小麦冰草杂交衍生系中优异基因的染色体定位与分子标记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦野生近缘植物是小麦遗传改良的巨大基因库,如何从中发掘、转移并利用生产急需的抗逆、抗病和高产基因,既有重大的经济价值,又有长远的理论意义。冰草属(Agropyron Gaertn.,P Genome)植物具有普通小麦所没有的多种抗逆、抗病和优良产量结构基因。本研究室首次突破小麦-冰草远缘杂交,并进行了多年自交、回交,应用细胞学、原位杂交和SSR技术,获得了小麦-冰草异源二体附加系和部分易位系。本研究的任务是在此基础上,对冰草P染色体上携带的有益基因进行较系统的鉴定,明确其在小麦背景下的表达及其染色体定位;同时,通过构建抗白粉病小麦-冰草易位系(无蜡)与感病小麦品种(温麦6号)杂交F1代的DH群体,用SSR技术对来自冰草的抗白粉病基因进行遗传定位和分子标记。其主要结果如下:
     1.采用小麦白粉病菌4个优势生理小种,对整套小麦-冰草二体附加系的苗期和成株期抗性鉴定表明,冰草的2P、7P染色体具有抗白粉病基因。此外,或许由于P基因组内染色体互换的结果,个别的3P和6P附加株系亦存在抗性基因,这些抗病基因在普通小麦基因组背景下能够充分表达。
     2.用条锈病菌混合生理小种进行的田间诱发鉴定和生长箱控温鉴定表明,冰草6P染色体上具有抗条锈病基因,在小麦背景下表现中等抗性;用叶锈病菌混合生理小种在生长箱进行的鉴定表明,冰草2P、3P、7P染色体上具有对叶锈病免疫的基因,因此,冰草可作为普通小麦抗叶锈病的重要基因源。
     3.利用反复干旱法对整套小麦-冰草二体附加系抗旱性的鉴定表明,冰草的抗旱性可能涉及较多的基因位点,单个附加系的抗旱性均弱于冰草,抗旱基因主要分布在2P、4P、6P和7P染色体上;对小麦-冰草二体附加系抗寒性的鉴定表明,多基因控制的抗寒基因主要分布于冰草的4P和6P染色体上。
     4.对来源于冰草的重要农艺性状基因鉴定结果表明,以苗期植株匍匐或半匍匐、叶色深绿为标志的冬性或春化作用相关基因和叶片边缘卷曲或微卷的标记基因存在于2P、3P和5P染色体上;冰草的强分蘖基因位于2P和6P染色体上;冰草的以穗下颈长(占到其株高的1/2~2/3),茎秆基部节间短,矮秆为特征的抗倒伏基因位于5P染色体上,并且与产量关系密切的多小穗数、多小花数、大穗基因亦存在于5P染色体;同时,5P也携有晚熟基因。此外,冰草的穗部无芒特征,主要与3P和6P染色体有关。基的电泳分析表明,在冰草Z559种子中未发现高分子谷蛋白亚基基因表达,而普通小麦亲本Fukuho具有2.2+12(D基因组)、2*(A基因组)和7+8(B基因组)5个HMWG亚基。二体附加系的谱带显示,冰草P染色体的存在能够不同程度抑制小麦D基因组编码的2.2和12亚基的表达。例如,只有一个2P附加株系显示了2.2+12亚基,3个6P附加株系仅显示了12亚基,其余附加系中2.2和12亚基完全不能表达。
     6.对冰草及其小麦-冰草二体附加系种子中醇溶蛋白(Gli)亚基的电泳分析结果:冰草Z559种子中具有丰富的ω区和α、β区亚基,这些亚基与两个强筋小麦Marquis和McGuire有相似的带型。Z559包含了此二品种几乎所有的ω-亚基,以及α、β区的两个特异性亚基,冰草携带的ω-亚基、α和β亚基基因有可能作为小麦品质改良的基因源。但是16个小麦-冰草二体附加系中ω-亚基数少,并且与普通小麦亲本Fukuho相同,无冰草的ω-亚基特征。由于小麦醇溶蛋白的ω-亚基受第一同源群短臂上的基因位点控制,本研究中仅有第一同源群SSR标记的附加系Ⅱ-5-1中未见冰草的ω-亚基,所以说明有两种可能:尚未获得1P附加系或者冰草的ω-亚基基因在小麦背景下不能够表达。小麦的α、β醇溶蛋白基因位于第六同源群短臂,所有4个6P附加系在α和β区均有两条高强度的特异带,与冰草和两个强筋小麦相同,它们可能与好的品质有关,同时能够作为6P染色体的生化标记。此外在两个小麦-冰草衍生系无蜡和L012中发现ω和γ区亚基发生了变化。
     7.小麦-冰草衍生系无蜡从Fukuho与冰草Z559杂交BC_3自交后代系选而来,对自粉病免疫。对其抗病基因推导结果,除了对E21表现中抗,对其余白粉病生理小种均为免疫。用集群分离法(BSA)对无蜡与感病亲本温麦6号杂交DH群体抗白粉病性的分子标记结果表明,DH群体中抗病与感病株的比例为1:1,抗病基因为单显性基因;获得抗病基因的3个SSR标记,将其定位在3D染色体的长臂上。抗病基因位于Xgwm341和Xgwm383之间,分别距离29.4 cM和26.6 cM,而另一个标记Xgwm645位于Xgwm341外侧26.4 cM处。根据以上结果,这一抗白粉病基因来源于冰草,已定位于普通小麦冰草衍生系的3D染色体长臂,目前在3DL上尚未有定位的抗白粉病基因,因此认为该基因为新的抗白粉病基因,暂命名为Pm-Ac。
     文章对来自冰草的这些重要的抗逆、抗病和丰产结构基因在小麦遗传改良中的可能应用进行了讨论,提出了建议和设想。
The wild relatives of common wheat (Triticum aestivum L.) are a potential gene reservoir for wheat improvement. It's very important economically and theoritically understanding that how to earthout, transfer and utilize some of desirable genes such as genes for biostress and abiostress resistance from the wild relatives of wheat. Agropyron cristatum Gaertn (P Genome) has been found to possess many sort of desirable traits distinguished by their high level of drought and cold tolerance, disease resistance and better plant-shape benefit to high yield, that are potentially valuable for wheat improvement.
