小麦冰草特异种质的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦近缘植物存在着极为丰富的遗传多样性和可供改良小麦的优异基因,加强小麦与其近缘植物的杂交、鉴定和利用研究,必将为小麦生产和育种带来更大的进展。本研究通过细胞学、原位杂交、种子储藏蛋白电泳、分子标记及形态学统计,对小麦-冰草衍生后代中大穗多花和成穗受抑制两类材料进行了系统的鉴定与分析。主要结果如下:
     1.小麦-冰草特异种质的外源物质检测通过基因组原位杂交(GISH)分析,在大穗多花4844后代的15个株系中检测出一个稳定的附加系(4844-12)和两个稳定的代换系(4844-2、4844-8);GISH结果还表明,成穗受抑制株系发生了两对小麦染色体与冰草间的插入易位,插入到小麦染色体短臂近末端的两个冰草染色体片段分别占整条易位染色体总长的13%、10%,占短臂的29.6%、23%左右,并利用微卫星分析从成穗受抑制株系中筛选出6个SSR易位标记。
     2.大穗多花小麦-冰草附加系、代换系的遗传分析通过附加系、代换系及4844后代单株的每穗小穗数、小花数和穗粒数的统计分析与GISH分析,结果表明,4844后代株系的多花、多粒特性是由外源冰草染色体引起的,此冰草染色体在小麦背景下,能够大幅度增加小麦的穗粒数;利用来自山羊草的重复序列pAs1对代换系4844-2、4844-8进行荧光原位杂交FISH和SSR分析,小麦的6D染色体被1对冰草染色体代换,由于这两个代换系是自发发生的,其植株生长正常,说明这对冰草染色体对小麦6D染色体具有良好的补偿作用,由同源补偿代换推断此冰草染色体与小麦第六同源群有部分同源关系,并定名此冰草染色体为6P;EST-SSR与醇溶蛋白(Gliadin)分析进一步验证6P与小麦第六同源群的部分同源关系的划分是正确的;同时筛选出5个冰草6P染色体的SSR标记。
     3.大穗多花小麦-冰草基因渐渗系3228-2穗部性状的遗传分析对3228-2×京4839的F2群体穗粒数和穗小花数用IECM算法估算结果表明,穗粒数由一对主基因+多基因控制,主基因表现为加性和显性或超显性,其遗传模型是A-4,F2群体控制穗粒数的主基因遗传率h2mg为56.3%;而穗小花数由二对主基因+多基因控制,主基因表现为加性-显性-上位性模型,其遗传模型是B-1,F2群体控制穗小花数的主基因遗传率h2mg为96.7%。
     4.普通小麦-冰草衍生后代中抑制成穗基因SiFc的分子标记及染色体定位利用小麦SSR与EST-SSR分子标记技术和F2分离群体分组分析法研究表明,该抑制成穗的性状受一对隐性基因控制,位于小麦1A染色体短臂的近端部,与Ksum104、Ksum117、Xcfa2153和WMC24四对引物所扩增的成穗受抑制的标记具有连锁关系,且Ksum104引物所扩增的标记紧密连锁,它们之间的遗传距离为4.5 cM。5个位点在分子图谱上的顺序为1AS-Xcfa2153-Ksum117-Ksum104-SiFc-WMC24。
Cytological, in situ hybridization, gliadin, molecular markers and morphological Stat. were employed to detect and analyze two kinds of peculiar wheat germplasm derived from wheat (Triticum aestivum L.) - Agropyron cristatum (2n=28, genomes PPPP). Major result is as follows:
     1. To detect exogenous hereditary property of the derive descendants from wheat- A. cristatum A large-spike with more floret wheat germplasm (4844) and earing inhibition plant lines were obtained by screening the descendants from hybridizing between common wheat (T. aestivum L.) and Agropyron cristatum (accession Z559). The results of genomic in situ hybridization (GISH) detect, a disomic alien chromosome addition line 4844-12 and two chromosome substitution lines 4844-2 and 4844-8, in 15 progeny lines of 4844. GISH result still shows, these earing inhibition plant lines belonged to the translation lines between two couple wheat chromosomes and A. cristatum chromosomes. Total six translational markers were detected by using SSR analysis in them.
     2. The hereditary analysis of the supper spike wheat- A. cristatum addition line and substitution lines In order to determine the genetic control of multiple florets and kernels per spike in this line, chromosome addition and substitution lines that were derived from line 4844 were characterized by means of in situ hybridization, microsatellite (SSR), and gliadin analyses. Genomic in situ hybridization analysis with biotinylated P genomic DNA of A. cristatum as a probe demonstrated that the increased number of florets and grains in a spike was associated with the A. cristatum chromosome introgressed. Fluorescence in situ hybridization, using a repetitive sequence, pAs1 derived from Aegilops squarrosa L., indicated the replacement of chromosome 6D of wheat in the wheat-A. cristatum chromosome substitution lines. This was confirmed by microsatellite analyses with wheat SSR markers specific for chromosome 6D, suggesting that the A. cristatum chromosome was homoeologous to group 6 and was therefore designated 6P. This verdict was further confirmed by amplification using EST-SSR markers and gliadin analysis. The increased number of florets and kernels within a spike of the wheat-A. cristatum hybrids was thus controlled by gene(s) located on A. cristatum chromosome 6P. At the
引文
[1] 庄巧生主编. 中国小麦品种改良及系谱分析[M]. 北京: 中国农业出版社, 2003.
    [2] Dong, Y. S., Zhou R. H., Xu, S. J., etc. Desirable characteristics in perennial triticeae collected in China for wheat improvement[J]. Hereditas, 1992, 116: 175-178.
    [3] Dewey, D. R. The genomic system of classification as a guide to intergeneric hybridization with the perennial triticeae[A]. In: Gustafeson J. P. (Ed.), Gene Manipulation in Plant Improvement[C], Plenum Press, New York, 1984: 209-279.
    [4] 郭本兆.中国植物志(第九卷第三分册)[M].北京;科学出版社,1987.
    [5] 薛秀庄,吉万全,许喜堂,等.小麦染色体工程与育种[M].石家庄:河北科学出版社,1993.
    [6] 李振声,容珊,陈漱阳,等. 小麦远缘杂交[M]. 北京;科学出版社,1985.
    [7] 钟冠昌,穆素梅,张正斌,等.麦类远缘杂交[M]. 北京;科学出版社,2002.
    [8] Sears, E. R. Transfer of alien material to wheat[A]. In: Evans, L. T., and Peacock, W. J. (Ed.), Wheat Science-Today and Tomorrow[M], Cambridge University Press, 1981:75-89.
    [9] Sharma H. C., and Gill, B. S. 1983. Current status of wide hybridization in wheat[J]. Euphytica, 32:17-31.
