in European maize inbreds. III. Performance of crosses within versus between heterotic groups for grain traits[J]. Z Pflanzenzuecht,1993,111(3):217-226
    Burgess J, West D R. Selection for grain yield following selection for ear height in maize[J]. Crop Sci, 1993,33(4):679-682
    Burstin J, Charcosset A, Barriere Y, et al. Molecular markers and protein quantities as genetic descriptors in maize.2. Prediction of performance of hybrids for forage traits[J]. Z Pflanzenzuecht,1995, 114(5):427-433
    Byrne P, Bolanos J, Edmeades G O, Eaton D. Gains from selection under drought versus multilocation testing in related tropical maize populations[J]. Crop Sci,1995,35:63-69
    Cao Y W, Wang G, Wang S, et al. Construction of a genetic map and location of quantitative trait loci for dwarf trait in maize by RFLP markers[J]. Chin Sci Bull,2000,45(3):247-250
    Cardwell V. B. Fifty years of Minnesota corn production:sources of yield increase[J]. Agron. J.1982, 74,984-990
    Chalyk S T, Chebotar O D. Use of maternal haploids for investigation of the genetic control of plant height in maize[J]. Russ J Genet,1999,35:1070-1076
    Chalyk S T, Chebotar O D. Utilizing maternal haploids to identify major genes controlling plant height in maize[J]. Czech J Genet Plant Breed,1999,35:73-77
    Chalyk S T, Ostrovsky V. Comparison of haploid and diploid maize(Zea mays L.) plants with identical genotypes[J]. J Genet Breed,1993,47:77-80
    Chapman S R, Edmeades G O. Selection improves drought tolerance in tropical maize populations:Ⅱ. Direct and correlated responses among secondary traits[J]. Crop Sci,1999,39(5):1315-1324
    Chebotar O D, Chalyk S T, Bylich V G. Use of matroclinous haploids for genetic analysis of ear length and plant height in maize[J]. Genetika,1996,32(6):778-782
    Chebotar O D, Chalyk S T. The use of maternal haploids for genetic analysis of the number of kernel rows per ear in maize[J]. Hereditas,1996,124(2):173-178
    Chen X, Temnykh S, Xu Y, et al. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.) [J]. Theor Appl Genet,1997,95:553-567
    Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping[J]. Genetics,1994, 138:963-971
    CIMMYT. QTL data for populations Ki3×CML 139 and CML131×CML67.1994
    Cox T S, Murphy J P. The effect of parental divergence on heterosis in Winter wheat crosses[J]. Theor Appl Genet,1990,79:241-250
    Cross H Z, Mostafavi M R. Grain filling of R-nj color-selected maize strains divergently selected for kernel weight[J]. Can J Plant Sci,1994,74(3):455-460
    Debnath S C, Azad M K. Response to environmental changes of the components of variation and other genetic parameters in maize[J]. Pak J Sci Ind Re,1993,36:244-247
    Dhawan N L, Paliwal R L. The role of cytoplasm in the manifestation of heterosis and other traits in maize[J]. Maize Genet Coop Newsl,1964,38:70-71
    Diers B W, Mcvetty P B, Osborn T C. Relationship between heterosis and genenticdistance based on restiriction fragment length polymorphism markers in oilseed rape (brassicanapes L.) [J]. Crop Science,1996,36:79-83
    Distefano A J, Conci L R, Munoz Hidalgo M, et al. Sequence analysis of genome segments S4 and S8 of Mal de Rio Cuarto virus (MRCV):Evidence that the virus should be a separate Fijivirus species[J]. Arch Viro,2002,147:1699-1709.
    Doebley J F, Bacigalupo A, Stec A. Inheritance of kernel weight in two maize-teosinte hybrid populations:implications for crop evolution [J]. J Hered,1994,85(3):191-195
    Doebley J F, Stec A. Genetic Analysis of the Morphological Differences Between Maize and Teosinte[J]. Genetics,1991,129:285-295
    Dossantos O, Manara W, Manara N F, et al. Comparison of F1 and F2 generations of commercial hybrid maize[J]. Pesqui Agropecu Bras,1993,28(1):75-79
    Dovas C I, Eythymiou K, Katis N I. First report of maize rough dwarf virus (MRDV) on maize crops in Greece[J]. Plant Pathol,2004,53 (2):238
    Dudley J W, Saghai M A, Rufener G K. Molecular marker and grouping of parents in maize breeding programs[J]. Crop Sci,1991,31:718-723
    Duvick D N. Genetic contributions to advances in yield of U. S. maize[J]. Maydica,1992,37:69-79
    Duvick D N,Cassman K G.Post-green revolution trends in yield potential of temperate maize in the North-Central United States[J]. Crop Sci,1999,39:1622-1630.