     Based on the breakthrough of hybridization between common wheat (Fukuho) to A. cristatum (Z559) and following the F1 plant selfing and backcross to Fukuho, Many wheat-wheatgrass alien disomic addition lines and derivatives were produced by cytogenetical and Fluorescence In Situ Hybridization (FISH) identified methods. In this experiment, there is a systematical design to understand all probably desirable genes on each chromosome of P genome under typical test conditions with a full set of wheat-A. cristatum alien disomic addition lines. Meanwhile, an excellent powdery mildew resistance gene originated in A. cristatum (Z559) was mapped to wheat homologous group with SSR markers throughout construction and molecular marker analysis of a DH population of F1 hybrid between Wula, an A. cristatum derivative holding resistance gene, to Wenmai No. 6, a common wheat variety susceptible to powdery mildew. A new powdery mildew resistance gene was named combining data for response pattern and genetic location. The main successful results were shown as followings:With four Erysiphe graminis isolates, E09, E17, E21 and E26 presently each with low, moderate and high virulence to cropping wheat cultivars in China,This full et whest-A.cristatum disomic addition lines were used to artifical inoculation at adult-plant stage, and seedling stage by leaf segment identification method to evaluate their resistance response. It's shown that the powdery mildew resistance genes locate at 2P and 7P chromosomes, and maybe appear in 3P or 6P chromosome. All these resistant genes could express fine under common wheat genome background.
     Yellow rust and leaf rust resistance identification were engaged in low-temperature growth chamber and field with mixture spore inoculated of 4 yellow rust isolates and 8 leaf rust isolates, respectively. The results indicated the gene resistant to yellow rust was located on 6P chromosome, with moderate degree resistance in wheat background. But genes for leaf rust resistance with immunity response were pointed on 3P, 7P and 2P chromosome. These genes could sufficiently express in wheat background, will being important gene reservoir in wheat breeding for leaf rust resistance.
     The drought resistance identification of the full et of disomic addition lines with the method of "repeated drought periods" indicated that genes for drought resistance mainly scatter in the 2P, 4P, and 7P chromosomes. The resistant strength of each disomic addition line was lower than the A. cristatum parent. The genes for cold tolerance were located on 4P and 6P chromosomes. This cold tolerance response was weaker than the parent A. cristatum.