    [10] Jiang J., B. Friebe, B.S. Gill, 1994. Recent advance in alien gene transfer in wheat[J]. Euphytica 73:199- 212.
    [11] Friebe, B., Jiang, J., Raupp, W. J., etc. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status[J]. Euphytica, 1996, 91: 59-87.
    [12] Cabrera, A., Martin, A. A trigeneric hybrid between Hordeum, Aegilops and Secale[J]. Genome, 1992, 35: 647-649.
    [13] Knobloch I.W. A check list of crosses in the Gramineae[M]. Stechert-Hofner Service Agency, New York. 1968.
    [14] Kimber, G., And Abu-Bakar, M. A wheat hybrid information system[J]. Cer. Res. Comm., 1979, 7: 237-260.
    [15] Friebe B., Jiang, J., Raupp, W. J., etc. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status[J]. Euphytica, 1996, 91: 59-87
    [16] Friebe, B. R., Tuleen, N. A., Gill, B. S. Development and identification of a complete set of Triticum aestivum – Aegilops geniculata chromosome addition lines[J]. Genome, 1999, 42: 374-380
    [17] Friebe B., Qi, L. L., Nasuda, S, etc. Development of a complete set of Triticum aestivum-Aegilops speltoides chromosomes addition lines[J]. Theor. Appl. Genet. 2000, 101: 51- 58
    [18] Linc G., Friebe, B. R., Kynast, R. G, etc. Molecular cytogenetic analysis of analysis of Aegilops cylindrical Host[J]. Genome, 1999, 42: 497-503
    [19] Chai, J. F., Wu, Z. M., Zhao, H., etc. Using subtracted AFLP to efficiently mark an alien chromosome fragment in wheat background[J]. Acta. Bot. Sin. 2003, 45(4): 379-383.
    [20] Cauderon Y., Saigne, B., Dauge, M. The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement[A]. Proc. 4th Int. Wheat Genet. Symp[M], 1973, 401- 407.
    [21] 李平路,王洪刚. 小麦异附加系的选育和鉴定研究进展[J]. 山东农业大学学报(自然科学版),2000, 31(4):446-450.
    [22] Driscoll C.J. and Sears, E.R. Individual addition of the chromosomes of “Imperial” rye to wheat[J]. AgronAbst, 1971, 6.
    [23] Miller T.E. Alien chromosome additions and substitutions[J]. Ann Rep Plant Breed Inst. 1973, 143.
    [24] Sybenga, J. Rye chromosome nomenclature and homoeolohy relationships[J]. Workshop Report. Z. Pfanzenzuecht. 1983, 90: 297-304.
    [25] Miller, T. E. The homoeologous relationship between the chromosomes of rye and wheat. Current status[J]. Canadian Journal of Cytogenetics, 1984, 26: 578-589.
    [26] Cauderon, Y. étude cytogénétique de l’évolution du matériel issu de croisements entire Triticum aestivum et Agropyron intermedium. I. Création de types d’addition stables[J]. Ann. Amélior. Plant. 1966, 16: 43-70.
    [27] Masahiro, K., Toyomi, Y., Tetsuo, S., etc. Production of wheat-Leymus racemosus chromosome addition lines[J]. Theor Appl Genet. 2004, 109: 255-260.
    [28] Li, Z. S., Shui, H. Chromosome engineering of wheat in China [J]. Critical Reviews in Plant Sciences .1992, 10(5): 471-485.
    [29] 陈漱阳, 傅杰, 高立贞. 小麦与滨麦的杂交[J].西北植物学报, 1985, (4): 260-261
    [30] 陈漱阳, 高立贞, 刘麦焕. 普通小麦与簇毛麦杂交研究[J]. 遗传学报, 1981, 8(4): 340-343
    [31] 陈漱阳, 侯文胜, 张安静, 等. 普通小麦-华山新麦草异附加系的选育及细胞遗传学研究[J].遗传学报, 1996, 23(6): 447-452.
    [32] 陈漱阳, 张安静, 傅杰. 普通小麦与华山新麦草的杂交[J].遗传学报,1991,18(6):508-512.
    [33] 何孟元,等. 两套小冰麦异附加系的建立[J]. 中国科学(B 辑),1988, 11: 1161-1168.
    [34] 刘大钧, 齐莉莉. 导入小麦的外源染色体片段的准确鉴定及外源抗性基因的稳定性分析[J]. 遗传学报. 1996, 23(1): 18-23.
    [35] 刘大钧. 外源基因在小麦育种中的利用[J]. 作物学报, 1994, 20(6): 1-7.
    [36] 薛秀庄, Richard R C Wang. 用RAPD和染色体原位杂交检测Elymus rectisetusr染色体附加到普通小麦中[J]. 遗传学报, 1999, 26(5): 539-545.
    [37] 李璋, 刘翠云, 等. 普通小麦×栽培大麦杂种植株及其回交后代的产生和鉴定[J]. 遗传学报, 1987, 14(3): 188-192.
    [38] 陶文静, 刘金元. 用 RFLP 鉴定普通小麦-纤毛鹅观草二体附加系中外源染色体的同源群[J]. 作物学报. 1999, 25(6): 657-662.
    [39] 陈佩度, 王裕中. 将大赖草种质转移给普通小麦的研究[J]. 遗传学报. 1995, 22(3): 206-210.
    [40] 李立会,李秀权,李培,等. 小麦-冰草异源附加系的创建[J]. 遗传学报, 1997, 24: 154-159.
    [41] 陈桂芳, 唐顺学. 普通小麦与东方旱麦草异附加系和异代换系的选育与原位杂交检测[J]. 遗传学报. 2000, 27(1): 50-55.
    [42] 陈发棣, 陈佩度, 等. 普通小麦-大赖草-簇毛麦附加、易位系的选育和鉴定[J]. 植物学报, 2001, 43(4): 359-363.
    [43] 李振声, 穆素梅, 陈漱阳.蓝粒单体小麦研究[J]. 遗传学报, 1982, 9 : 431-439.
    [44] 张学勇,李振声,陈漱阳. “缺体回交法”选育普通小麦异代换系方法的研究[J], 遗传学报,1989, 16(6):420-429.
    [45] 孔凡晶, 王洪刚. 利用异附加系创建小麦新品系的主要性状特点研究[J]. 山东农业大学学报, 2000, 31(1): 55-59.
    [46] 张增艳, 辛志勇, 等. 源于 L1 的小麦抗黄矮病基因的特异 PCR 标记及辅助育种的研究[J].作物学报, 2002, 28(4): 486-491.
    [47] 袁建华, 陈佩度, 刘大均. 利用杀配子染色体创造普通小麦-大赖草易位系[J]. 中国科学 C 辑, 2003, 33(2): 110-117.
