异体牙周膜干细胞移植与机体体液(B细胞)免疫应答研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙齿缺失修复及牙周组织再生是口腔科学的工作和研究中心之一,目前临床上对牙周炎致骨缺损的治疗仍然是一个难题,而利用义齿包括固定义齿、活动义齿和种植义齿等修复是一类赝复体修复,缺乏真正意义上的生物修复。近年来,关于牙齿干细胞及组织工程技术的研究进展给牙齿和牙周组织生物再生带来了新的希望。诸多研究提示牙齿相关干细胞是牙齿再生和牙周组织再生的最佳种子细胞来源,具有较广阔的临床应用前景。然而,自体牙齿干细胞来源有限,如果牙齿干细胞能异体应用,就能明显扩大牙齿再生种子细胞来源,极大推进牙齿和牙周组织再生的发展。机体的免疫分为细胞免疫和体液免疫两部分,本课题组的前期研究发现牙齿相关干细胞不会引起细胞免疫应答,但是牙齿相关干细胞对机体体液免疫应答(B淋巴细胞)的影响尚不清楚。为了同种异体牙周膜干细胞能够将来安全地用于临床,本研究拟探讨牙周膜干细胞对同种异体B淋巴细胞功能的影响,并利用小型猪模型,观察牙周膜干细胞异体移植修复牙周炎骨缺损的能力及有无体液免疫排斥。本研究包括以下三个部分:
     第一部人牙周膜千细胞的培养与鉴定
     目的:分离培养及鉴定人牙周膜干细胞,为下一步对牙周膜干细胞的其他性能进行研究提供必要的基础和前提。方法:选取首都医科大学附属北京口腔医院口腔颌面外科门诊拔除阻生第三磨牙的患者,无菌条件下剥离牙根外牙周组织,参照以往关于人牙齿相关干细胞的培养方法及条件,分离培养人牙周膜干细胞,并通过倒置显微镜、流式细胞仪等对其生长特性、诱导分化能力,表面标志物进行观察。
     结果:原代培养的人牙周膜干细胞生长良好,呈梭性。牙周膜干细胞的克隆形成率为(15-28个/105)。流式细胞仪结果显示,分离培养的牙周膜干细胞中的STRO-1,CD146, CD90, SSEA-4, OCT-4,其表达阳性率分别为13.34±1.83%,80.61%士5.41%,98.67%±1.03%,88.67%±4.03%,95.33%士4.53%。经诱导分化后,牙周膜干细胞在体外有诱导分化成骨和成脂肪的能力。
     结论:人牙周膜干细胞可在体外成功培养,表现出良好的生长状态,并有横向分化的潜能。
     第二部分人牙周膜干细胞对同种异体B淋巴细胞的影响
     目的:在体外研究人牙周膜干细胞对同种异体B淋巴细胞功能的影响。
     方法:正常人外周血的B淋巴细胞与人牙周膜干细胞共培养,通过对B淋巴细胞增殖、凋亡、分化、趋化、分泌功能和共刺激分子表达的检测,从而研究牙周膜干细胞对B淋巴细胞功能的影响,同时用hBMSCs作同型对照,并通过Transwell实验,CBA、抗体中和实验等来研究牙周膜干细胞影响B淋巴细胞增殖和凋亡的可能机制。
     结果:经流式细胞术检测,牙周膜干细胞抑制由CpG ODN、 rCD40L、Anti-immunoglobulin (IgA+IgG+IgM)、IL-2和IL-4引起的B淋巴细胞增殖,且这种抑制具有浓度依赖性;延迟加入牙周膜干细胞也能抑制由上述刺激所引起的B淋巴细胞增殖。本研究还发现,牙周膜干细胞对B淋巴细胞表面的共刺激分子(CD40、CD80、CD86和HLA DR)的表达和分泌功能不产生影响,但对B淋巴细胞的分化和趋化功能有抑制作用。通过Transwell实验发现:牙周膜干细胞抑制B淋巴细胞增殖的机制可能是通过细胞接触和可溶性分子共同作用。通过流式细胞术检测发现:共培养后,牙周膜干细胞表面PD-1、 PD-L1和PD-L2表达发生改变;进一步利用抗体中和实验证明,牙周膜干细胞可能是通过PD-1和PD-L1来部分抑制B淋巴细胞增殖。凋亡实验表明,牙周膜干细胞并非通过促进B淋巴细胞凋亡来发挥免疫抑制作用,相反,牙周膜干细胞通过分泌IL-6抑制B淋巴细胞的凋亡。
     结论:hPDLSCs和hBMSCs类似,能够抑制B淋巴细胞的增殖,而且这种抑制作用呈浓度依赖性;hPDLSCs对B细胞的分化、趋化功能也有抑制作用,但对B细胞的抗原提呈功能和分泌功能无明显影响;hPDLSCs通过分泌IL-6抑制B淋巴细胞的凋亡;hPDLSCs通过PD-1及PD-L1部分抑制B淋巴细胞的增殖,与B淋巴细胞的凋亡无关。
     第三部分小型猪牙周膜干细胞同种异体移植后对机体体液免疫应答的影响
     目的:在体内研究牙周膜干细胞的异体移植后对机体体液免疫应答的影响。
     方法:选用雌性五指山小型猪12只,建立牙周炎骨缺损模型,同时分离、培养、扩增五指山小型猪和雄性贵州小型香猪牙周膜干细胞。建模后1个月开始治疗,分为4组:(1)空白对照组:建立实验性牙周炎模型后不做任何处理;(2)HA/TCP组:在建模后做翻瓣刮治+HA/TCP修复,覆盖以明胶海绵;(3)自体牙周膜干细胞+HA/TCP组:建模后做翻瓣刮治+自体牙周膜干细胞+HA/TCP修复,覆盖以明胶海绵;(4)异体牙周膜干细胞+HA/TCP组:建模后做翻瓣刮治+雄性贵州小型香猪牙周膜干细胞+HA/TCP修复,覆盖以明胶海绵。观察指标包括临床观察(牙周探诊深度、附着丧失等)、影像学检查、血液学检查、组织学观察和体液免疫指标等的检测。
     结果:成功建立牙周炎模型,各组模型之间无统计学差异;治疗后12周,发现自体牙周膜干细胞组和异体牙周膜干细胞组的牙周指数(牙龈退缩、牙槽骨缺失和牙周袋深度)与空白对照组、HA/TCP组相比有统计学差异,但治疗后自体牙周膜干细胞组和异体牙周膜干细胞组牙周指数之间无统计学意义。CT扫描发现,治疗后12周,自体牙周膜干细胞组和异体牙周膜干细胞组都有明显的新生骨质影像,而空白对照组和HA/TCP组却不明显。血液学研究表明,无论是治疗前还是治疗后各个时间点,各治疗组的血常规、血生化、免疫球蛋白和体液免疫学指标(CD20, CD25, B220)都没有统计学差异,同时检测龈沟液和牙周组织的免疫球蛋白也没有统计学差异,说明异体干细胞移植组在治疗后无炎性病变产生,无肝肾功能的损伤,无近期或者远期体液免疫反应产生。组织学观察表明,在自体牙周膜干细胞组和异体牙周膜干细胞组,都有明显的牙槽骨、牙骨质和牙周膜再生,骨缺损基本修复,而在空白对照组和HA/TCP组,仍可见明显的典型牙周炎表现,包括深牙周袋、缺乏新骨和新牙周膜形成。最后通过细胞移植术后1周和2周,对自体移植组和异体移植组的局部牙周组织IL-6、PD-1、PD-L1、PD-L2的mRNA检测,发现IL-6的mRNA在两组间无统计学意义;而PD-1、PD-L1、PD-L2的mRNA,异体组均明显高于自体组。
     结论:异体牙周膜干细胞能够使牙周骨质再生;异体牙周膜干细胞在小型猪体内不会引起机体体液免疫反应,可能是通过PD-1及其配体来起作用。