     Identification of genes for some of the important agronomic traits originated in A.cristatum shown that: genes related to vernalization marked with creeping stem, curl or semi-curl and dark green leaf in seedling stage were located on 2P, 3P and 5P chromosomes; genes controlling tiller number were being 2P and 6P, and genes for potential high yield characterized by many spikelet number, many floscular number, longer peduncle length, and shorter plant height were located on 5P chromosomes but with an undesirable late maturity gene. Additionally, gene(s) for awnlessness appeared on 3P, 6P chromosomes.
     By electrophoresis gel analysis of HMW glutenin subunits in seed of a set of wheat-A.cristatum addition lines and A.cristatum, it's shown that there are genes in A. cristatum (Z559) inhibiting the expression of HMW glutenin subunits under wheat background. The HMW glutenin genes of A. cristatum (Z559) no express, the female Fukuho possesses 5 subunits: 2.2+12 (encoded by D genome), 2* (A genome) and 7+8 (B genome), but the being of P chromosome had alternative inhibition effect to expression of 2.2 and 12 subunits encoded by D genome in different wheat-A.cristatum alien addition lines.
     The expression pattern of genes for gliadin subunits of A. cristatum < L. > Gaertn (Z559) was identified. There were richω-gliadin subunits in Z559 but disappeared all these subunits in the 16 wheat-A. cristatum alien addition lines including a addition line with 1P marker. It's already clear thatω-gliadin is controlled by gene family of the first homologous group, so, perhaps there are two kind of situations: default 1P addition line or disable expression ofω-gliadin genes under wheat background. Two specificα-andβ-gliadin subunits were taken out in four 6P addition lines and Z559 resemble to two strong gluten wheat varieties, Marquis and McGuire. It's indicated that theseαandβ-gliadin genes could be not only resources of quality improvement for wheat but 锘縜lso biochemical markers of 6P chromosome. Otherwises, changes of蠅and纬-gliadin subunits was discovered in wheat-A. cristatum derivatives Wula and Lo12.鈽匒 new powdery mildew gene originated in A. cristatum was named based on data of molecular mapping and response pattern analysis. Wula, a wheat-A.cristatum derivative, selected from BC_2 of hybrid Fukuho脳Z559 by pedigree possesses gene immune to powdery mildew. Response pattern analysis indicated that this gene immune to almost all the powdery mildew isolates except to E21 with middle resistance. By establishing DH population of Wula脳Wenmai No.6(susceptible), genetic location and molecular mapping of the powdery mildw gene were carried out. The response pattern of DH families showed 1:1 ratio of resistance to susceptible individuals indicates that the resistance controlled by a single dominant gene. Bulked segregant analysis was used to identify microsatellite markers linked to the gene. Three SSR markers Xgwm341, Xgwm383 and Xgwm645 were mapped in coupling phase to the gene locus, thus, this resistance gene was located on long arm of 3D chromosome. The gene was mapped between Xgwm341 to Xgwm383 with 29.4cM and 26.6cM respectively. And Xgwm645 was mapped 26.4 cM out of Xgwm341.Because there hasn't been powdery mildew gene was located on 3DL until now, so, this is a new powdery mildew resistance gene originated in A. cristatum. It is designated Pm31 tentatively. The paper discussed the propably utilization of these important gene resources, given the suggestions and the perspects in the future.
