基本比例尺地图数学基础的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基础制图软件在当前数字制图生产中占据主导地位,特别是代替了以前繁重的手工劳动,是地图生产的一次革命性变革。目前国内市场上应用比较广泛的是MapGIS和ArcGIS两种制图软件,其数学基础的生成繁琐且不符合国家标准规范。ArcGIS软件为美国ESRI公司产品,因其为国外公司研制,与我国制图标准规范相差甚远,不能应用在我国正规出版图件中。MapGIS软件是我国武汉中地数码科技有限公司推出的大型基础地理信息软件,其面向众多行业研发,所以只能满足制图的基本需求。制图过程还需要大量人为干预操作,费时费力。数学基础是地图最重要的特性之一,能帮助地图使用者迅速、准确地判读地理信息,因此地图数学基础的自动化绘制迫在眉睫。
     地图数学基础包括椭球体、坐标系、投影类型、制图比例尺和地图坐标网等内容。这些内容之间并非孤立存在,互相之间有内在联系。
     地图数学基础的核心要素是制图比例尺,一旦其确定,则地图的坐标系及坐标网随之确定,从而确定地图的坐标系参数及关于图幅的一系列参数。首先研究了比例尺与我国常用坐标系和投影类型之间的关系,比例尺和坐标网之间的关系,然后分析坐标网组成要素,包括内外图廓、图廓点经纬度注记、分度带、坐标网注记等。最后,根据《地形图图式》规定,总结我国基本比例尺地图的坐标系、投影类型及坐标网的参数及三者之间关系,把符合国家标准规范的数学基础参数用Access数据库进行存储。利用Visual C#编程语言,采用面向对象的技术,自动获取图幅坐标系及坐标网等数学基础一系列参数,计算地图投影参数,绘制图廓线、坐标网线、分割线等数学基础要素,成功的实现了地形图数学基础自动绘制功能。
     系统采用模块化结构以供其他系统调用,实现了模块的可移植性。结合“基于数据库的标准化制图系统”和“航空物探出版图自动整饰软件”项目,将数学基础模块应用到实践,实现了ArcGIS平台用要素方式自动绘制数学基础,MapGIS平台生成具有一定数据格式的数学基础明码文件。在2个平台均达到预期的效果。
The basic mapping software to dominant in the current production of digitalmapping, in particular, instead of the heavy manual labor is a revolutionary changein the production of the map. The MapGIS and ArcGIS mapping software used morewidely in the domestic market, whose mathematical basis generates cumbersomelyand does not comply with national standards. ArcGIS software is the product of U.S.ESRI’s. Because it is developed by foreign companies and is far cry from ourmapping standard specification, it can not be applied in maps of chinese formalpublication. The MapGIS software, which is launched by Wuhan Zhongdi DigitalTechnology Co., Ltd., is the basic geographic information software in China.Because it is researched and developed for a wide range of industries, it can onlymeet the basic needs of the mapping. The mapping process also requires a lot ofhuman intervention operations, time-consuming and laborious. The mathematicalbasis is one of the most important characteristics of map, which can help map-usersto interpret geographic information quickly and accurately. So map mathematicsbasic is drawn automatically, which seems imminent.
     Map mathematics basis, including the contents of the ellipsoid, coordinatesystem, projection type, mapping scale and map grid and so on. These elements,which not exist in isolation, are intrinsically linked to each other.
     The core element of map mathematics basis is the mapping scale. Once it isidentified, the map coordinate system and coordinate grid are determined, and thenthe map coordinate system parameters and a series of parameters on maps aredetermined. First, we studied the relationship between the scale and our commoncoordinate system and projection type, and the relationship between the scale andcoordinates grid. Then, we analyzed the elements of coordinates grid, includinginside and outside the map border, latitude and longitude annotation of the mapborder point, indexing with short-term, annotation of coordinate grid and so on. Last,according to the provisions of the "topographic maps", we summarize parametersand relationship among coordinate system, projection type and coordinate grid of China’s basic scale maps in order to store parameters of the mathematics basic inline with national standards by the Access database.Using Visual C#programminglanguage and object-oriented technology, we can automatic access to a series ofparameters of coordinate system and coordinate grid of the map mathematics basis,and calculate the map projection parameters, and draw elements of mathematicsbasis of map border, grid line and dividing line. The automatic drawing functions ofthe mathematical basis of topographic map are successfully realized.