    Duvick D N, Smith J S C and Cooper M. Long-term selection in a commercial hybrid maize breeding program[J]. Plant Breeding Reviews,2004,24(2):109-151.
    Duvick D N. Genetic diversity in major farm crops on the farm and in reserve[J]. Econ Bot,1984, 38:161-178
    Duvick D N. What is yield? [C]//In:Edmeades G O, et al. (ed.) Developing drought and low N-tolerant maize. Proceedings of a Symposium.25-29 March 1996.CIMMYT, Mexico, D. F.1997: 332-335.
    Eagles H A, Hardacre A K. Inbreeding depression and other genetic effects in populations of maize containing highland tropical germplasm[J]. Z Pflanzenzuecht,1993,110(3):229-236
    Edmeades G O, Bolanos J, Chapman S R, et al. Selection improves drought tolerance in tropical maize populations:I. Gains in biomass, grain yield, and harvest index[J]. Crop Sci,1999, 39(5):1306-1315
    Edmeades G O, Lafitte H R. Defoliation and plant density effects on maize selected for reduced plant height[J].Agron J,1993,85(4):850-857
    Edward M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigation of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action[J]. Genetics,1987,116: 113-125
    Edwards M D, Helentjaris T, Wright S, Stuber C W. Molecular-marker-facilitated investigations of quantitative trait loci in maize.4. Analysis based on genome saturation with isozyme and restriction fragment length polymorphism markers[J]. Theor Appl Genet,1992,83:765-774
    Edwards M, Helentjaris T, Wright S, et al. Molecular-marker-facilitated investigations of quantitative trait loci in maize.4. Analysis based on genome saturation with isozyme and restriction fragment length polymorphism markers[J]. Theor Appl Genet 1992,83:765-774
    Everett L A, Eta-Ndu J T, Ndioro M, et al. Application of a modified comprehensive breeding system for maize(Zea mays L.) in Cameroon[J]. Maydica,1994,39(3):231-237
    Everett L A, Eta Ndu J,T, Ndioro M, et al. Combining ability among source populations for tropical mid-altitude maize inbreds[J]. Maydica,1995,40(2):165-171
    Fang S G, Yu J L, Feng J D, et al. Identification of rice black-streaked dwarf Fijivirus in maize with rough dwarf disease in China[J]. Arch Viro,2001,146:167-170.
    Forrest Troyer A. Breeding widely adapted, popular maize hybrids [J]. Euphytica,1996,92 (1-2):163-174
    Freymark P J, Lee M, Woodman W L, et al. Quantitative and qualitative trait loci affecting host2plant response to Exserohilum tureieum in maize(Zea mays L.) [J]. Theor Appl Genet,1993,87:537-544
    Frova C, Krajewski P, Di Fonzo N, et al. Genetic analysis of drought tolerance in maize by molecular markers I. Yield components [J]. Theor Appl Genet,1999,99(1-2):280-288
    Fu H H,Dooner H K. Intra specific violation of genetic colinearity and its implications in maize[J]. Proc Natl Acad Sci, USA,2002,99(14):9573-9578.
    Gai J Y, Wang J K. Identification and estimation of a QTL model and its effects[J]. Theor Appl Genet, 1998:1162-1168.