引文
董玉琛,郑殿升编著.2000.中国小麦遗传资源.中国农业出版社
    柴守城,刘大钧,陈佩度,齐莉莉,李万隆.1997.用物种转化DNA重复序列作分子标记检测导入小麦的大赖草染色质.作物学报23(6):641-645
    陈佩度等.1996.利用亲缘植物创造抗赤霉病小麦新种质.中国小麦育种研究进展 北京,中国农业出版社,PP:304-310
    陈勤等.1988.第一个小麦与新麦草属间杂种.科学通报 1:64-67
    陈尚安,董玉琛,周荣华,王剑雄.1990.小麦野生近缘植物抗病性鉴定.中国农业科学23:54-59
    陈漱阳等.1991.普通小麦与华山新麦草的杂交.遗传学报 18(6):508-512
    郭本兆.1987.中国植物志 第九卷,第三分册,K科学出版社,PP:7-119
    何孟元等.1988.两套小冰麦异附加系的建立.中国科学(B辑)11:1161-1168
    何孟元等.1996.向普通小麦导入中间偃麦草优良品质基因的研究.中国小麦育种研究进展北京,中国农业出版社,PP:326-330
    齐莉莉等.1995.小麦白粉病新抗源—基因Pm21.作物学报 21(3):257-262
    李立会、董玉琛.1990.普通小麦与沙生冰草属间杂种的产生及细胞遗传学研究.中国科学B辑(5):492—496
    李立会,董玉琛,周荣华,李秀全,李培.1995.普通小麦冰草间杂种的细胞遗传学及其自交可育性.遗传学报22:109—114
    李立会,杨欣明.1995.在组织培养中属间杂种的体细胞变异研究.中国农业科学28(6):9-19
    李立会.1997.利用生物技术向小麦导入冰草优异基因的研究.中国农业科学院博士学位论文
    李立会,李秀全,李培,董玉琛,赵桂慎.1997.小麦冰草异源附加系的创建.遗传学报24:154—159
    李立会,杨欣明,李秀全,董玉琛.1998.通过属间杂交向小麦转移冰草优异基因的研究.中国农业科学31(6):1~5
    李立会,杨欣明,周荣华,李秀全,董玉琛,赵华.1998.小麦冰草异源附加系的创建.Ⅱ异源染色质的检测与培育途径分析.遗传学报25(6):538~544
    李振声,容珊,陈漱阳,钟冠昌,穆素梅.1985.小麦远缘杂交,科学出版社
    刘大钧.1994.向小麦转移抗病性的回顾与展望.南京农业大学学报 17(3):1-7
    刘建文,董玉琛.1995.普通小麦×东方旱麦草属间杂种的产生及无性系变异.遗传学报 22(2):116-121
    孙善澄.1987.小麦与偃麦草远缘杂交的研究.华北农学报 2(7):7-12
    周光宇.1993.植物分子育种的兴起与展望.农业分子育种研究进展,北京,中国农业科技出版社 1~5
    张茂银,刘庆昌,王子霞,赵明安,缪军,海热古丽,杨克锐,杨松杰,顾爱星.2000.用花粉管通道法将新疆大赖草DNA导入普通小麦的研究.农业生物技术学报8(2):165-1
    周光宇,龚蓁蓁,王自芬.1979.远缘杂交的分子基础-DNA片段杂交假设的一个论证.遗传学报6(4):405~412
    翁坚,沈尉芳,王自芬.1994.外源DNA导入棉花的分子验证.生物化学与生物物理学报 16(3):25~27
    曾君祉,王东江,吴有强等.1993.用花粉管途径获得小麦转基因植株.中国科学(B辑)23(3):256~261
    田苗苗,吴茂森,陈彩层等.1999.大麦黄矮病毒缺失复制酶基因植物表达载体的构建及转基因小麦的获得.中国农业科学32(5):49~54
    Lupton.F.G.H.主编,北京农业大学小麦遗传育种研究室译.1988.小麦育种的理论基础 pp:192-226
    Badaeva, E. D., Amosova, A. V., Muravenko, O. V., Samatadze, T. E., Chikida, N. N., Zelenin, A. V., Friebe, B., and B. S. Gill. 2002. Genome differentiation in Aegilops: 3. Evolution of the D-genome cluster. Plant Systematics and Evolution 231 (1-4): 163-190
    Barakat, A., Matassi, G., and G. Bernardi. 1998. Distribution of genes in the genome of Arabidopsis thaliana and its implications for the genome organization of plants. Genetics 17:10044-10049
    Barthes, L., and A. Pdcroch. 2001. Interspecific chromosomal rearrangements in monosomic addition lines of Allium. Genome 44 (5): 929-935
    Benmoussa M, Vezina LP, Page M, Yelle S & S. Laberge. 2000. Genetic polymorphism in low-molecular-weight glutenin genes from Triticum aestivum, variety Chinese Spring. Theor Appl. Genet 100:789-793
    Brubaker, C. L., Paterson, A. H., and J.F. Wendel. I999. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42 (2): 184-203
    Bustos A. D., Rubio P, Jouve N. 2000. Molecular characterization of the inactive allele of the gene Glu-Al and the development of asset of AS-PCR markers for HMW glutenins of wheat, Theor Appl Genet 100:1085~1094
    Cao, M., and D. A. Sleper. 2001. Use of genome-specific repetitive DNA sequences to monitor chromatin introgression from Festuca mairei into Lolium perenne. Theor. Appl. Genet 103 (2/3): 248-253