     The system uses a modular structure for other system calls to achieve moduleportability. Combined with the projects of "the standardized mapping system basedon the database" and "the automatism decoration software of published map in AeroGeophysical Survey", the mathematics basis module was used into practice. As aresult, map mathematics basis automatically were drawn using elements on theArcGIS platform and a clearly file with certain data format of mathematics basisautomatically were generated on the MapGIS platform.They achieve the desiredresults on the both platforms.
引文
[1]邱冬炜.GPS坐标系转换模型的研究:[硕士学位论文].北京:北京交通大学,2005.
    [2]马俊.地图数学基础分析及其转换的相关技术研究与实践:[硕士学位论文].南京:信息工程大学,2009.
    [3]戴勤奋.常用地图投影转换公式.青岛海洋地质研究所,2004.
    [4]戴勤奋.坐标系转换公式.青岛海洋地质研究所,2004.
    [5] H. Vermeille. Direct transformation from geocentric coordinates to geodeticcoordinates.Journal of Geodesy,2002,(76):451–454.
    [6] H.Vermeille.Computing geodetic coordinates from geocentric coordinates.Journal ofGeodesy,2004,(78):94~95.
    [7] C-D.Zhang,H.T.Hsu,X.P.Wu et al.An alternative algebraic algorithm to transformCartesian to geodetic coordinates.Journal of Geodesy,2005,79:413~420.
    [8] Hok Sum Fok and H.Baki Iz.A Comparative Analysis of the Performance of Iterative andNon-iterative Solutions to the Cartesian to Geodetic Coordinate Transformation.Journal ofGeospatial Engineering,2003,5(2):61-74.
    [9]杨启和.高斯投影邻带方里线坐标变换表.北京:测绘出版社,1980.
    [10]杨启和.高斯-克吕格投影常系数和变系数正反解公式的讨论和应用.测绘学报,1986,15(2):141~147.
    [11]杨启和.论高斯投影换带的数值计算方法.测绘学报,1982,11(1):18~22.
    [12]杨晓梅.等角投影变换的常系数公式及其在高斯-克吕格投影换带中应用.测绘工程,1999,8(1):29~40.
    [13]王晏民.多源GIS高斯投影快速换带算法研究.测绘工程,2002,11(1):8~13.
    [14]殷海峰等.高斯投影公式的机助推导.测绘科学,2008,33(2):8~9.
    [15]赵俊生等.关于高斯投影长度变形的探讨.海洋测绘,2007,27(3):9~11.
    [16]杨启和.高斯-克吕格投影族的研究.地图投影论文集.北京:测绘出版社,1983.
    [17] Coordinate Conversions and Transformation Including Formulas.国际石油技术软件开放公司.
    [18]李秀江.浅议地形图邻带坐标网.中南林业调查规划,1991,(03).
    [19]朱蕊,孙群,肖强等.数字地图制图中地形图整饰的自动实现.测绘工程,2011,20(4):39~41
    [20]杨英伟,吴凡,栗卫民.数字地图制图数学基础的自动建立与图廓整饰.测绘信息与工程,2007,32(2):7~9.
    [21]中华人民共和国国家技术监督局.GB/T13989-92.中华人民共和国国家标准-国家基本比例尺地形图分幅和编号.北京:国家测绘局测绘标准化研究所,1993-07-01.
    [22]中华人民共和国国家技术监督局.GB/T5791-93.中华人民共和国国家标准-地形图图式.北京:国家测绘局测绘标准化研究所,1993-04-02.