    George M L C, Prasanna B M, Rathore R S, et al. Hoisington D. Identification of QTLs conferring resistance to downy mildews of maize in Asia[J]. Theor Appl Genet,2003,107:544-551
    Godshalk E B, Lee M, Lamkey K R. Relationship of restriction fragment length polymorphisms to single-cross hybrid performance of maize[J]. Theor Appl Genet,1990,80:273-280
    Goldman I, Rocheford T R, Dudley J W. Molecular markers associated with maize kernel oil concentration in an Illinois high protein X Illinois low protein cross[J]. Crop Sci,1994, 34(4):908-915
    Griffing B. Concept of general and specific combining ability in relation to dialled crossing system[J]. Aust J Boil Sci,1956,9:463-493
    Gritti O, Bertolini M, Motto M. Recurrent selection for increasing seed size in maize[J]. Maydica, 1994,39(2):149-154
    Groh S, Khairallah M, Gonzalez de Leon D, et al. Comparison of QTLs mapped in RILs and their test-cross progenies of tropical maize for insect resistance and agronomic traits[J]. Z Pflanzenzuecht 1998,117(3):193-202
    Hallauer A R, Russell W A, Lam key K R. Corn breeding[C]//In Sprague G F and Dudley J W (ed.). Corn and corn improvement.3rd ed. Agron.Monogr.18.ASA,CSSA,and SSSA,Madison, W I. 1988:463-564.
    Hameed A, Pollak L, Hinz P N. Evaluation of Cateto maize accessions for grain yield and other agronomic traits in temperate and tropical environments[J]. Crop Sci,1994,34(1):270-275
    Hannah L C, Greene T W. Maize seed weight is dependent on the amount of endosperm ADP-glucose pyrophosphorylase[J]. J Plant Physiol 1998,152(6):649-652
    Harpaz I. Needle transmission of a new maize virus[J]. Nature,1959,184:77-78
    Hauser M T, Adhami F, Dorner M, et al. Generation of co-dominant PCR-based marker by duplex analysis on high resolution gels[J]. The Plant J,1998.16 (1):117-125
    Hittalmani S, Huang N, Courtois B, et al. Identification of QTL for growth-and grain yield-related traits in rice across nine locations of Asia[J]. Theor Appl Genet,2002,107:679-690
    Holthaus J, Lamkey K. Population means and genetic variances in selected and unselected Iowa Stiff Stalk Synthetic maize populations[J]. Crop Sci,1995,35(6):1581-1589
    Huang X Z, Qian Q, Liu Z B, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nat genet,2009,41:494-497
    Hyne V, Kearsey M J, Pike D J, et al. QTL analysis unreliability and bias in estimation procedures[J]. Mol Breed,1995(1):273-282
    Jahan M S, Kumamaru T, Satoh H, et al. Genetic diversity in seed storage proteins of Bangladeshi rice cultivars[C]//In:Khush G S, Brar D S, Hardy B, eds. Advance in Rice Genetics. Manila (Philippines):IRRI,2003:194-195
    Jiang C, Edmeades G O, Armstead I, et al. Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers[J]. Theor Appl Genet,1999, 99(7-8):1106-1119
    Juvik J A, Jangulo M C, Headrick J, et al. Kernel changes in a shrunken2 maize population associated with selection for increased field emergence[J]. J Am Soc Hort Sci,1993,118(1):135-140
    Kalia V, Sirohi A, Bhalla S K, et al. Combining ability in maize composites for grain yield and other quantitative characters[J]. Crop Research (Hisar),1994,7(1):162-165
    Kalsy HS, Sharma D. Study of cytoplasmic effects in reciprocal crosses of divergent varieties of maize (Zea mays L.) [J]. Euphytica,1972,21:527-533
    Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci[J]. Genetics, 1999,152:1203-1216
    Kato H, Tanaka K, Nakazumi H, et al. Heterosis of biomass among rice ecospecies and isozyme polymorphism and RFLP[J]. Breed Sci,1994,44:271-277
    Keeratinijakal V, Lamkey K. Genetic effects associated with reciprocal recurrent selection in BSSS and BSCB1 maize populations[J]. Crop Sci,1993,33(1):78-82
    Keeratinijakal V, Lamkey K. Responses to reciprocal recurrent selection in BSSS and BSCB1 maize populations[J]. Crop Sci,1993,33(1):73-77
    Keurentjes J J B, Fu J Y, Terpstra I R, et al. Regulatory network construction in Arabidopsis by using genome-wide gene expressionquantitative trait loci[J]. Proc Natl Acad Sci,2007,104:1708-1713