Restoration of lost teeth and regeneration of periodontal tissue are one of the key issues in dental clinic and research. At present, the treatment of bone defect of periodontitis is still difficult. Artificial teeth including fixed teeth, removal teeth and dental implant are prosthetic appliances, which are not truly biological restoration. Recently, the new prospect on bio-regeneration of teeth and periodontal tissue is brought about by the progress of dental related stem cells and tissue engineering technology. Currently, many studies present that dental stem cells are regarded as the best seed cells resource for the regeneration of teeth and periodontal tissue with a booming clinical application. However, autologous dental stem cells are limited in the patients. If dental stem cells can be used in allogeneic individuals, the source of seed cells can be expanded greatly which will greatly promote the development on restoration of lost teeth and regeneration of periodontal tissue. Adaptive immune divides into two parts including cellar immune and humoral immune. Our previous studies have proved that PDLSCs possessed low immunogenecity and immunosuppressive function through secretion of PGE2. But there is no study on humoral immune response to transplantation of allogeneic periodontal ligament stem cells. The aim of this study is to address the immunological characteristics of PDLSCs which effect on B lymphocyte functions, the mechanisms underlying the PDLSCs-mediated immunological suppression, observe the ability of regenerating bone defect of periodontitis by using allogeneic PDLSCs in the miniature pig model and the present of humoral immune rejection in vivo.
     Part1Culture and identification of the periodontal ligament stem cells of human in vitro
     Objective:To culture and identify the periodontal ligament stem cells of human in vitro for providing the necessary foundation and prerequisite for the next step to study other characteristics of the periodontal ligament stem cells.
     Methods:Normal impacted third molars of healthy individuals were extracted, and periodontal ligament stem cells were separated and cultured referring to the methods of human's related stem cells. The growth characteristics of these stem cells were observed, the surface markers were detected and the abilities of trans-differentiation were investigated.
     Results:The cultured human periodontal ligament stem cells shaped in typical fibroblast cells under light microscope. The colony forming units-fibroblasts were from15to28units/105in periodontal ligament cells. These cells were positive for STRO-1, CD146, CD90, SSEA-4and OCT-4,5MSCs markers, identifying them as PDLSCs. Moreover, the cultured human periodontal ligament stem cells had the abilities to be induced to form calcium and adipose materials in vitro.
     Conclusion:The human periodontal ligament stem cells, which can be cultured successfully in vitro showed good growth and could undergo multilineage differentiation.
     Part2Modulation of B lymphocyte function in vitro by hPDLSCs
     Objective:To study hPDLSCs modulate B lymphocyte function in vitro.