    [48] Gale, M. D., and Devos, K. M. Plant comparative gnentics after 10 years[J]. Science, 1998, 282: 656-659.
    [49] Zhang, P., Frieber, B., Lukaslocation, A. J., etc. The centromere in robertsonian wheat-rye translation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction[ J]. Chromosoma, 2001, 110(5): 335-344.
    [50] Sharp, P. J., Chao, S., and Gale, M. D. The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm[J]. Theor. Appl. Genet. 1989, 78: 342-348.
    [51] Francki, M. G. Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye(Secale cereale L.)[ J]. 2001, Genome, 44(2): 266-274.
    [52] Jiang, S. M., Hu, J., Yin, W. B., etc. Cloning of resistance gene analogs located on the alien chromosome in an addition line of wheat-Thinopyrum intermedium[J]. Theor. Appl. Genet., 2005, 111( 5): 923-931.
    [53] 何聪芬, 马有志, 辛志勇, 等. 中间偃麦草 2Ai-2 染色体 DNA 文库构建及特异性序列的克隆[J]. 中国农业科学, 2004, 37(2): 163-169.
    [54] 周汉平, 李滨. 蓝粒小麦易位系选育的研究[J]. 西北植物学报,1995,15(2):125-128.
    [55] 张宏, 罗恒, 等. 一个小麦-中间偃麦草异代换系抗条锈病的遗传研究[J]. 麦类作物学报. 2003, 23(1): 31-33.
    [56] 陈佩度. 作物育种生物技术[M].北京:中国农业出版社,2001.
    [57] 张学勇, 陈漱阳. 普通小麦异代换系的产生和利用[J]. 遗传,1990,12(4):40-44.
    [58] Sears, E. R. The transfer of leaf-rust resistance from Aegilops umbellulata to wheat[J]. Brookhaven Symp. Biol. 1956, 9: 1–22.
    [59] 刘文轩, 陈佩度. 利用花粉辐射诱发普通小麦与大赖草染色体易位的研究[J]. 遗传学报. 2000, 27(1): 44-49.
    [60] Friebe, B., Jiang, J., Gill, B. S. et al. Radiation induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust[J]. Theor. Appl. Genet, 1993, 86: 141-149.
    [61] Knott, D. R. Transferring alien genes to wheat [J]. In Wheat and Wheat Improvement[M], Second Edition, Heyne, E.G. (ed.) Medison. Wisonsin, USA. 1987: 462-471.
    [62] Knott, D. R., and Dvorak, J. The transfer to wheat and hormonology of an Agropyron elongatum chromosome carrying resistance to stem rust [J]. Can. J. genet. Cytol. 1977, 19: 75-79.
    [63] Knott, D. R. The transfer of genes for rust resistance to wheat from related species [J]. Proc 6th. inter. wheat genet[M]. 1978: 354-357.
    [64] 李集临, 王宁. 小麦-黑麦染色体代换的研究[J]. 植物研究. 2002, 22(2): 220-223.
    [65] 李辉, 陈孝. 幼胚培养创造 2 个抗白粉病簇毛麦 6VS 端体[J]. 植物学报. 2002, 44(2): 127-131.
    [66] Friebe B., Jiang, J., Raupp, W. J., etc. Molecular cytogenetic analysis of radiation-induced alien genetic transfers in wheat[J]. In: Li Z.S. and Z.Y. Xin (Ed), 8th Int Wheat Genet Sym., Beijing, China. 1993. pp: 519-529.
    [67] Jiang J., Friebe, B., and Gill, B. S. Recent advance in alien gene transfer in wheat[J]. Euphytica, 1994, 73: 199- 212.
    [68] Lapitan, N. L. V., Sears, R. G., Rayburn, A. L., etc. Wheat-rye translocations-detection of chromosome breakpoints by in situ hybridization with a biotin-1abelled DNA probe [J]. J. Hered. l986, 77: 4l5-4l9.
    [69] Friebe, B., Jiang, J., Raupp, W. J., etc. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status[J]. Euphytica, 1996, 91: 59-87.
    [70] Endo, T. R. Two types of gametocidal chromosome of Aegilops sharonensis and Ae. Longissima [J]. J. Genet. 1985, 60: 125-135.
    [71] Endo, T. R. Gametocidal chromosomes and their induction of chromosome mutations in wheat [J]. Jpn. J. Genet. 1990, 65: 135-152.
    [72] Miller, T. E., Hutchinson, J., Chapman, V. Investigation of a preferentially transmitted Aegilops sharomensis chromosome in wheat [J]. Theor. Appl. Genet., 1982, 61:27-33.
    [73] Maan, S. C. A gene for embryo-endosperm compatibility and seed variability in alloplasmic triticum turgidum[J]. Genome, 1992, 35: 772-779.
    [74] Miller, T. E., Hutchinson, J., and Reader, C. M. The identification of the nucleolar organizer chromosomes of diploid wheat [J]. Theor. Appl. Genet., 1983, 65: 145-147.
    [75] 郭长虹, 石锐. 杀配子染色体特异 RAPD 标记及山羊草属与普通小麦间分子多态性的研究[J]. 植物研究, 2001, 21(3): 432-436.
    [76] 陈全战, 亓增军, 冯祎高, 等. 利用离果山羊草 3C 染色体诱导簇毛麦 4V 染色体结构变异[J]. 遗传学报, 2002, 29(4): 355-358.
    [77] 王献平, 初敬华, 张相岐. 小麦异源易位系的高效诱导和分子细胞遗传学鉴定[J]. 遗传学报, 2003, 30(7): 619-624.
    [78] Sears, E. R. Prospects for improvement of wheat through transfers of alien genetic material [J]. Prc.1st.inter.symp.on chromosome engineering in plants[M]. 1986: 2-5.
    [79] Sears, E.R. The transfer to wheat of interstitial segments of alien chromosomes [J]. Proc.6th. inter. Wheat Genet Symp[M].1983: 5-12.
    [80] 李义文, 李振声. 小麦-黑麦 1BL/1RS 易位染色体和外源染色体在两个三属杂种中的减数分裂行为[J]. 植物学报. 2002, 44(7): 821-826.
    [81] Zhang X Y. Production and utilization of wheat alien translocation lines[J]. Hereditas (Beijing) (遗传), 1991, 13: 39~44.
    [82] Riley, R., and Chapman, V. The production and phenotypes of wheat–rye chromosome addition lines[J]. Heredity, 1958, 12: 301-315.
    [83] Evans, L. E., and Jenkins, B. C. Individual Secale cereale chromosome additions of Triticum aestivum. I. The addition of individual “Dakold” fall rye chromosomes to “Kharkov” winter wheat and their subsequent identification[J]. Can. J. Genet. Cytol. 1960, 2: 205-215.