    Khavkin E E, Coe E. Clusters of growth-regulating genes in maize (Zea mays L.) [J]. Dokl Bot Sci, 1994,337-339:30-32
    Khehra A S, Bhalla S K. Cytoplasmic effects on quantitative characters in maize[J]. Thero Appl Genet,1976,47:271-274
    Koester R, Sisco P H, Stuber C W. Identification of quantitative trait loci controlling days to flowering and plant height in two near isogenic lines of maize[J]. Crop Sci,1993,33(6):1209-1216
    Lam key K R, Edwards J W. Quantitative genetics of heterosis[C]//In:Coors J G and Pandey S (ed.) Proceedings of the International Symposium on the Genetics and Exploitation of Heterosis in Crops, CIMMY, Mexico City, Mexico,17-22 Aug.1997. ASA,CSSA,and SSSA,Madison, W I.1997: 31-48
    Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics,1989,121:185-199
    Landi P, Frascaroli E. Responses to 4 cycles of full-sib family recurrent selection in an F2 maize population[J]. Maydica,1993,38(1):31-37
    Lang N T, Subudhi P K, Virmani S S, et al. Development of PCR-based marker for the thermosensitive genetic male sterility gene tms3(t) in rice (Oryza sativa L.) [J]. Hereditas,1999,131(2):121-127
    Lauer J G, Carter P, Wood T, et al. Corn hybrid response to planting date in the northern corn belt[J]. Agron J,1999,91(5):834-839
    Lee M. Association of RFLPs among maize inbreds with agronomic performanc of their crosses[J]. Crop Sci,1989,29:1067-1071.
    Li Z K, Pinson SRM, Park W D, et al. Epistasis for three grain yield components in rice Oryza sativa L[J]. Genetics,1997,145:453-465
    Lile S, Hallauer A R. Relation between S2 and later generation testcrosses of two corn populations[J]. J Iowa Acad Sci,1994,101:19-23
    Lin H X, Qian HR, Zhuang J Y. RFLP mapping of QTLs for yield and related characters in rice(Oryza sativa L.) [J]. Theor Appl Genet,1996,92:920-927
    Lin Y R, Schertz K F, Paterson A H. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population[J]. Genetics,1995, 141(1):391-411
    Louie R, Abt J J. Mechanical transmission of maize rough dwarf virus[J]. Maydica,2004,49:231-240
    Lu C, Shen L, Tan Z, et al. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population[J]. Theor Appl Genet,1996,93:1211-1217
    Lu G H, Tang J H, Yan J B, et al. Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time[J]. J Integrative Plant Biology,2006,48(10): 1233-1243
    Lubberstedt T, Melchinger A E, Schon C C, et al. QTL mapping in testcrosses of European flint lines of maize. I.Comparison of different testers for forage yield traits[J]. Crop Sci,1997,37:921-931
    Luisoni E, Lovisolo O, Kitagawa Y, et al. Serological relationship between maize rough dwarf virus and rice black-streaked dwarf virus[J]. Virology,1973,52:281-283.
    Luna Alves Lima M, Souza Jr. C L, Bento D A V, et al. Mapping QTL for grain yield and plant traits in a tropical maize population[J]. Mol Breed,2006,17,227-239.
    Maluszynski M, Szarejko I, Barriga P, et al. Heterosis in crop mutant crosses and production of high yielding lines using doubled haploid systems[J]. Euphytica,2001,120:387-398.
    Manrya D M, Singh D P. Combining ability in rice for yield and fitness[J]. Indian J Agric Sci,1977,47 (2):65-70
    Martin J M, Talbert L E, Lanning S P, et al. Hybrid performance in wheat as related to parental diversity[J]. Crop Sci,1995,35:104-108
    Marzachi C, Boccardo G, Milne R, et al.I Genome structure and variability of Fijivirus[J]. Semi in Viro,1995,6:103-108.
    McCouch S R, Chen X, Panaud O, et al. Microsatellite marker development, mapping and applications in rice genetics and breeding[J]. Plant Mol Biol,1997b,35:89-99
    McMahon J A, Dale J L and Harding R M. Taxonomic implications for Fijiviruses based on the terminal sequences of Fiji disease fijivirus[J]. Arch Viro,1999,144:2259-2263.
    McMullen M, Simcox K D. Genomic organization of disease and insect resistance genes in maize[J]. Mol Plant-Microbe Interact,1995,8:811-815
    Mei G, Rupe M A, Zinselmeier C, et al. Allelic variation of gene expression in maize hybrids[J]. The Plant Cell,2004,16:1707-1716.