     Methods:B lymphocyte were extracted from healthy human and cultured with hPDLSCs in the absence or presence of the following stimuli:the CpG synthetic oligonucleotide, recombinant CD40L, anti-human immunoglobulin goat antibodies, interleukin2and IL-4, co-cultured with hBMSCs as a positive control. Proliferation, apoptosis, differentiation, chemotatic function, expression of costimulatory molecules and secretion of B lymphocyte were detected by flow cytometry to study hPDLSCs modulate B lymphocyte function. Furthermore, transwell culture experiments, quantification of soluble factors, neutralization experiments, and detection of apoptotic B cells were performed to identify the possible mechanisms of the immunosuppressive and apoptosis function of hPDLSCs on B lymphocyte.
     Results:HPDLSCs could not initiate B lymphocyte proliferative responses. B lymphocyte proliferation was significantly inhibited by hPDLSCs in a dose dependent manner in the presence of CpG ODN, rCD40L, anti-immunoglobulin, IL-2, and IL-4. Moreover, proliferative of B lymphocyte was inhibited by delaying to co-cultured with hPDLSCs. The experiment also proved that the expression of costimulatory molecules(CD40, CD80, CD86, HLA DR) and secretion of B lymphocyte was not impacted by hPDLSCs, but the differentiation and chemotactic function of B cell was inhibited. By using transwell chambers, we found that the inhibition of B cells proliferation was mediated by cell-to-cell contact and soluble factors. By using flow cytometry, we found that the expression of PD-1, PD-L1and PD-L2on the surface of hPDLSCs was changed. Furthermore, neutralization experiments showed that anti-PD-1antibody, anti-PD-L1antibody and anti-PD-L2antibody partially restored B cells proliferation inhibited by hPDLSCs. Apoptosis showed that inhibition B cells proliferation by hPDLSCs was not mediated by inducing apoptosis of B cells. On the contrary, hPDLSCs inhibited apoptosis of B cells by IL-6secretion. HBMSCs as a positive control, the results on the effect on B cells were the same to hPDLSCs.
     Conclusion:HPDLSCs, similar to hBMSCs, can inhibit the proliferation of B lymphocyte in a dose dependent manner partially by PD-land PD-L1and have no relationship with B cells apoptosis. They also can inhibit apoptosis, differentiation and chemotatic function of B cells. But they cannot modulate the expression of costimulatory molecules(CD40, CD80, CD86, HLA DR) and secretion of B lymphocyte.
     Part3Humoral immune response to transplantation of allogeneic periodontal ligament stem cells of minipig in vivo
     Objective:To study humoral immune response to transplantation of allogeneic periodontal ligament stem cells of minipig in vivo.
     Methods:We generated periodontitis-lesions in12female Wuzhishan inbred minipigs, totally24defects. Then the miniature pig's periodontal ligament stem cells were separated and cultured in vitro. The24defects were randomly assigned to four different groups:(1) Control group (6defects in3minipigs):no treatment;(2) HA/TCP group (6defects in3minipigs):flap surgery, transplantation of HA/TCP scaffolds, and covering of the defects with gelatin membranes;(3)HA/TCP scaffolds+autologous PDLSCs group (6defects in3minipigs): transplantation of autologous PDLSCs combined with HA/TCP scaffolds, and covering of the defects with gelatin membranes;(4) HA/TCP scaffolds+allogeneic Guizhou minipig PDLSCs group (6defects in3minipigs):transplantation of allogeneic Guizhou minipig PDLSCs combined with HA/TCP scaffolds, and covering of the defects with gelatin membranes. The regeneration of bone defect was observed by clinical assessments including probing depth (PD), gingival recession (GR) and attachment loss (AL), CT scanning, and histopathological study. Blood routine test, biochemical routine test, immunoglobulin in serum, gingival crevicular fluid and periodontal tissues test and B cells related markers, i.e. percentage of CD20+cells, CD25+cells, B220+cells, and the expression of activated B cells marker.
     Results:We successfully established periodontitis model and there was comparable between them. At12weeks post-transplantation, either autologous or allogeneic PDLSCs treatment significantly improved periodontal tissue regeneration in comparison with HA/TCP and the control groups, and there was no difference between autologous and allogeneic PDLSCs groups. CT scanning showed that the height of alveolar bone in autologous and allogeneic PDLSCs groups recovered to approximately the normal levels. In contrast, HA/TCP groups and the control groups showed very limited or no bone regeneration. In addition, histopathological photomicrographs showed increased new bone and periodontal tissues, including cementum and periodontal ligament, were regenerated in the periodontal defect area in autologous and allogeneic PDLSCs groups. However, typical periodontitis status, including deep periodontal pocket and shortage of new bone and periodontal ligament fibers, was still found in the HA/TCP and control groups. Furthermore, the data of blood routine tests, biochemical routine test, immunoglobulin test and B cells related immunological markers(CD20,CD25and B220) were almost the same as those of4weeks pre-transplantation, suggesting there were no marked immunological rejections in the animals received allogeneic PDLSCs transplantation. By using ELISA, we found that there was no different on immunoglobulin in serum, gingival crevicular fluid and periodontal tissues between autologous and allogeneic PDLSCs groups. Moreover, by using real time-PCR, we detected the mRNA of IL-6, PD-1, PD-L1and PD-L2in autologous and allogeneic PDLSCs groups at1week and2week after transplantation. We found there was no difference between them on the expression of IL-6at different time. However, there was significantly difference of the mRNA expression of PD-1, PD-L1and PD-L2between autologous and allogeneic PDLSCs groups at1week and2week after transplantation.