    [23]中华人民共和国国家技术监督局. GB/T12342-90.中华人民共和国国家标准-地形图图式.北京:国家测绘局测绘标准化研究所,1990-06-04.
    [24]中华人民共和国国家技术监督局. GB/T14512-93.中华人民共和国国家标准-1:1000000地形图编绘规范及图式.北京:国家测绘局测绘标准化研究所,1993-07-05.
    [25]范亦爱.地图的数学基础.地图,1990,(04).
    [26]蔡忠亮,胡英.地形图整饰自动化.计算机与地图,1998,(04).
    [27]姚亭友,巩志伟,陈广泉.地图数学基础计算软件的开发.东北测绘,2002,25(3):33~34.
    [28]刘利川,苏振年.对内蒙古自治区小比例尺地图投影的探讨.测绘科技信息交流论文集,2007.
    [29]胡圣武.大地坐标与高斯坐标的转换程序研究和精度分析.地理空间信息,2011,(02).
    [30]樊文有,曾文.GIS制图中标准图框的机助生成.地球科学-中国地质大学学报,1998,23(4):379~382.
    [31] ArcEngine帮助手册: ms-help://ESRI.EDNv9.3/NET_Engine/e7a44d7b-bb14-43e0-b71b-38b817b953af.htm
    [32]颉耀文.地图投影在地理信息系统中的应用.东北测绘,2001,24(4):21~25.
    [33]魏秀琴.基于数据的大幅面挂图的研制:[硕士学位论文].武汉:武汉大学,2004.
    [34]杜华.GIS中电子地图坐标系的转换研究与实现:[硕士学位论文].贵州:贵州大学,2007.
    [35]李昌富,杜绪奎.1980坐标系图廓元素计算程序.黑龙江测绘,1996,19(1):18~21.
    [36] ESRI Shapefile Technical Description.An ESRI Paper—July1998.
    [37]钟华.利用VB编程完善MAPGIS图框制作功能.物探与化探,2002,26(6):475~477.
    [38]韩丽蓉.我国基本比例尺地形图分幅与编号的计算方法.青海大学学报,2006,24(6):79~82.
    [39]张寒梅,徐之俊,徐汉卿等.《中华人民共和国省级行政区域界线详细图集》经纬度自由分幅的研究与实现.全国测绘科技信息网中南分网第二十四次学术信息交流会论文集,2010,322~325.
    [40]孙达,蒲英霞.地图投影.南京:南京大学出版社,2005.
    [41]党亚民,成英燕,薛树强.大地坐标系统及其应用.北京:测绘出版社,2010.
    [42]杨启和.利用“展点仪”展绘邻带方里网的数学方法和BASIC程序设计.测绘学报,1989,18(2):108~114.
    [43]贾涛.航空物探场源数据制图与输出:[硕士学位论文].北京:中国地质大学(北京),2009.
    [44]杜会倩.基于数据库的GIS坐标系实现.第九届ESRI中国会议论文集.北京:测绘出版社,2011.
    [45]蒋波涛.ArcObjects开发基础与技巧—基于Visual Basci.NET.武汉:武汉大学出版社,2006.
    [46]韩鹏.地理信息系统开发ArcEngine方法.武汉:武汉大学出版社,2006.
    [47] ESRI.ArcGIS Object Model.Printed in the United States of America.2004
    [48]武汉中地信息工程有限公司.MapGIS地理信息系统使用手册数字制图篇,2002.
    [49]张传信,朱体高,胡圣武.地图比例尺基本理论的研究.地理空间信息,2009,7(1):131~134.
    [50]曾菲.国家基本比例尺地图图式的应用与思考.测绘与空间地理信息,2011,34(4):161~163.
    [51]杨德严,赵俊三,李红波,等.地图图幅整饰自动化技术.计算机工程,2011,37(22):279~283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700