    Melchinger A E, Kuntze L, Gumber R K, et al. Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm[J]. Theor Appl Genet 1998,96(8):1151-1161
    Melchinger A E. Genetic diversity for restriction fragment length polymorphism:relation to estimated genetic effects in maize inbreds[J]. Crop Sci,1990,30:1033-1040.
    Michelini L A, Hallauer A R. Evaluation of exotic and adapted maize (Zea mays L.) germplasm crosses[J]. Maydica,1993,38(4):275-282
    Milborrow B V. A biochemical mechanism for hybrid vigor[J]. Journal of Experimental Botany.1998,49 (324):1063-1071.
    Ming R, Brewbaker J L, Pratt R C, et al. Molecular mapping of a major gene conferring resistance to maize mosaic virus[J]. Theor Appl Genet,1997,95(1-2):271-275
    Ming R, McMullen M, Brewbaker J L, et al. RFLP mapping of maize mosaic virus resistance gene[J]. MNL,1995,69:60
    Miranda J B, Vencovsky R. The partial circulant diallel cross at the interpopulation level[J]. Genet Mol Biol,1999,22(2):249-255
    Mitchell-Olds T. Interval mapping of viability loci causing heterosis in arabdopsis[J]. Genetics,1995,5: 1105-1109.
    Moll R H, Salhuana W S, Robinson H F. Heterosis and genetic diversity in variety crosses of maize[J]. Crop Sci,1962,2:197-198
    Nestares G, Frutos E, Eyherabide G H. Combining ability evaluation in orange flint lines of maize[J]. Pesqui Agropecu Bras,1999,34(8):1399-1406
    Openshaw, S and Brouwer, C R. Personal communication.1999
    Otegui M. Prolificacy and grain yield components in modern Argentinian maize hybrids[J]. Maydica, 1995,40(4):371-376
    Peng Z B, Li M S, Liu X Z, et al. Comparisons of three recurrent selection methods in the improvement of maize populations[J]. ScienceDirect (Agricultural Sciences in China).2007,6(6):657-664
    Perez-Velasquez J, Ceballos H, Pandey S, et al. Analysis of diallel crosses among Colombian landraces and improved populations of maize[J]. Crop Sci,1995,35(2):572-578
    Phillips R L, Kim T, Kaeppler S M, et al. Genetic dissection of maturity using RFLPs[J]. Proc Annu Corn Sorghum Ind Res Conf,1992,47:135-150
    Pollak L. Evaluation of Caribbean maize accessions in Puerto Rico[J]. Trop Agric,1993,70(l):8-12
    Purcino A A C, Silva M, Andrade S M, et al. Grain filling in maize:The effect of nitrogen nutrition on the activities of nitrogen assimilating enzymes in the pedicel-placento-chalaza region[J]. Maydica 2000,45(2):95-103
    Ragot M, Sisco P H, Hoisington D, et al. Molecular-marker-mediated characterization of favorable exotic alleles at quantitative trait loci in maize[J]. Crop Sci,1995,35(5):1306-1315
    Rahman M, Patwary A K, Miah A J. Combining ability in rice[J]. Indian J Agric Sci,1981,51:543-546
    Rao A V, Krishna S T, Prasad A S R. Combining ability analysis in rice [J]. Indian J Agric Sci,1980, 50:193-197
    Rayburn A L, Dudley J W, Biradar D P. Selection for early flowering results in simultaneous selection for reduced nuclear DNA content in maize[J]. Z Pflanzenzuecht,1994,112(4):318-322
    Redinbaugh M G, Jones M W, Gingery R E. The genetics of virus resistance in maize (Zea mays L.) [J]. Maydica,2004,49:183-190
    Reiter R S, Coors J G, Sussman M R, et al. Genetic analysis of tolerance to low-phosphorus stress in maize using restriction fragment length polymorphisms[J].Theor Appl Genet,1991,82:561-568
    Revilla P, Malvar R A, Cartea M E, et al. Heterotic relationships among European maize inbreds[J]. Eyphytica,2002,12(2):259-264
    Robertson M. Relationships between internode elongation, plant height and leaf appearance in maize[J]. Field Crop Res,1994,38(3):135-145
    Robin S, Subramanian M. Genetic variability study in biparental progenies in maize (Zea mays L.) [J]. Crop Research (Hisar),1994,7(1):79-83
    Rocheford T R. Chromosome regions associated with control of maize kernel composition[J]. Proc Annu Corn Sorghum Ind Res Conf,1994,49:239-249