     Conclusion:Allogeneic PDLSCs can effectively repair bone defect of periodontitis in minipig and do not induce humoral immunological rejections in which PD-1and PD-L1maybe play an important role.
引文
[1]Shi S, Bartold PM, Miura M, et al. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res,2005, 8(3):191-199.
    [2]Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cell (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA,2000,97 (25): 13625-13630.
    [3]Miura M, Gronthos S, Zhao M, et al. SHED:Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA,2003,100 (10):5807-5812.
    [4]Seo BM, Miura M, Gronthos S, et al. Multipotent postnatal stem cells from human periodontal ligament. Lancet,2004,364(9429):149-155.
    [5]Sonoyama W, Liu Y, Fang D, et al. Postnatal stem cell-mediated functional tooth regeneration. PLoS ONE,2006,1:79-92.
    [6]Liu Y, Zheng Y, Ding G, et al. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine:Stem Cells,2008, 26(4):1065-1073.
    [7]Ding G, Liu Y, An YQ, et al. Suppression of T cell proliferation by root apical papilla stem cells in vitro. Cells Tissues Organs,2010,191(5):357-364
    [8]Ding G, Wang W, Liu Y, et al. Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla. J Cell Physiol, 2010,223(2):415-422.
    [9]Ding G, Liu Y, Wang W, et al. Allogeneic periodontal ligament stem cell therapy for periodontitis. Stem Cells,2010,28(10):1829-1838
    [10]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science,1999,284(5411):143-147.
    [11]Deans RJ, Moselev AB. Mesenchymal stem cells:biology and potential clinical uses. ExpHematol,2000,28(8):875-884.
    [12]Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood,2002,99(10):3838-3843.
    [13]Le Blanc K, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol,2003,57(1):11-20.
    [14]Potian JA, Aviv H, Ponzio NM, et al. Veto-like activity of mesenchymal stem cells:functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol,2003,171(7):3426-3434.
    [15]Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implications in transplantation. Transplantation,2003,75(3):389-397.
    [16]Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol,2002,30(1):42-48.
    [17]Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood,2003,102(10): 3837-3844.
    [18]Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood,2003,101(9):3722-3729.
    [19]Meisel R, Zibert A, Laryea M, et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenasemediated tryptophan degradation. Blood,2004,103(12):4619-4621.
    [20]Maccario R, Podesta M, Moretta A, et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematological,2005,90(4):516-525.
    [21]Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood,2005,105(4):1815-1822.
    [22]丁刚,刘怡,王松灵.间充质干细胞的免疫学特性.北京口腔医学,2008,16(2):113-115.
    [23]丁刚,丁晓玲,刘怡.骨髓间充质干细胞在临床医学中的应用.中华临床医师杂志,2008,2(10):60-63.
    [24]Sun LY, Akiyama K, Zhang HY, et al. Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells,2009,27(6):1421-1432.
    [25]王松灵,丁刚.大型动物模型在口腔医学研究中的应用.中华口腔医学杂志,2009,44(增刊1):42-47.
    [26]Wang S, Liu Y, Fang D, et al. The miniature pig:a useful large animal model for dental and orofacial research. Oral Dis,2007,13(6):530-537.
    [27]Friedenstein AJ, Petrakova KV, Kuro lesova AI, et al. Heterotypic transplants of bone marrow:analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation,1968,6 (2):230-247.
    [28]Bartold PM, McCulloch CA, Narayanan AS, et al. Tissue engineering:a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000,2000,24:253-269.
    [29]Fuchs E, Segre JA. Stem cells:a new lease on life [J]. Cell,2000,100 (1):143-155
    [30]NIH. Stem cells:Scienctific progress and future research directions [EB]. (August 6,2001)Website:http://www.nih.gov/news/stemcell/scireport.htm
    [31]Pitaru S, Pritzki A, Bar-Kana I, et al. Bone morphogenetic protein 2 induces the expression of cementum attachment protein in human periodontalligament clones. Connect Tissue Res,2002,43:257-64.
    [32]Shimono M, Ishikawa T, Ishikawa H, et al. Regulatory mechanisms of periodontal regeneration. Microsc Res Tech,2003,60:491-502
    [33]National Institute of Health (NIH). Stem Cells:Scientific Progress and Future Research Directions. In:commission of the European communities, Brussels, 2003.
    [34]Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J]. Cytotherapy,2007,9(3):301-302.
    [35]Phinney DG. Isolation of mesenchymal stem cells from murine bone marrow by immunodepletion [J]. Method Mol Biol,2008,449:171-186.
    [36]项鹏,李树浓.骨髓间质干细胞研究进展.中国病理生理杂志,2002,18(11):1438-1442.
    [37]Gang EJ, Bosnakovski D, Figueiredo CA, et al. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood,2007,109(4):1743-1751.
    [38]Barry F, Boynton RE, Liu B, et al. Chondrogenic differentiation of mesenchymal stem cells from bone marrow:differentiation-dependent gene expression of matrix components. Experimental Cell Research,2001, 268:189-200.
    [39]Digirolamo CM, Stokes D, Colter D, et al. Propagation and senescence of human marrow stromal cells in culture:a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. British Journal of Haematology,1999,107:275-281.
    [40]Vidal MA, Kilroy GE, Lopez MJ, et al. Charaterization of equine adipose tissue-derived stromal cells:adipogenic and osteogenic capacity and comparision with bone marrow-derived Mesenchymal Progenitor Cells [J]. Vet Surg,2007,36(7):613-622.