    Cenci, A., D'Ovidio, R., Tanzarella, O. A., Ceoloni, C., and Porceddu, E. 1999. Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl. Genet 98:448-454
    Ceoloni, C. 1988. Transfer of mildew resistance from Triticum longissimum into wheat by ph1 induced homologous recombination. In: Miller, T. E., and Koeber (eds.) Proc. 7th Int. Wheat Genet. Symp Combridge press, UK, pp: 221-226
    Ceoloni, C., Signore, G. D., Ercoli, L., and P. Donini. 1992. Locating the alien chromatin segment in common wheat-Aegilops longissima mildew resistant transfers. Hereditas 116: 239-245
    Chen, Q., Jahier, J., and Y. Cauderon. 1989. Production and cytogenetic studies of hybrids between Tritium aestivum L. Thell and Agropyron cristatum (L.) Gaertn. C. R. Acad. Sci. Paris Ⅲ308:425-430
    Chen, Q., Jahier, J., and Y. Cauderon. 1990. Intergeneric hybrids between Tritium aestivum and three crested wheatgrasses: Agropyron mongolicum, A. michnoi, and A desertorum. Genome 33:663-667
    Chen, Q., Lu, Y. L., Jahier, J., and M. Bernard. 1994. Identification of wheat-Agropyron cristatum monosomic addition lines by RFLP analysis using a set of assigned wheat DNA probes. Theor. Appl. Genet 89:70-75
    Chen, Q., Friebe, B., Conner, R. L., Laroche, A., Thomas, J. B., and B. S. Gill. 1998. Molecular cytogenetic characterization of Thinopymm intermedium-derived wheat germplasm specifying resistance to wheat streak mosaic virus. Theor. Appl. Genet 96 (1): 1-7
    Chen, Z. J., Phillips, R.L., and H. W. Rines. 1998. Maize DNA enrichment by representational difference analysis in a maize chromosome addition line of oat. Theor. Appl. Genet 97 (3): 337-344
    Copenhaver, G. P., Nickel, K., Kuromori, T., Benito, M. I., Kaul, S. 1999. Genetic Definition and Sequence Analysis of Arabidopsis Centromeres. Science 286 (5449): 2468-2474
    Crasta, O. R., Francki, M.G., Bucholtz, D.B., Sharma, H.C., Zhang, J., Wang, R. C., Ohm, H.W., and J.M. Anderson. 2000. Identification and characterization of wheat-wheatgrass translocation lines and localization of barley yellow dwarf vires resistance. Genome 43(4): 698-706
    Devos K M and M D Gale. 2000. Genome relationship: the gross model in current research. The Plant Cell 12: 637-646
    Dewey, D. R.1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae.In: J. P. Gustafeson (ed.). Gene Manipulation in Plant Improvement.Plenum Press, New York, pp:209-279
    Dodeweerd, A. M., Hall, C. R., Bent, E. G., Johnson, S.J., Bevan, M. W., and I. Bancroft. 1999. Identification and analysis of homoeologous segments of the genomes of rice and Arabidopsis thaliana. Genome 42(5): 887-892
    Dong, R, McGrath, J. M., Helgeson, J. R, and J. Jiang. 2001. The genetic identity of alien chromosomes in potato breeding lines revealed by sequential GISH and FISH analyses using chromosome-specific cytogenetic DNA markers. Genome 44(4): 729-734
    
    Dong, Y. S., Zhou R. H., Xu, S. J., Li, L. H., Cauderon, Y, and Wang, R. R. C. 1992.
    Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas 116: 175-178
    Donini, R, Koebner, R. M. D. and Ceoloni, C. 1995. Cytogenetic and molecular mapping of the wheat-Aegilops longissima chromatin breakpoints in powdery mildew-resistant introgression lines. Theor. Appl Genet 91:738-743
    DuPont, F. M, Vensel, W. H, Chan, R., and D. D., Kasarda. 2000. Characterization of the 1B-type ω-gliadins from Triticum aestivum cultivar Butte. Cereal Chemistry 11: 607-614
    Dvorak, J., A.J. Lukaszewski. 2000. Centromere association is an unlikely mechanism by which the wheat Ph1 locus regulates metaphase I chromosome pairing between homoeologous chromosomes. Chromosoma 109 (6): 410-414
    Echenique, V., Stamova, B., Wolters, P., Lazo, G., Carollo, V. L., and J. Dubcovsky. 2001. Frequencies of Ty1-copia and Ty3-gypsy retroelements within the Triticeae EST databases. Theor. Appl. Genet 103(4): 286-291
    Faris, J. D., Haena, K. M., and B.S. Gill. 2000. Saturation Mapping of a Gene-Rich Recombination Hot Spot Region in Wheat. Genetics 154: 823-835
    Fedak, G.1999. Molecular aids for integration of alien chromatin through wide crosses, Genome 42 (4): 584-591
    Feldman, M., Liu, B., Segal, G., Abbo, S., Levy, A.A., and J M Vega. 1997. Rapid
    elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147: 1381-1387
    Francki, M. G.2001. Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.), Genome 44 (2): 266-274
    Francki, M. G., Berzonsky, W. A., Ohm, H. W., and J. M. Anderson. 2002. Physical location of a HSP70 gene homologue on the centromere of chromosome 1B of wheat (Triticum aestivum L.). Theor. Appl. Genet 104 (2-3): 184-191
    Friebe, B., and B. S. Gill. 2000. Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor. Appl. Genet 101(1~2): 51-58
    Friebe, B., Jiang, J., Raupp, W. J., McIntosh, R. A., and B. S.Gill. 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica 91:59-87
    Friebe, B., Qi, L. L., Nasuda, S., Zhang, P., Tuleen, N. A., and B. S. Gill. 2000. Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor Appl. Genet 101 (1/2): 51-58
    Gale, M. D., and K. M. Devos. 1998. Plant comparative genetics after 10 years, Science 282:656-659
    Garriga-Caldere F., Huigen, D.J., Jacobsen, E. and M.S. Ramanna. 1999. Prospects for introgressing tomato chromosomes into the potato genome: An assessment through GISH analysis. Genome 42 (2): 282-288
    Garriga-Caldere, F., Huigen, D. J., Jacobsen, E., and M.S. Ramanna. 1999. Prospects for introgressing tomato chromosomes into the potato genome: An assessment through GISH analysis. Genome 42 (2): 282-288
    Gustafson, J. P, and E. R. Sear. 1993. An effective wheat gene manipulation system: problems and uses. Plant Breeding Reviews 11:226~250
    Haider Ali, S. N., Ramanna, M. S., Jacobsen, E., and R.G.F. Visser. 2001. Establishment of a complete series of a monosomic tomato chromosome addition lines in the cultivated potato using RFLP and GISH analyses. Theor. Appl. Genet 103 (5): 687-695
    Hartl, L., Molder, V., Zeller, F. J., Hsam, S. L.K., and G. Schweizer. 1999. Identification of AFLP markers closely linked to the powdery mildew resistance genes Pmlc and Pm4a in common wheat (Triticum aestivum L.). Genome 42 (2): 322-329
    Huang, X. Q., Hsam, S. L. K., and F.J. Zeller. 1997. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. Em. Thell.) 4. Gene Pm24 in Chinese Landrace Chiyacao. Theor. Appl. Genet 95: 950-953
    Huang, X., Zeller, F. J., Hsam, S. L.K., Wenzel, G., and V. Mohler. 2000. Chromosomal location of AFLP markers in common wheat utilizing nulli-tetrasomic stocks. Genome 43(2): 298-305
    Jang, C. S., Kim, D. S., Bu, S. Y., Kim, J. B., Lee, S. S., Kim, J. Y., Johnson, J. W., and Y. W. Seo. 2002. Isolation and characterization of lipid transfer protein (LTP) genes from a wheat-rye translocation line. Plant Cell Rep 20: 961-966
    Jarve, K., Peusha, H. O., Tsymbalova, J., Tamm, S., Devos. K. M, and T. M. Enno. 2000. Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome 43: 377-381
    