    [84] Islam, A. K. M. R., Shepherd, K. W. and Sparrow, D. H. B. Isolation and characterization of euplasmic wheat-barley chromosome addition lines[J]. Heredity, 1981, 46: 161-174.
    [85] 姚景侠. 小麦细胞与分子遗传研究[M]. 南京:南京出版社, 2000, 143-181, 209-271.
    [86] Darvey, N. L., and Gustafson, J. P. Identification of rye chromosomes in wheat-rye addition lines and triticale by heterochromatin bands[J]. Crop Sci. 1975, 15: 239-243
    [87] Endo, T. R. Complete identification of common wheat chromosomes by means of the C-banding technique[J]. Jpn. J. Genet, 1986, 61: 89-93.
    [88] Gill, B. S., Friebe, B., Endo, T. R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat(Triticum aestivum) [J].Genome, 1991, 34(5): 830-839.
    [89] Friebe, B. Identification of Haynaldia villosa chromosomes by means of Giemsa–banding [J]. Theor. Appl. Genet, 1987, 73: 337-342.
    [90] Morris, K. L. D., and Gill, B. S. Genomic affinities of individual chromosomes based on C- and N-banding analysis of tetraploid Elymus species and their diploid progenitor species[J]. Genome, 1987, 29: 247-252.
    [91] Zeller, F. J., Cermeno, M. C. and Friebe, B. Cytological identification of telotrisomic and double ditelosomic lines in Secale cereale cv. Heines Hellkorn by means of Giemsa C-banding patterns and crosses with wheat-rye addition lines[J]. Genome, 1987, 29: 58-62.
    [92] Goicoechea, P. G., Roca, A., Linde, A. R., et al. Independent arrangement of bivalents and(or) quadrivalents in liner meiotic metaphase plates of rye[J]. Genome, 1991, 34: 421-429.
    [93] Friebe, B., Tuleen, N., Jiang, J., et al. Standard karyotype of Triticum longissimum and its cytogenetic relationship with T.aestivum[J]. Genome, 1993, 36: 731-742.
    [94] Xu, Jie., Conner, R. L. Intravarietal variation in satellites and C-banded chromosomes of Agropyron intermedium ssp. Trichophorum cv. Greenleaf [J]. Genome, 1993, 37: 305-310.
    [95] McIntosh, R. A., Hart, G. E., Devos, K. M., etc. Patogenic disease/pest reaction[J]. In: McIntosh, R.A., Har,t G. E., Devos, K. M., etc. (eds) Proc. 9th Int. Wheat Genetics Symp[J], University of Saskatchewan, Saskatoon, 1998, pp: 129-139.
    [96] Hart, G. E., and Tuleen, N. A. Introduction and characterization of alien genetic material[J]. In Tanksley, S. D., and Ortan, T. J. (Edit.): Isozymes in Plant Genetics and Breeding Part A. Elsevier Science Publishers[M], 1983.
    [97] Lukaszewski, A. J., Curtis, C. A. Transfer of the Glu-D1 gene from chromosome 1D to chromosome 1A in hexaploid triticale [J]. Plant Breeding, 1994, 112: 177-182.
    [98] Yang, Z. J., Li, G. R., and Ren, Z. L. Identification of a Triticum durum-Secale africanum amphiploid and its cross ability with common wheat[J]. Journal of Genetics & Breeding. 2001, 55(1): 45-50.
    [99] 钟少斌, 姚景侠. 麦类作物 DNA 原位杂交及其在远缘杂种染色体分析中的应用[J]. 中国农业科学, 1997, 30(1): 33-37.
    [100] 孔秀英,周荣华,董玉琛,等. 尾状山羊草基因组特异重复序列的克隆[J]. 科学通报, 1999, 44(8): 828-832.
    [101] McIntyre, C. L., Pereira, S., Moran, L. B., etc. New Secale cereal (rye) DNA derivatives for detection of rye chromosome segements in wheat[J]. Genome, 1990, 33: 635-640.
    [102] Zhang, H. B., Devorak, J. Isolation of repeated DNA sequences from Lophopyrum elongatum for detection of Lophopyrum chromatin in wheat genomes[J]. genome, 1990, 33: 283-293.
    [103] McIntyre, C. L. Amplification and dispersion of repeated DNA sequences in the Triticeae [J]. Plant Syst. Evol. 1988, 160: 39-59.
    [104] Jang, C. S., Kim, D. S. Isolation and characterization of lipid transfer protein (LTP) genes from a wheat-rye translocation line [J]. Plant Cell Reports. 2002, 20(10): 961-966.
    [105] Mukai, Y., Nakahara, Y., Yamamoto, M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes[J]. Genome, 1993, 36: 489-494.
    [106] Pedersen, C., and Langridge, P. Identification of the entire chromosome complement of bread wheat by two-color FISH[J]. Genome, 1997, 40: 589-593.
    [107] Iqbal, N., Reader, S. M., Caligari, P. D. S., etc. Characterization of Aegilops uniaristata chromosomes by comparative DNA marker analysis and repetitive DNA sequence in situ hybridization[J]. Thor Appl Genet, 2000, 101:1173-1179.
    [108] Wang, Z. G., An, T. G., Li, J. M., etc. Fluorescent in situ hybridization analysis of rye chromatin in the background of “xiao yan No.6”[J]. Acta Botanica Sinica, 2004, 46(4): 436-442.
    [109] Mukai, Y., and Gill, B. S. Detection of barley chromatin added to wheat by genomic in situ hybridization [J]. Genome, 1991, 34: 448-452.
    [110] Schwarzacher, T., Anamthawar-Jonsson, K., Harrison, G. E., etc. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat [J]. Theor Appl Genet. 1992, 84: 778-786.
    [111] Friebe, B. R., Tuleen, N. A., and Gill, B. S. Development and identification of a complete set of Triticum aestivum-Aegilops geniculate chromosome addition lines[J]. Genome, 1999, 42 (3): 374-380.
    [112] Friebe, B., Mukai, Y., Gill, B. S., etc. C-banding and in situ hybridization analysis of Agropyron intermedium, a partial wheat×Ag.intermedium amphiploid, and six derived chromosome addition lines[J]. Theor. Appl. Genet, 1992, 84: 899-905.
    [113] Friebe, B., Zeller, F. J., Mukai, Y., etc. Characterization of rust-resistant wheat-Agropyron intermedum derivatives by C-banding, in situ hybridization and isozyme analysis[J]. Theor. Appl. Genet, 1992, 83: 775-782.
    [114] Chen, Q., and Amstrong, K. C. Genomic in situ hybridization in Avena sativa[J]. Genome, 1994, 37: 607-612.