    [41]Shahdadfara A, Fransdala K, Hnug T, et al. In vitro expansion of human mesenchymal stem cells choice of serum is ad eterminant of cell proliferation, differentiation, gene expression, and transcriptome stability [J]. Stem Cells, 2005,23 (9):1357-1366.
    [42]Krampera M, Marconi S, Pasini A, et al. Induction of neural-like differentiation in human mesenchymal stemcells derived from bone marrow, fat, spleen and thymus[J]. Bone,2007,40(2):382-390.
    [43]Ni WF, Yin LH, Lu J, et al. In vitro neural differentiation of bone marrow stromal cells induced by cocultured olfactory ensheathing cells [J]. Neurosci Lett,2010,475(2):99-103.
    [44]周光炎.免疫学原理.上海:上海科学技术出版社,2007.11
    [45]Krieg AM. CpG motifs in bacterial DNA and their immune effects [J]. Annu Rev Immunol,2002,20:709-760.
    [46]Vollmer J, Weeratna R, Payette P, et al. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities [J]. Eur J Immunol,2004,34 (1):251-262.
    [47]Marshall JD, Fearon K, Abbate C, et al. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions [J]. J Leukoc Biol,2003,73 (6):781-792.
    [48]Maitra B, Szekely E, Gjini K, et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant,2004,33:597-604.
    [49]Blanc KL, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol,2003,57:11-20.
    [50]Blanc KL, Rasmusson I, Gotherstrom C, et al. Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes, Scand J Immunol,2004,60: 307-315.
    [51]Glennie S, Soeiro I, Dyson PJ, et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood,2005,105: 2821-2827.
    [52]Anna C, Federica B, Elisa F, et al. Human mesenchymal stem cells modulate B-cell functions. Blood,2006,107:367-372.
    [53]Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood,2005, 105:4120-4126.
    [54]Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 2005; 105:2214-2219.
    [55]Baggiolini M. Chemokines and leukocyte traffic. Nature,1998,392:565-568.
    [56]Cyster JG. Chemokines and cell migration in secondary lymphoid organs. Science,1999,286:2098-2102.
    [57]Muller G, Hopken UE, Stein H, et al. Systemic immunoregulatory and pathogenic functions of homeostatic chemokine receptors. J Leukoc Biol,2002, 72:1-8.
    [58]Tachibana K, Hirota S, Iizasa H, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature,1998,393: 591-594.
    [59]Zou YR, Kottmann AH, Kuroda M, et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature,1998; 393: 595-599.
    [60]Okada T, Ngo VN, Ekland EH, et al. Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J Exp Med,2002,96:65-75.
    [61]Nie Y, Waite J, Brewer F, et al. The role of CXCR4 in maintaining peripheral B cell compartments and humoral immunity. J Exp Med,2004,200:1145-1156
    [62]Ansel KM, Ngo VN, Hyman PL, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature,2000,406:309-314.
    [63]Reif K, Ekland EH, Ohl L, et al. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature,2002,416:94-99.
    [64]Pistoia V. Production of cytokines by human B cells in health and disease. Immunol Today,1997,18:343-350.
    [65]Bernasconi NL, Onai N, Lanzavecchia A. A role for Toll-like receptors in acquired immunity:upregulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood,2003,101:4500-4504
    [66]Bethin KE, Vogt SK, Muglia LJ. Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proc Natl Acad Sci,2000,97,9317-9322.
    [67]Path G, Bornstein SR, Gurniak M, et al. Human breast adipocytes express interleukin-6 (IL-6) and its receptor system:increased IL-6 production by beta-adrenergic activation and effects of IL-6 on adipocyte function. J Clin Endocrinol,2001,86,2281-2288.
    [68]Szczepek AJ, Belch AR, Pilarski LM. Expression of IL-6 and IL-6 receptors by circulating clonotypic B cells in multiple myeloma:potential for autocrine and paracrine networks. Exp Hematol,2001,29,1076-1081.
    [69]Ershler WB, Keller ET. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med,2000,51,245-270.
    [70]Xing Z, Gauldie J, Cox G, et al. IL-6 is an anti-inflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest, 1998,101,311-320.
    [71]Guangwu X, Yingyu Z, Liying Z, et al. The role of IL-6 in inhibition of lymphocyte apoptosis by mesenchymal stem cells. Biochemical and Biophysical Research Communications,2007,361:745-750
    [72]Ramasamy R, Lam EW, Soeiro I, et al. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells:impact on in vivo tumor growth. Leukemia,2007,21 (2):304-310.
    [73]Soraya T, Jose A, Perez-Simon, et al. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica, 2008,93(9):1301-1309
    [74]Sadaki A, Shin I, Kevin F, et al. Mesenchymal stem cells suppress B cell terminal differentiation. Exp Hematol,2009,37(5):604-615.
    [75]Andrea A, Roberta T, Simone MN, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur. J. Immunol,2005,35:1482-1490
    [76]Rasmusson I, Le Blanc K, Sundberg Bet al. Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand J Immunol,2007,65(4):336-343.
    [77]Traggiai E, Volpi S, Schena F, et al. Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells, 2008,26(2):562-569.
    [78]Ishida Y,Agata Y,Shibahara K, et al. Induced expression of PD-l,a novel member of the immunoglobulin gene super-family,upon programmed cell death[J]. EMBO J,1992,11(11):3887-3895.