    Romagnoli S, Maddaloni M, Livini C, et al. Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L.) plantlets[J]. Theor Appl Genet,1990,80: 769-775
    Saghai M A, Yang G P, Zhang Q, et al. Correlation between molecular marker distance and hybrid performance in US southern long grain rice[J]. Crop Sci,1997,37:145-150
    San Vicente F M, Hallauer A R. Inbreeding depression rates of materials derived from two groups of maize inbred lines[J]. Rev Brasil Genet,1993,16(4):989-1001
    Sari-Gorla M, Krajewski P, Di Fonzo N, et al. Genetic analysis of drought tolerance in maize by molecular markers. Ⅱ. Plant height and flowering[J]. Theor Appl Genet,1999,99(1-2):289-295
    Schnicker B, Lamkey K. Interpopulation genetic variance after reciprocal recurrent selection in BSSS and BSCB1 maize populations[J]. Crop Sci,1993,33(1):90-95
    Schon C C, Lee M, Melchinger A E, et al. Mapping and characterization of quantitative trait loci infecting resistance against second generation European corn borer in maize with the aid of RFLPs[J]. Heredity,1993,70:648-659
    Schwartz D, Langhner W J. A molecular basis for heterosis[J]. Science,1969,166:626-627
    Sharma J K, Bhalla S K. Combining ability for some drought tolerant characters in maize(Zea mays L.) [J]. Indian J Genet,1993,53(1):79-84
    Sibov S. Molecular mapping in tropical maize(Zea mays L.) using microsatellite markers.2. Quantitative trait loci (QTL) for grain yield, plant height, ear height and grain moisture[J]. Hereditas,2003,139(2):107-115
    Singh D P, Nanda J S. Combining ability and heterosis in rice[J]. Indian J Genet,1976,36 (1):10-15
    Skroch P, Nienhuis J. Impact of scoring error and reproducibility of RAPD data on RAPD based estimates of genetic distance[J]. Theor Appl Genet,1995,91:1088-1091
    Smith O S. Similarities among a group of elite inbreds as measured by pedigree, F1 grain yield heterosis and RFLPs[J]. Theor Appl Genet,1990,80:833-840.
    Song R T, Messing J. Gene expression of a gene family in maize based on noncollinear haplotypes[J]. Proc Natl Acad Sci, USA,2003,100(15):9055-9060.
    Sprague G F, Tatum L A. General vs. specific combining ability in single crosses of corn[J]. J Amer Soc Agron,1942,34:923-932.
    Srivastava H K. Heterosis and intergenomic complementation:mitochondria, chloroplast, and nucleus[C]//In:Frankel R (ed). Heterosis, reappraisal of theory and practice. Springer Berlin Heidelberg New York,1983:260-286
    Stojsin D, Kannenberg L W. Genetic changes associated with different methods of recurrent selection in five maize populations:Ⅱ. Indirectly selected traits[J]. Crop Sci,1994,34(6):1473-1479
    Stuber C W, Lincoln S E, Wolff D W, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers[J]. Genetics,1992,132:823-839
    Stuber C W. Heterosis in plant breeding[J]. Plant Breed Rev,1994,12:227-251
    Stuber C W. Mapping and manipulating quantitative traits in maize[J]. Trends Genet.1995,11: 477-481
    Stuber C W. Biochemical and molecular markers in plant breeding[J]. Plant Breed Rev,1992,9:37-61
    Sweeney P M, St Martin S K, Clucas C P. Indirect inbred selection to reduce grain moisture in maize hybrids[J]. Crop Sci,1994,34(2):391-396
    Tanksley S D. Mapping polygenes[J]. Annu Rev Genet,1993,27:205-233
    Thomas C, Vos P, Zabeau M, et al. Identification of amplified fragment polymorphism (AFLP) marker tightly linked to the tomato CF-9 genes for resistance to Cladosperoium fulcum[J]. Plant J,1995,8: 785-794
    Toler J, Murdock E, Stapleton G, et al. Corn leaf orientation effects on light interception, intraspecific competition, and grain yields[J]. J Prod Agric,1999,12(3):396-399
    Touzet P, Winkler R G, Helentjaris T. Combined genetic and physiological analysis of a locus contributing to quantitative variation[J]. Theor Appl Genet,1995,91(2):200-205
    Tsaftairs A S. Molecular aspects of heterosis in plants[J]. Physiol Plant,1995,94:362-370.