    [115] Chen, Q., Corner, R. L., Laroche, A., etc. Molecular characterization of Haynaldia villosa chromatin in wheat lines carrying resistance to wheat curl mite colonization[J]. Theor. Appl. Genet., 1996, 93: 697-684.
    [116] Jiang, J., Chen, P., and Fribe, B. Alloplasmic wheat-Elymus ciliaris chromosome addition lines[J]. Genome, 1993, 37: 327-333.
    [117] Jiang, J., and Gill, B. S. Different species-specific chromosome translations in triticum timopheevii and T. turgidum supports diphyletic origin of polyploid wheats[J]. Chromosome Res. 1994, 2: 59-64.
    [118] Zhong, S. B., Zhang, D. Y., Li, H. B., etc. Identification of Haynaldia villosa chromosomes added to wheat using a sequential C-banding and genomic in situ hybridzation technique[J]. Theor Appl Genet. 1996, 92: 116-120.
    [119] Jia, J. Z., and Zhou, R. H., Identifying the alien chromosomes in wheat–Leymus multicaulis derivatives using GISH and RFLP techniques[J]. Euphytica, 2002, 127(2): 201-207.
    [120] 温海霞, 陶澜. 荧光原位杂交在麦类作物育种中的应用研究进展[J], 中国农学通报, 2002, 18(3): 58-60.
    [121] 张红军, 王洪则, 刘树兵, 等.小麦族多属杂种的研究进展[J]. 山东农业大学学报, 2000, 31(3): 337-344.
    [122] 李娜, 焦浈, 秦广雍. DNA 分子标记及其在小麦育种及遗传研究中的应用[J]. 核农学报, 2005, 19(3): 322-327.
    [123] Sharp, P. J., Chao, S., Desai, S., etc. The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homologous chromosome [J]. Theor. App. Genet, l989, 78: 342-348.
    [124] Francki M.G., O.R. Crasta, H.C. Sharma, H.W., etc. 1997. Structural organization of an alien Thinopyrum intermedium group 7 chromosome in U.S. soft red winter wheat. Genome, 40: 716–722.
    [125] 杨天章, 张文俊. VE161 小麦的外源染色体鉴定[J]. 遗传学报, 2000, 27(6): 527-531.
    [126] Zhang, X. Y., Dong, Y. S., and Wang, R. C. Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum×Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD[J]. Genome, l996, 39: 1062-l071.
    [127] Hernandez, P., Rubio,M. J., and Martin, A. RAPDs as molecular markers for the detection of Hordeum chilense chromosomes in wheat addition lines and in Tritordeum[J]. Chromosome Res. 1995, 3: 100–105.
    [128] 薛秀庄, Richard R C Wang. 用 RAPD 和染色体原位杂交检测 Elymus rectisetusr 染色体附加到普通小麦中[J]. 遗传学报, 1999, 26(5): 539-545.
    [129] 徐琼芳, 马有志. 应用原位杂交及 RAPD 技术标记抗黄矮病小麦-中间偃麦草染色体异附加系[J]. 遗传学报. 1999, 26(1): 49-53.
    [130] 王洪刚, 李丹丹, 等. 抗白粉病小偃麦异代换系的细胞学和 RAPD 鉴定[J]. 西北植物学报, 2003, 23(2): 280-284.
    [131] 胡英考, 辛志勇, 等. 抗条锈病小麦-中间偃麦草异附加系的生化与分子标记[J]. 西北植物学报, 2002, 22(1): 136-140.
    [132] 白建荣, 贾旭, 王道文. 小麦及其近缘种中基因组特异性 DNA 重复序列的研究进展[J]遗传, 2002, 24(5): 595-600.
    [133] 周兖晨 吴立人, 等. 滨麦抗条锈病基因的染色体定位和分子标记[J]. 遗传学报, 2001, 28(9): 864-869.
    [134] Peil, A., Korzun, V., Schubert, V., etc. The application of wheat microstellites to identify disomic Triticum aestivum-Aegilops markgrafii addition lines[J]. Theo Appl Genet, 1998, 96: 138-146.
    [135] Guadagnuolo, R., Savova, B. D., and Felber, F. Gene flow from wheat (Triticum aestivun L.) to joined goatgress (Aegilops cylindrical Host.), as revealed by RAPD and microsatellire markers[J]. Theor Appl Genet, 2001, 103: 1-8.
    [136] Korzun, V., B?rner, A., Worland, A. J., etc. Application of microsatellite markers to distinguish intervarietal chromosome substitution lines of wheat (Triticum aestivum L.)[J]. Euphytica, 1997, 95: 149-155.
    [137] Pestsova, E., Salina, E., B?rner, A., etc. Microsatellites confirm the authenticity of intervarietal chromosome substitution lines of wheat (Triticum aestivum L.)[J]. Theor Appl Genet, 2000, 101: 95-99.
    [138] 刘守斌,唐朝晖,尤明山,等. 簇毛麦1V染色体SSR标记的筛选[J]. 作物学报, 2004, 30(2): 138-142.
    [139] Hernández, P., Laurie, D. A., Martín,A., etc. Utility of barley and wheat simple sequence repeat (SSR) markers for genetic analysis of Hordeum chilense and tritordeum [J]. Theor Appl Genet, 2002, 104(4): 735-739.
    [140] Guadagnuolo, R., Savova-Bianchi, D., Keller-Senften, J., etc. Search for evidence of introgression of wheat (Triticum aestivum L.) traits into sea barley (Hordeum marinum s.str. Huds.) and bearded wheatgrass (Elymus caninus L.) in central and northern Europe, using isozymes, RAPD and microsatellite markers[J]. Theor Appl Genet, 2001,103(2-3): 191-196.
    [141] Dvorak, J. Homoeology between Agropyron elongatatum chromosomes and Triticum aestivum chromosomes[J]. Can J Genet Cytol, 1980, 22: 237-259.
    [142] Driscoll, C. J. Third compendium of wheat alien chromosome lines[A]. Supplement to the 6th Intl. Wheat Genet Symp[C]. 1983, pp: 286-290.
    [143] Dou, Q. W., and Chen, P.D. Cytological and molecular identification of alien chromatin in giant spike wheat germplasm[J]. Acta Bot Sin, 2003, 45: 1109-1115.
    [144] Sears, E. R. Relation of chromosome 2A, 2B and 2Cwith their rye homoeologoue[J]. Proc 3th Intl Wheat Genet Symp[C], 1968, pp: 53-60.
    [145] Barber, H. N., Driscoll, C. J., and Long, P. M., etc. Protein genetics of wheat and homoeologous relationships of chromosomes[J]. Nature, 1968, 218: 450-452.