    [79]Zhang X, Schwartz JC, Guo X, et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity,2004,20(3):337-347.
    [80]Agata Y, Kawasaki A, Nishimura H,et al.Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol,1996,8(5): 765-772.
    [81]Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med,2000,192(7):1027-1034.
    [82]Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol,2001,2(3):261-268.
    [83]Tseng SY, Otsuji M, Gorski K, et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med,2001, 193(7):839-846.
    [84]Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mecha-nisms. Mol Cell Biol,2005,25(21): 9543-9553.
    [85]Blackburn SD, Shin H, Freeman GJ, et al. Selective expansion of a subset of exhausted CD8 Tcells by alpha PD-L1 block-ade. Proc Natl Acad Sci USA, 2008,105(39):15016-15021.
    [86]Kim HK, Guan H, Zu G, et al. High-level expression of B7-H1 molecules by dendritic cells suppresses the function of activated T cells and desensitizes allergen-primed animals. J Leukoc Biol,2006,79(4):686-695.
    [87]Seo SK, Seo HM, Jeong HY, et al. Co-inhibitory role of T-cell-associated B7-H1 and B7-DC in the T-cell immune response. Immunol Lett,2006, 102(2):222-228.
    [88]Ding H, Wu X, Gao W. PD-L1 is expressed by human renal tubular epithelial cells and suppressesTcellcytokine synthesis. Clin Immunol,2005,115(2): 184-191.
    [89]Velu V, Titanji K, Zhu B, et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature,2009,458(7235):206-210
    [90]Patrizia C, Fabrizio G, Rita M, et al. Human mesenchymal stem cells inhibit antibody production induced in vitro by allostimulation. Nephrol Dial Transplant,2008,23:1196-1202
    [91]丁刚,刘怡,王松灵.间充质干细胞的免疫学特性.北京口腔医学,2008,16(2):113-115.
    [92]Mergenhagen SE, Tempel TR, Snyderman R. Immunologic reactions and periodontal inflammation. J Dent Res 1970;49(2):256-261
    [93]Tew JG, Marshall DR, Burmeister JA, et al. Relationship between gingival crevicular fluid and serum antibody titers in young adults with generalized and localized periodontitis. Infect Immun 1985; 49(3):487-493.
    [94]Tew JG, Marshall DR, Moore WE, et al. Serum antibody reactive with predominant organisms in the subgingival flora of young adults with generalized severe periodontitis. Infect Immun 1985; 48(2):303-311.
    [95]Haffajee AD, Socransky SS, Taubman MA, et al. Patterns of antibody response in subjects with periodontitis. Oral Microbiol Immunol,1995; 10(3):129-137.
    [96]Berglundh T, Donati M. Aspects of adaptive host response in periodontitis [J]. J Clin Periodontol,2005,32:87-107.
    [97]Sugawara M, Yamashita K, Yoshie H, et al. Detection of, and anti-collagen antibody produced by, CD5-positive B cells in inflamed gingival tissues[J]. J Periodontal Res,1992,27,(5):489-498
    [98]Donati M, Liljenberg B, Zitzmann NU, et al. B-la cells in experimental gingivitis in humans [J]. J Periodontol,2009,80(7):1141-1145.
    [99]Stein SH, Hart TE, Hoffman WH, et al. Interleukin-10 promotes anti-collagen antibody production in type I diabetic peripheral B lymphocytes [J]. J Periodontal Res,1997,32(12):189-195.
    [100]Schenkein HA, Berry CR, Burmeister JA, et al. Anticardiolipin antibodies in sera from patients with periodontitis [J]. J Dent Res,2003,82(11):919-922.
    [101]Chen YW, Nagasawa T, Wara-Aswapati N, et al. Association between periodontitis and anti-cardiolipin antibodies in Buerger disease[J]. J Clin Periodontol,2009,36(10):830-835.
    [102]Atillta G. Evaluation of serum anti-cardiolipin and oxidized low-density lipoprotein levels in chronic periodontitis patients with essential hypertension [J]. J Periodontol,2008,79(2):332-340.
    [103]Novo E, Garcia-MacGregor E, Viera N, et al. Periodontitis and anti-neutrophil cytoplasmic antibodies in systemic lupus erythematosus and rheumatoid arthritis:A comparative study[J]. J Periodontol,1999,70(2):185-188.
    [104]Sharma CG, Pradeep AR. Anti-neutrophil cytoplasmic autoantibodies:A renewed paradigm in periodontal disease pathogenesis [J]. J Periodontol,2006, 77(8):1304-1313.
    [105]李成章,樊明文,唐志姣.人牙骨质、牙周膜、牙槽骨中Ⅰ、Ⅲ、Ⅳ型胶原的检测[J].中华口腔医学杂志,1997,32(2):70-72.
    [106]Ftis A, Singh G, Dolby AE. Antibody to collagen type I in periodontal disease [J]. J Periodontol,1986,57(11):693-698.
    [107]Anusaksathien O, Singh G, Matthews N, et al. Autoimmunity to collagen in adult periodontal disease:Immunoglobulin classes in sera and tissue [J]. J Periodontal Res,1992,27(1):55-61.
    [108]England DC, Winters LM, Carpenter LE. The development of a breed of miniature swine:a preliminary report. Growth,1954,18(4):207-214.
    [109]Millikan LE, Boylon JL, Hook RR, et al. Melanoma in Sinclair swine:a new animal model. J Invest Dermatol,1974,62(1):20-30.