    Jauhar, P. P. and R. N. Chibbar. 1999. Chromosome-mediated and direct gene transfers in wheat. Genome 42(4): 570-583
    Ji, Y, Donato, M.D., Crane, C.F., and W.A. Raska. 1999. New ribosomal RNA gene locations in Gossypium hirsutum mapped by meiotic FISH. Chromosoma 108 (3): 200-207
    Jia, J., Devos, K. M, Chao, S., Miller, T. E., Reader, S. M., and Gale, M. D. 1996. RFLP- based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor. Appl. Genet 92: 559-565
    Joyeux, A., Fortin, M.G., Mayerhofer, R., and A.G. Good. 1999. Genetic mapping of plant disease resistance gene homologues using a minimal Brassica napus L. population. Genome 42(4): 735-743
    Ko, J. M., Seo, B. B., Suh, D. Y, Do, G. S., Park, D. S., and Y H. Kwack. 2002. Production of a new wheat line possessing the 1BL.1RS wheat-rye translocation derived from Korean rye cultivar Paldanghomil. Theor. Appl Genet 104 (2-3): 171-176
    Kunzel, G., Gecheff, K. I., and I. Schubert. 2001. Different chromosomal distribution patterns of radiation-induced interchange breakpoints in barley: First post-treatment mitosis versus viable offspring. Genome 44(1): 128-132
    Kynast, R.G., Riera-Lizarazu, O., Isabel Vales, Okagaki, M. and R. J. Maquieira. 2001. A Complete Set of Maize Individual Chromosome Additions to the Oat Genome. Plant Physiol 125:1216-1227
    Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E., and L. Newburg. 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181
    Langdona, T., Seagoa, C., Mendeb, M., Leggettb, M., Thomasb, H., and J. W. Forstera. 2000. Retrotransposon Evolution in Diverse Plant Genomes. Genetics 156:313-325
    Langridge, P. R., Guo, Q., Francki, M., and U. Langridge. 1998. Isolation of lambda and YAC clones from def'med regions of the rye genome. Molecular & General Genetics 257 (5): 568-575
    Li, Hong-Jie, Guo, Bei-Hai, Li, Yi-Wen, Du, Li-Qun, Jia, Xu, and Chu, Chih-Ching. 2000. Molecular cytogenetic analysis of intergeneric chromosomal translocations between wheat (Triticum aestivum L.) and Dasypyrum villosum arising from tissue culture. Genome 43(5): 756-762
    Li, L. H. and Y. S. Dong. 1991. Hybridization between Triticum aestivum L. and Agropyron michnoi Roshev. Theor. Appl. Genet 81:312-316
    Li, L. H. and Y. S. Dong. 1993. Hybridization between Triticum aestivum L. and Agropyron michnoi Roshev. 2. Somaclonal variation and cytogenetics in R_2 and R_2 progenies. In: Proc. 8th Int. Wheat Genet. Syrup pp: 407—411
    Li, L. H., Dong, Y. S., Zhou, R. H., Li, X. Q., and P. Li. 1995. Cytogenetics and self-fertility of intergeneric hybrids between Triticum aestivum L. and Agropyron cristatum (L.) Gaertn, Chinese J Genet 22:199-204
    Li, L.H., Yang, X. M., Li, X. Q., and Dong, Y. C. 1998. Introduction of desirable genes from Agropyron cristatum into common wheat by intergeneric hybridization, Scientia Agricultural Sinica 31 (6): 1-5
    Li. L. H. and Y. S. Dong. 1993. A self-fertile trigeneric hybrid, Triticum aestivum×Agropyron michnoi×Secale cereale, Theor Appl Genet 87: 360~368
    Limin, A. E. and D. B. Fowler. 1988. Cold hardiness expression in interspecific hybrids and amphiploids of the Triticeae. Genome 30:361-365
    Limin, A. E. and D. B. Fowler. 1990. An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome 33:581-584
    Linares, C., Serna, A., and A. Fominaya. 1999. Chromosomal organization of a sequence related to LTR-like elements of Tyl-copia retrotransposons in Avena species. Genome 42 (4): 706-713
    Linares, C, Serna, A., and A. Fominaya. 1999. Chromosomal organization of a sequence related to LTR-like elements of Tyl-copia retrotransposons in Avena species. Genome 42(4): 706-713
    Linc, G., Friebe, B. R., Kynast, R. G., Marta Molnar-Lang, Bela Kszegi, Sutka, J., and B. S. Gill. 1999. Molecular cytogenetic analysis of Aegilops cylindrica Host. Genome 42(3): 497-503