    [146] Gupta, P. K. Homoeologous relationship between wheat and rye chromosomes. Present status[J]. Genetica, 1971, 42: 199-213.
    [147] Hart, G. E., and Tuleen, N. A. Chromosomal location of eleven Elytrigia elongata ( = A. gropyron elongatum ) isomzye structural genes[J]. Genet Res Camb, 1983, 41: 181-202.
    [148] Tuleen, N. A., and Hart, G. E. Isolation and characterization of wheat-Elytrigia elongate chromosome 3E and 5E addition and substitution lines[J]. Genome, 1988, 30: 519-524.
    [149] Sozinov, A. A., Novosolskaya, A. Y., Lushnikova, A. A., etc. Cytological and biochemical analysis of dread wheat variants with 1B/1R substitutions and translocations in Karyotype[J]. Tsitologiya I Genetika, 1987, 21: 256-261.
    [150] 马渐新, 周荣华. 用基因组原位杂交与 RFLP 标记鉴定小麦一簇毛麦抗白粉病代换系[J]. 遗传学报, 1997, 24(5): 447-452.
    [151] Mago, R., Spielmeyer, W., Lawrence, G. J., etc. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines[J]. Theor Appl Genet, 2002, 104: 1317-1324.
    [152] Miftahudin, S. G. J., and Gustafson, J. P. AFLP markers tightly linked to the aluminum-tolerance gene Alt3 in rye (Secale cereale L.)[J]. Theor Appl Genet, 2002, 104: 626-631.
    [153] Devos, K. M., Millan, T., and Gale, M. D. Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley[J]. Theor Appl Genet, 1993, 85: 784-792.
    [154] Lukaszewski, A. J. Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination[J]. Crop Sci, 2000, 40: 216-225.
    [155] Friebe, B., et al. Nonhomoeo1ogous wheat-rye translations conferring resistance to greenbug[J]. Euphytica, l995, 84: l2l-l25.
    [156] Villareal, R.L., Rajaram, S., Mujeeb-Kazai, A., etc. The effect of chromosome 1B/1R translocation on the yield potential of certain spring wheats (Triticum aestivum L.)[J]. Plant Breed, 1991, 106: 77-81.
    [157] McKendry, A. L., Tague, D. N., Finney, P. L., etc. Effects of 1BL.1RS on milling and baking quality of soft red winter wheat)[J]. Crop Sci, 1996, 36: 848-851.
    [158] Lelley, T., and Bothe, R. The effects of a complete 1B/1R substitution on quantitative traits in wheat[A]. 8th Int Wheat Genet Sym[M], Beijing, China. 1993, pp: 233-235.
    [159] Carver, B. F., and Rayburn, A. L. Comparision of related wheat stocks possessing 1B or 1RS.1BL chromosomes: agronomic performance[J]. Crop Sci, 1994, 34: 1505-1510
    [160] Liu, X. M., Brown-Guedira, G. L., Hatchett, J. H., etc. Genetic characterization and molecular mapping of a Hessian fly-resistance gene transferred from T. turgidum ssp. Dicoccum to common wheat[J]. Theor Appl Genet, 2005, 111: 1308-1315.
    [161] McIntosh, R. A., Hart, G. E., Devos, K. M., etc. Patogenic disease/pest reaction [A]. In: McIntosh RA, Hart GE, Devos KM, Gale MD and Rogers WJ (eds) Proc. 9th Int. Wheat Genetics Symp[M], University of Saskatchewan, Saskatoon, 1998, v 5, pp: 129-139.
    [162] Sears, E. R. Agropyron-wheat transfers induced by homoelogous pairing[A]. In: Sears E.R., Sears L.M.S. (Eds), Proc 4th Int Wheat Genet Symp[M]. Columbia, Missouri, 1973, pp: 191-199.
    [163] Sears, E. R. An induced mutant with homoeologous pairing in common wheat [J]. Can J Genet Cytol, 1977, 19: 585-593.
    [164] McIntosh, R.A., Dyck, P. L., and Green, G. J. Inheritance of leaf rust and stem rust resistance in wheat cultivars Agent and Agatha[J]. Aust J Agric Res, 1977, 28: 37-45.
    [165] 西北植物研究所远缘杂交组. 普通小麦与长穗偃麦草的杂交育种及其遗传分析[J]. 遗传学报,1987, 4: 283-292.
    [166] Friebe, B., Mukai, Y., Dhaliwal, H. S., etc. Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germplasm by C-banding and in situ hybridization[J]. Theor Appl Genet, 1991, 81: 381-389.
    [167] Sharma, H.C., Ohm, H. W., and Perry, K. L. Registration of barley yellow dwarf virus resistant wheat germplasm line P29[J]. Crop Science, 1997, 37: 1032-1033.
    [168] Ohm, H.W., Anderson, J.M., Sharma, H.C., etc. Registration of yellow dwarf virus resistant wheat germplasm Line P961341[J]. Crop Science, 2005, 45: 805-806.
    [169] Zhang, Z. Y., Xu, J. S., Xu, X. J., etc. Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker assisted selection[J]. Theor Appl Genet, 2004, 109: 433-439.
    [170] Khan, I. A. Molecular and agronomic characterization of wheat-Agropyron intermedium recombinant chromosomes[J]. Plant breeding, 2000, 119(1): 22-25.
    [171] 刘艳华, 王洪刚, 等. 部分小麦高分子量谷蛋白亚基组成分析[J]. 西北植物学报, 2002, 22(6): 1306-1311.
    [172] Li, H. J., Conner, R. L., Chen, Q., etc. The transfer and characterization of resistance to common root rot from Thinopyrum ponticum to wheat[J]. genome, 2004, 47: 215-223.
    [173] Yildirim, A., ang Jones, S. S. Evaluation of Dasypyrum villosum Populations for Resistance to Cereal Eyespot and Stripe Rust Pathogens[J]. Plant Disease, 2000, 84(1): 40-45.
    [174] Chen, P. D., and Qi, L. L. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew[J]. Theor Appl Genet, 1995, 91: 1125-1128.
    [175] Zhang, Q. P., Li, Q., Wang, X. E., etc. Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS.4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica, 2005: 145(3): 317-320.
    [176] De Pace, C., Snidaro, D., and Ciaffi, M. Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality[J]. Euphytica, 2001, 117(1): 67-75.
    [177] Chen, Q., Corner, R. L., Laroche, A., etc. Molecular characterization of Haynaldia villosa chromatin in wheat lines carrying resistance to wheat curl mite colonization[J]. Theor Appl Genet, 1996, 93: 697-684.
    [178] 傅杰, 陈漱阳, 张安静, 等. 八倍体小滨麦与普通小麦杂交后代的细胞遗传学研究[J].遗传学报, 1996, 23(1): 24-31.