    [110]北京农业大学实验动物研究所.猪模型在生物医学研究中的应用.北京:北京农业大学出版社,1987.3-15.
    [111]Weaver ME, Jump EB, McKean CF. The eruption pattern of deciduous teeth in miniature swine. Anat Rec,1966,154(1):81-86.
    [112]Weaver ME, Jump EB, McKean CF. The eruption pattern of permanent teeth in miniture swine. Arch Oral Biol,1969,14(3):323-331.
    [113]李玉晶,赵宝荣,葛丽华,等.小型猪自发性牙周炎症的病理观察.现代口腔医学杂志,1994,8(2):87-88.
    [114]孟焕新.牙周病学.北京:人民卫生出版社,2011.8
    [115]Morinushi T, Masumoto Y, Kawasaki H, et al. Effect on electroencephalogram of chewing flavored gum. Psychiatry Clin Neurosci,2000,54 (6):645-651.
    [116]Kissmeyer N, Fsen S, Petersen P, et al. Hyperacute rejection of kidney allografts assoeiated with preexisting humoral antibody against donor cells. Lancet,1966,1:1662-1665
    [117]魏玲玲,邓绍平,黄孝伦.肝细胞移植治疗急性肝功能衰竭的免疫排斥研究. 中国普外基础与临床杂志.2012,19(2):135-139
    [118]Zwimer J, Felber E, Herzog V, et al. Classical pathway of complement activation in normal and diseased human glomerular. Kidney int,1989,36: 1069-1077
    [119]Georg B, Heinz R. Diagnosis and treatment of antibody mediated kidney allograft rejection. Tanspl Int,2003,16:773-787
    [1]Friedenstein AJ, Chailakhyan RK, Latsinik NV, et al. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues, cloning in vitro and retransplantation in vivo. Transplantation,1974,17:331-340
    [2]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science,1999,284(5411):143-147
    [3]Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci,1999,96:10711-10716
    [4]Caplan AI. Mesenchymal stem cells. J Orthop Res,1991,9:641-650
    [5]Sacchetti B, Funari A, Michienzi S, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 2007,131(2):324-336
    [6]Horwitz E, Le Blanc K, Dominici M, et al. Clarification of the nomenclature forMSC:The International Society for Cellular Therapyposition statement. Cytotherapy,2005,7(5):393-395
    [7]Meirelles L S, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all postnatal organs and tissues. J Cell Sci,2006,119:2204-2213
    [8]Muguruma Y, Yahata T, Miyatake H, et al. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood,2006,107(5): 1878-1887
    [9]Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells,1978,4:7-25
    [10]Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nature Rev Immunol,2006,6:93-106
    [11]Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nature RevImmunol,2008,8:290-301
    [12]Bocelli-Tyndall C, Barbero A, Candrian C, et al. Human articular chondrocytes suppress in vitro proliferation of anti-CD3 activated peripheral blood mononuclear cells. J Cell Physiol,2006,209(3):732-734
    [13]Jones S, Horwood N, Cope A, et al. The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J Immunol,2007 179:2824-2831
    [14]Haniffa MA, Wang XN, Holtick U, et al. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol,2007,179(3):1595-1604
    [15]Parsonage G, Filer AD, Haworth O, et al. A stromal address code defined by fibroblasts. Trends Immunol,2005,26(3):150-156
    [16]Di Nicola M, Carlo-Stella C, Maqni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood,2002,99(10):3838-3843
    [17]Bartholomew A, Aturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol,2002,30(1):42-48
    [18]Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocytederived dendritic cells. Blood,2005, 105(10):4120-4126
    [19]Nauta AJ, Kruisselbrink AB, Lurvink E, et al. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol,2006,177:2080-2087
    [20]Ramasamy R, Fazekasova H, Lam EW, et al. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation,2007,83(1):71-76
    [21]Li YP, Paczesny S, Lauret E, et al. Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. J Immunol,2008, 180(3):1598-1608
    [22]Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood,2005,105:1815-1822
    [23]Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 2005,105(5):2214-2219
    [24]Maccario R, Podestia M, Moretta A, et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica,2005,90(4):516-525
    [25]Moretta A. Natural killer cells and dendritic cells:rendezvous in abused tissues. Nature Rev. Immunol,2007,2:957-964
    [26]Moretta A, Bottino C, Vitale M, et al. Receptors for HLA class-Ⅰ molecules in human natural killer cells. Annu Rev Immunol,1996,14:619-648
    [27]Moretta A, Bottino C, Vitale M, et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol, 2001,19:197-223
    [28]Spaggiari GM, Capobianco A, Becchetti S, et al. Mesenchymal stem cell-natural killer cell interactions:evidence that activatedNK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 2006,107:1484-1490
    [29]Spaggiari GM, Capobianco A, Abdeirazik H, et al. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood,2008,111(3): 1327-1333
    [30]Sotiropoulou PA, Perez SA, Gritzapis AD, et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells,2006,24:74-85
    [31]Poggi A, Prevosto C, Massaro AM, et al. Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering:role of NKp30 and NKG2D receptors. J Immunol,2005,175(10):6352-6360
    [32]Selmani Z, Nail A, Favier B, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+regulatory T cells. Stem Cells,2008,26(1):212-222
    [33]Raffaghello L, Bianchi G, BertolottoF, et al. Human mesenchymal stem cells inhibit neutrophil apoptosis:a model for neutrophil preservation in the bone marrow niche. Stem Cells,2008,26(1):151-162