    Tsaftaris A S, Kafka M, Polidoros A. Epigenetic changes in maize DNA and heterosis[C]//In:Tsaftaris A S (Ed).Genetics,biotechnology and breeding of maize and sorghum. Cambridge:The Royal Society of Chemistry,1997,125-130
    Tsaftaris A S, Kafka M. Mechanism s of heterosis in plants[J]. Journal of Crop Production,1998,1: 95-111
    Tuberosa R, Sanguineti M, Landi P, et al. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes[J]. Plant Mol Biol,2002,48(5):697-712
    Vasal S, Srinivasan G, Gonzalez F, et al. Heterosis and combining ability of CIMMYT"s quality protein maize germplasm.2. subtropical [J]. Crop Sci,1993,33(1):51-57
    Vasal S, Srinivasan G, Gonzalez F, et al. Heterosis and combining ability of CIMMYT's tropical×subtropical maize germplasm[J]. Crop Sci,1992,32(6):1483-1489
    Vasal S, Srinivasan G, Han G C, et al. Heterotic patterns of 88 white subtropical CIMMYT maize lines[J]. Maydica,1992,37(4):319-327
    Vasal S, Srinivasan G, Pandey S, et al. Heterosis and combining ability of CIMMYT's quality protein maize germplasm.1. Lowland tropical[J]. Crop Sci,1993,33(1):46-51
    Veldboom L R, Lee M, Woodman W L. Molecular marker-facilitated studies in an elite maize population I. Linkage analysis and determination of QTL for morphological traits[J]. Theor Appl Genet,1994,88:7-16
    Veldboom L R, Lee M. Molecular-marker-facilitated studies of morphological trait in maize. Ⅱ Determination of QTLs for grain yield and yield components[J]. Theor Appl Genet,1994,89 451-458
    Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments.1. Grain yield and yield components[J]. Crop Sci,1996,36(5):1310-1319
    Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments.2. Plant height and flowering[J] Crop Sci,1996,36(5):1320-1327
    Vladutu C, McLaughlin J, Phillips R L. Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures[J]. Genetics,1999,153(2):993-1007
    Vos P, Hogers, R, Bleeker, M, et al. AFLP:a new technique for DNA fingerprinting[J]. Nucleic Acids Res,1995,23:4407-4414
    Vulchinkov S. Genotype-environment interaction in maize inbred lines. Ⅱ. Parameters of phenotypical and genetic stability of characters important for inbred lines breeding[J]. Genetika i Selektsiya, 1991,24(6):409-416
    Wang D G, Fan J B, Shao C J, et al. Large-scale identification, mapping, and genotyping of single nucleotide polymorphism in the human genome[J]. Science,1998,280:1077-1082
    Wang D L, Zhu J, Li Z K, et al. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches[J]. Theor Appl Genet,1999,99:1255-1264
    Wang J K, Podlich D W, Cooper M, et al. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits[J]. Theor Appl Genet, 2001,103,804-816
    Wang Z H, Fang S G, Xu J L, et al. Sequence analysis of the complete genome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease[J]. Virus Genes,2003,27:163-168.
    Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Res, 1990,18(24):7213-7218
    Wicks Z W, Mack C. Effect of outcrossing on various kernel traits in corn[J]. Proc Annu Corn Sorghum Ind Res Conf,1994,49:206-216
    Widstrom N W, Bondari K, McMillian W W. Heterosis among insect-resistant maize populations[J]. Crop Sci,1993,33(5):989-994
    Wilhelm E, Mullen R, Keeling P L, et al. Heat stress during grain filling in maize:Effects on kernel growth and metabolism[J]. Crop Sci 1999,39(6):1733-1741
    Wolf D, Coors J G, Albrecht K A, et al. Agronomic evaluations of maize genotypes selected for extreme fiber concentrations[J]. Crop Sci,1993,33(6):1359-1365
    Wu K S, Tanksley S D. Abundance, polymophism and genetic mapping of microsatellites in rice[J]. Mol Gen Genet,1993,241:225-235
    Xiao J H, Li J M, Yuan L P, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers[J]. Genetics,1995,140:745-754
    Xiao J H, Li J M, Yuan L P, et al. Identification of QTL affecting traits of agronomic importance in a recombination inbred population derived from a subspecifif rice cross[J]. Theor Appl Genet,1996, 92:230-244
    Xie C X, Zhang S H, Li M S, et al. Inferring genome ancestry and estimating molecular relatedness among 187 Chinese maize inbred lines[J]. J. Genet.& Genomics,2007,34(8):738-748.