    [179] 傅杰, 陈漱阳, 张安静. 八倍体小滨麦的形成及细胞遗传学研究[J]. 遗传学报, 1993, 20(4): 317-323.
    [180] 陈佩度, 王裕中. 将大赖草种质转移给普通小麦的研究[J]. 遗传学报, 1995, 22(3): 206-210.
    [181] 王秀娥, 陈佩度, 刘大钩. 同胞质普通小麦—纤毛鹅观草异附加系 D 和端体异附加系 tBL 的选育[J]. 遗传学报, 1997, 24(2): 137-140.
    [182] 刘大钧. 基因组分析与小麦抗病育种[J]. 植物学报, 2002, 44(9): 1096-1104.
    [183] 杨欣明, 李立会. 向普通小麦导入纤毛鹅观草抗黄矮病基因的研究: I. F1 和 BC1 的产生及细胞遗传学研究[J]. 遗传学报, 1999, 26(4): 370-376.
    [184] 张庆勤.小麦与野燕麦远缘杂交研究进展[J]. 山地农业生物学报, 1999, 18(2): 118-119.
    [185] 李立会. 利用生物技术向小麦导入冰草优异基因的研究. 中国农业科学院研究生院博士论文. 1997.
    [186] Johnson, D.A. Seed and seedling relations of crested wheatgrass: A review[A]. In: K.L. Johnson (Ed), Crested wheatgrass: its values, problems and myths[M]; symposium proceedings, Utah State Univ., Utah, Logan, 1986, pp: 65-90.
    [187] White, W. J. Intergeneric crosses between Triticum and Agropyron[J]. Sci Agric, 1940, 21: 198-232.
    [188] Smith, D.C. Intergeneric hybridization of cereals and other grasses[J]. J. Agric Res, 1942, 54:33-47.
    [189] Mujeeb-Kazi, A., Roldan, S., Suh, D.Y. etc. Production and cytogenetic analysis of hybrids between Triticum aestivum and some caespittose Agropyron species[J]. Genome, 1987, 29: 537-553.
    [190] 李立会, 董玉琛, 周荣华, 等. 小麦×冰草属间杂种 F1 的植株再生及其变异[J]. 遗传学报, 1992, 19: 250-258.
    [191] 李立会, 董玉琛, 周荣华, 等. 普通小麦冰草间属间杂种的细胞学即其自交可育性[J]. 遗传学报, 1995, 22: 109-114.
    [192] Chen, Q., Jahier, J., and Cauderon, Y. Production and cytogentic studies of hybrids between Triticum aestivum L. Thell and Agropyron cristatum (L.) Gaertn[J]. C.R. Acad. Sci. Ser. 3, 1989, 308: 411-416.
    [193] Chen, Q., Jahier, J., and Cauderon. Intergeneric hybrids between Triticum aestivum and three crested wheatgrasses: Agropyron mongolicum, A. michnoi, and A. desertorum[J]. Genome, 1990, 33: 663-667.
    [194] Limin, A. E., and Fowler, D. B. An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum[J]. Genome, 1990, 33: 581-584.
    [195] Ahmad, F., and Comeau, A. A new intergeneric hybrid between Triticum aesticum L. and Agropyron fragile (Roth) Candargy: variation in A. fragile for suppression of the wheat Ph-locus activity[J]. Plant Breed, 1991, 106: 275- 283.
    [196] Wang, R. R-C., von Bothmer, R., Dvorak, J., etc. Genome symbols in the Triticeae(Poaceae). In: Proc. 2nd Inter. Triticeae Symp., Wang, R. R-C., Jensen, k. B., and Jaussi (eds.). 1994, pp: 29-34.
    [197] Li, L. H., and Dong, Y. S. Hybridization between Triticum aestivum L. and Agropyron michnoi Roshev. 1. Production and cytogenetic study of F1 hybrids[J]. Theor Appl Genet, 1991, 81: 312-316.
    [198] Li, L. H., and Dong, Y. S. Production and cytogenetic study of intergeneric hybrids between Triticum aestivum L. and Agropyron desertorum[J]. Sci China, 1991, 34: 421-427.
    [199] 李立会, 李秀全, 李培, 等.小麦-冰草异源附加系的创建. I. F3、F2BC1、BC4 和 BC3F1 世代的细胞学[J]. 遗传学报, 1997, 24: 154-159.
    [200] 李立会, 杨欣明, 李秀全, 等. 通过属间杂交向小麦转移冰草优异基因的研究[J]. 中国农业科学, 1998, 31: 1-5.
    [201] 李立会, 杨欣明, 周荣华, 等.小麦-冰草异源附加系的创建. II. 异源染色质的检测与培育途径分析[J]. 遗传学报, 1998, 25: 538-544.
    [202] 李立会.普通小麦与沙生冰草、根茎冰草属间杂种的产生及其细胞遗传学研究[J]. 中国农业科学, 1991, 24: 1-10.
    [203] Martín, A., Cabrera, A., Esteban, E. etc. A fertile amphiploid between diploid wheat (Triticum tauschii) and crested wheatgrass (Agropyron cristatum)[J]. Genome, 1999, 42: 519-524.
    [204] Soliman, M. H., Rubiales, D., and Cabrera, A. A fertile amphiploid between wheat ( Triticum turgidum ) and the × Agroticum amphiploid ( Agropyron cristatum × T. tauschii )[J]. Hereditas, 2001, 135: 183- 186.
    [205] Limin, A. E., and Fowler, D. B. An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum[J]. Genome, 1990, 33: 581-584.
    [206] Limin, A. E., and Folwer, D. B. Cold hardness expression in interspecific hybrids and amphiploids of the Triticeae[J]. Genome, 1988, 30: 361-365.
    [207] Li, L. H., and Dong, Y. S. Somaclonal variation in tissue culture of Triticum aestivum × Agropyron desertorum F1 hybrid[J]. Plant Breed, 1994, 116: 160-166.
    [208] 张正茂, 胡新中, 李国龙, 等. 旱地小麦新品种小冰麦 143 品质特性的研究[J]. 麦类作物学报, 2003, 23(4):36-39.
    [209] Li, L. H., and Dong, Y. C. Progress in Studies of Agropyron Gaertn[J]. Hereditas, 1993, 15(1): 45-48.
    [210] Sharp, P. J., Chao, S., Desai, S., etc. The isolation, characterization and application in the Triticeae of a set of whet RFLP probes identifying each homoeologous chromosome arm[J]. Theor Appl Genet, 1989, 78: 342-348.
    [211] R?der, M. S., Korzun, V., Wendehake, K., etc. A microsatellite map of wheat[J]. Genetics, 1998, 149(4): 2007-2023.