    [34]Fadeel B, Ahlin A, Henter JI, et al. Involvement of caspases in neutrophil apoptosis:regulation by reactive oxygen species. Blood,1998,92:4808-4818
    [35]Craddock CG, Perry S, Ventzke LE, et al. Evaluation of marrow granulocytic reserves in normal and disease states. Blood,1960,15:840-855
    [36]Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells:implications in transplantation. Transplantation,2003,75:389-397
    [37]Meisel R, Zibert A, Laryea M, et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase mediated tryptophan degradation. Blood,2004,103(12):4619-4621
    [38]Zappia E, Casazza S, Benvenuto F, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 2005 106(5):1755-1761
    [39]Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res,2005,305:33-41
    [40]Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood,2003,101(9):3722-3729
    [41]Glennie S, Soeiro I, Dyson PJ, et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood,2005,105:2821-2827
    [42]Chabannes D, Hill M, Merieau E, et al. A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood,2007,110(10):3691-3694
    [43]Ren G, Zhang L, Zhano X, et al. Mesenchymal stem-cell-mediated immune-suppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell,2008,2(2):141-150
    [44]Sato K, Ozaki K, Meguro A, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood,2007, 109(1):228-234
    [45]Benvenuto F, Ferrari S, Gerdoni E, et al. Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells,2007, 25(7):1753-1760
    [46]Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation,2003,76:1208-1213
    [47]Rasmusson I, Uhlin M, Le Blanc K, et al. Mesenchymal stem cells fail to trigger effector functions of cytotoxic T lymphocytes. J. Leukocyte Biol,2007, 82:887-893
    [48]Morandi F, Raffaghello L, Bianchi G, et al. Immunogenicity of human mesenchymal stem cells in HLA-class-I-restricted T-cell responses against viral or tumor-associated antigens. Stem Cells,2008,26(5):1275-1287
    [49]Pevsner-Fischer M, Mord V, Cohen-Sfady M, et al. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood,2007, 109(4):1422-1432
    [50]Tomchuck SL, Zwezdaryk KL, Coffelt SB, et al. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells,2008,26(1):99-107
    [51]Hwa Cho H, Bae YC, Jung JS. Role of Toll-like receptors on human adipose-derived stromal cells. Stem Cells,2006,24:2744-2752
    [52]Liotta F, Angeli R, Cosmi L, et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells,2008, 26(1):279-289
    [53]Svensson M, Kaye PM. Stromal-cell regulation of dendritic-cell differentiation and function. Trends Immunol,2006,27:580-587
    [54]Augello A, Tasso R, Negrini SM, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol,2005,35(5):1482-1490
    [55]Krampera M, Cosmi L, Angeli R, et al. Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells,2006,24(2):386-398
    [56]Anna C, Federica B, Elisa F, et al. Human mesenchymal stem cells modulate B-cell functions. Blood,2006,107:367-372.
    [57]Traggiai E, Volpi S, Schena F, et al. Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and.differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells, 2008,26(2):562-569
    [58]Rasmusson I, Le Blanc K, Sundberg B, et al. Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand J Immunol,2007,65:336-343
    [59]Gerdoni E, Gallo B, Casazza S, et al. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol,2007,61(3):219-227
    [60]Stagg J, Pommey S, Eliopoulos N, et al. Interferon-γ-stimulated marrow stromal cells:a new type of nonhematopoietic antigen-presenting cell. Blood,2006, 107:2570-2577
    [61]Chan JL, Tanq KC, Patel AP, et al. Antigen presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-y. Blood, 2006,107(12):4817-4824
    [62]Feuerer M, Beckhove P, Garbi N, et al. Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nature Med,2003,9(9):1151-1157
    [63]Eliopoulos N, Stagg J, Lejeune L, et al. Allogeneic marrow stromal cells are immune rejected by MHC class I-and class II-mismatched recipient mice. Blood, 2005,106:4057-4065
    [64]Nauta AJ, Westerhuis G, Kruisseibrink AB, et al. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a non-myeloablative setting. Blood,2006,108(6):2114-2120
    [65]Aksu AE, Horibe E, Sacks J, et al. Co-infusion of donor bone marrow with host mesenchymal stem cells treats GVHD and promotes vascularized skin allograft survival in rats [J]. Clin Immunol,2008,127(3):348-358.
    [66]Murphy JM, Dixon K, Beck S, et al. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum,2002,46(3):704-713
    [67]Jiang CY, Gui C, He AN, et al. Optimal time for mesenchymalstem cell transplantation in rats with myocardial infarction [J]. J Zhejiang Univ Sci B, 2008,9(8):630-637.
    [68]魏玲玲,邓绍平,黄孝伦.肝细胞移植治疗急性肝功能衰竭的免疫排斥研究.中国普外基础与临床杂志.2012,19(2):135-139
    [69]Wan CD, Cheng R, Wang HB, et al. Immunomodulatory effects of mesenchymal stem cells derived from adipose tissues in a rat orthotopic liver transplantation model [J]. Hepatobiliary Pancreat Dis Int,2008,7(1):29-33.
    [70]Yu Y, Yao AH, Chen N, et al. Mesenchymal stem cells over-expressing hepatocyte growth factor improve small-for-size liver grafts regeneration[J]. Mol Ther,2007,15(7):1382-1389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700