    Xing Y Z, Tan Y F, Hua J P, et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice[J]. Theor Appl Genet, 2002,105:248-257
    Xiong L Z, Yang G P, Xu C G, et al. Relationship of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross[J]. Mol Breed.,1998,4:129-136.
    Xu Y, Zhu L, Xiao J, et al. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice(Oryza sativa L.) [J]. Mol Gen Genet,1997,253:535-545
    Xue W Y, Xing Y Z, Weng X U, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nat genet,2008,40:761-767
    Yang J, Hu C C, Hu H, et al. QTLNetwork:mapping and visualizing genetic architecture of complex traits in experimental populations[J]. Bioinformatics,2007,24:721-723
    Yang J, Wu W R, and Zhu J. Mapping interspecific genetic architecture in a host-parasite interaction system[J]. Genetics,2008,178:1737-1743.
    Young J B, Virmani S S. Effect of cytoplasm on heterosis and combining ability for agronomic traits in rice (.Oryza sativa L.) [J]. Euphytica,1990,48,177-188
    Yu S B, Li J X, Xu C G, et al. Epistasis play an important role as genetic basis of heterosis in rice[J]. Science in China (Series C).1998,41:293-302
    Yu S B, Li J X, Xu C G, et al. Identifiction of quantitative trait loci and epistatic interactions for plant height and heading date in rice[J]. Theor Appl Genet,2002,104:619-625
    Yu S B, Li J X, Xu C G, et al. Importance of epistansis as the genetic basis of heterosis in an elite rice hybrid[J]. Proc Natl Acad Sci,1997,94:9226-9231
    Zaborszky S, Berzy T. Correlations between the seed fractions and the yield components of hybrid maize (Zea mays L.) [J]. Novenytermeles,1999,48(6):591-599
    Zehr B E, Dudley J W, Chojecki J, et al. Use of RFLP markers to search or alleles in a maize population for improvement of an elite hybrid[J].Theor Appl Genet,1992,83:903-911
    Zeng Z B. Precision mapping of quantitative trait Loci[J]. Genetics,1994,136:1457-1468
    Zhang H M, Chen J P, Lei J L, et al.Sequence analysis shows that a dwarf disease on rice, wheat and maize in China is caused by rice black-streaked dwarf virus[J]. Eur J. Plant Patho,2001,107: 563-567
    Zhang H M, Chen J P. Adams M J. Molecular characterization of segments 1 to 6 of rice black-streaked dwarf virus from China provides the complete genome [J]. Arch Viro,2001,146:2331-2339
    Zhang Q F, Gao Y J, Yang S H, et al. A diallel analysis of heterosis in elite hybrid rice based in RFLPs and microsatellites[J]. Theor Appl Genet,1994,89:185-192
    Zhang Q F, Zhou Z Q, Yang G P, et al. Molecular marker heterozygosity and hybrid performance in indica and Japonica rice[J]. Theor Appl Genet,1996,93:1218-1224.
    Zhang Q F. Molecular divergence and hybrid performance in rice[J]. Molecular Breeding,1995(1): 133-142
    Zheng K L, Shen B, Qian H R. DNA polymorphisms generated by arbitrary primed PCR in rice[J]. Rice Genet Newls,1991,8:134-135
    Zhu J, Weir B S. Mixed model approaches for genetic analysis of quantitative traits[C]//In Chen L S, Ruan S G, Zhu J, eds. Advanced topics in biomathematics. Proceedings of international conference mathematical biology. Singapore:World Scientific Publishing Co.,1998:321-330
    Zhuang J Y, Fan Y Y, Rao Z M, et al. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in recombinant inbred line population of rice[J]. Theor Appl Genet, 2002,105:1137-1145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700