    [212] Pestsova, E., Ganal, M. W., and R?der, M. S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat[J]. Genome. 2000, 43: 689-697.
    [213] Chen, H.M., Li, L.Z., Wei, X.Y., etc. Development, chromosome location and genetic mapping of EST-SSR markers in wheat[J]. Chinese Sci Bull 2005, 50: 2328-2336.
    [214] 吉完全, 王常有, 王秋英, 等. 小麦大穗种质创新研究进展[J]. 麦类作物学报, 2003, 23(4): 126-130.
    [215] Yen, C., Zheng, Y. L., and Yang, J. L. An ideotype for high yield breeding in theory and practice[A]. In: Li, Z. S., Xin, Z. Y. eds. Proc. 8th Inter. Wheat Genet. Symp[C]. Beijing, Chine Agricultural Scientech Press, pp: 1113-1117.
    [216] 郑有良, 兰秀锦, 魏育明, 等. 利用黑麦异源基因选育大穗型超高产小麦新品种的研究[J]. 四川农业大学学报, 1997, 15(2):166-170.
    [217] 林 权, 葛荣之. 来源于 10A 的几个多小穗材料[J]. 作物品种资源, 1996, 58(4): 53-54.
    [218] Zheng, Y. L., Yen, C., and Yang, L. J. Monosomic analysis for total and sterile floret number per spike in the multispikelet line 10-A of common alien chromosome is homoelogous to the group 6 wheat[J]. Wheat Inf. Serv, 1993, 77: 25-28.
    [219] Sears, E.R. The aneuploids of common wheat[A]. Missouri Agri Exp Res Bull[C], 1954, pp: 59.
    [220] Driscoll, C. J. Cytogenetic analysis of two chromosomal male-sterility mutants in hexaploid wheat[J]. Aust J Biol Sci, 1975, 28: 413-416.
    [221] Barlow, K.K., and Driscoll, C. J. Linkage studies involving two chromosomal male-sterility mutants in hexaploid wheat[J]. Genetics, 1981, 98: 791-799.
    [222] Liu, C. J., Atkinson, M. D., Chinoy, C. N., etc. Nonhomoeologous translocation between group 4, 5 and 7 chromosomes with in wheat and rye[J]. Theor Appl Genet, 1992, 83: 305-310.
    [223] Devos, K. M., Gale, M. D., Atkinson, M. D., etc. chromosomal rearrangements in the rye genome relative to that of wheat[J]. Theor Appl Genet, 1993, 85: 673-680.
    [224] 万 平,王苏玲,陈佩度, 等. 利用 RFLP 分子标记确定导入小麦的鹅冠草(R. kamoji)染色体的同源群归属[J]. 遗传学报, 2002, 29(2): 153-160.
    [225] 陈佩度,周波,齐莉莉,等. 用分子原位杂交(GISH)鉴定小麦-簇毛麦双二倍体,附加系,代换系和易位系. 遗传学报, 1995, 22(5): 380-386.
    [226] 盖钧镒,张元明,王建康. 植物数量性状遗传体系[M]. 北京: 科学出版社, 2003.
    [227] Meonisio, D., édison, M., Alberto, A. A. Main stem and tiller contribution to wheat cultivars yield under different irrigation regimes[J]. Brazilian Archives of Biology and Technology, 2001, 44(4): 325-330.
    [228] Patrick, M. C., Richard, D. H., Woodrow, W. P. Tillage and seeding rate effects on wheat Cultivars: II. Yield components[J]. Crop Science, 2003, 43: 210-218.
    [229] Milton, Luiz de Almeida, Luís Sangoi, Aldo Merotto Jr. Tiller emission and dry mass accumulation of wheat cultivars under stress[J]. Scientia Agricola, 2004, 61(3): 266-270.
    [230] 赵昌平, 郭晓维, 张风廷,等. 从不同营养生长积温分蘖间的差异探讨小麦分蘖成穗的生理原因[J].华北农学报, 1996,11(3): 35-40.
    [231] 高尔明, 赵全志, 刘华山, 等. 砂姜黑土小麦分蘖成穗及其调控研究[J]. 土壤通报, 2001, 32(3): 140-142.
    [232] 徐得平,王世之.小麦幼苗阶段内同化物的运输和分配[J]. 作物学报,1987,13(3): 177-185.
    [233] 马兴林, 梁振兴. 冬小麦分蘖衰亡过程中内源激素作用的研究[J]. 作物学报, 1997,23(2): 200-207.
    [234] 梁振兴, 马兴林. 冬小麦分蘖发生过程中内源激素作用的研究[J]. 作物学报, 1998,24(6): 788-792.
    [235] 李建民. 小麦主茎生育速度对分蘖形成及其成穗的影响[J]. 中国农业大学学报. 1997, 2(3): 31-35.
    [236] 米国华, 梁振兴, 梅楠. 冬小麦缩短茎的维管束系统与叶蘖同伸关系[J]. 作物学报, 1992,(6): 401-405.
    [237] 庄巧生. 中国小麦育种中亲本选配的基本经验.吕飞杰,卢良恕,王连铮主编,庄巧生论文集. 北京:中国农业出版社, 1999, 378-414.
    [238] 吴兆苏. 小麦育种学. 北京:农业出版社, 1990,201-209.
    [239] Christopher, D. A., Atsmon, D., Feldman, M. Mode of inheritance and chromosomal allocation of stunting genes in common wheat[J]. Crop Science, 1985, 25: 147-151.
    [240] Atsmon, D., Jacobs, E. A newly bred ‘Gigas’ from of bread wheat (Triticum aestivum L.): morphological features and thermophotoperiodic reponses[J]. Crop Science, 1977, 17: 31-35.
    [241] Atsmon, D., Bush, M. G., Evans, L. T. Stunting in ‘Gigas’ wheat as influenced by temperature and daylength. Australian Journal Plant physiology, 1986, 13: 381-389.
    [242] Richards, R. A. A tiller inhibition gene in wheat and its effect on plant growth. Australian Journal of Agricultural Research, 1988, 39: 749-757.
    [243] Spielmeyer, W., Richards, R. A. Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theoretical and Applied Genetics, 2004, 109: 1303-1310.
    [244] Duggan, B. L., Richards, R. A., van Herwaarden, A. F., etc. Agronomic evaluation of a tiller inhibition gene (tin) in wheat. I. Effect on yield, yield components, and protein content. Australian Journal of Agricultural Research, 2005, 56: 169-178.
    [245] Duggan, B. L., Richards, R. A., van Herwaarden, A. F., etc. Agronomic evaluation of a tiller inhibition gene (tin) in wheat. II. Growth and partitioning of assimilate. Australian Journal of Agricultural Research, 2005, 56: 179-186.
    [246] Daryl, J. S., Peter, I., Keith, E. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700