    Liu, B., and J. F. Wendel. 2000. Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome 43(5): 874-880
    Liu, B., Vega, J.M., and M. Feldman, 1998. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome 41 (4): 535-542
    Liu, B., Vega, J.M., and M. Feldman. 1998a. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome 41(4): 535-542
    Liu, B., Vega, J.M., Segal, G., Abbo, S., Rodova, M., and M. Feldman. 1998b. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome 41(2): 272-277
    Love, A. 1984. Conspectus of the Triticeae.Feddes Report 95:425-521
    Ma, J. F., Taketa, S., and Z. M. Yang. 2000. Aluminum Tolerance Genes on the Short Arm of Chromosome 3R Linked to Organic Acid Release in Triticale. Plant Physiol 122: 687-694
    McIntosh, R. A., Hart, G. E., Devos, K. M., Gale, M. D., and Rogers W. J. 1998. Catalogue of gene symbols for wheat, Proceedings of the 9~(th) International Wheat Genetics Symposium (Volume 5) Saskatchewan, Canada
    Metakovsky E.V., and A.Y.Novoselskaya. 1991. Gliadin allele identification in common wheat I . Methodological aspects of gliadin patterns by one-dimensional polyacrylamide gel electrophoresis, J. Genet. & breed 45: 317-324
    Metakovsky EV. 1991. Gliadin allele identification in common wheat II. Catalogue of gliadin alleles in common wheat. J. Genet. & breed 45:325-344
    Nasuda. S., Friebe, B., Busch, W., Kynast, R. G., and B. S. Gill. 1998. Structural rearrangement in chromosome 2M of Aegilops comosa has prevented the utilization of the Compair and related wheat-Ae. comosa translocations in wheat improvement. Theor. Appl. Genet 96 (6/7): 780-785
    Obukhova LV, Maystrenko OI, Generalova GV, Ermakova MF & Popova RK. 1997. Composition of high-molecular-weight glutenin subunits in common wheat substitution lines created from cultivars with contrasting bread-making qualities. Russian Journal of Genetics 33: 1005-1009
    O'Mara, J. G. 1940. Cytogenetic studies on triticeae.I. A method for determining the sffects of individual Secale chromosomes on triticum. Genetics 25:401-408
    Paterson, A.H. 2000. Comparative genomics of plant chromosomes, The Plant Cell 12:1523-1539
    Payne PI, Corfield, K.G. & Blackman JA. 1979. Identification of a high molecular weight subunit of glutenin whose presence correlates with bread-making quality in wheat of related pedigree. Theor Appl. Genet 55:153-159
    Payne PI, Holt LM, Worland AJ, Law CN. 1982. Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin. Theor Appl Genet 63: 129~138
    Payne PI, Nightingale MA, Krattiger AF & Holt LM. 1987. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. of the Science of Food and Agriculture 40:51-65
    Payne PI, Seekings JA, Worland AJ, Jarvis MG & Holt LM. 1987. Allelic variation of gluten subunits and gliadins and its effect on bread making quality in wheat: Analysis of F_5 progeny from Chinese Spring x Chinese Spring (Hope 1A). Journal of Cereal Science 6:103-118.
    Peil, A., Korzun, V., Schubert, V., Schumann, E., Weber, W. E., and M. S. Roder. 1998. The application of wheat microsatellites to identify disomic Triticum aestivum-Aegilops markgrafii addition lines. Theor. Appl. Genet 96 (1): 138-146
    Peil, A., Schubert, V., Schumann, E., and W. E. Weber. 1997. RAPDs as molecular markers for the detection of Aegilops markgrafii chromatin in addition and euploid introgression lines of hexaploid wheat. Theor. Appl. Genet 94 (6/7): 934-940
    Plaschke, J., Ganal, M. W., and Roder, M. S. 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl. Genet 91:1001-1007
    Portyanko, V. A., Hoffman, D.L., Lee, M., and J.B. Holland. 2001. A linkage map of hexaploid oat based on grass anchor DNA clones and its relationship to other oat maps. Genome 44(2): 249-265
    Qi, L. L., Chen, P. D., Liu, D. J., Zhou, B., Zhang, S. Z. 1995. The gene Pm21—A new source for resistance to wheat powdery mildew, ACTA AGRONOMICA SINICA 21(3): 257-262
    Qi, L. L., Wang, S. L., Chen, P. D., Liu, D. J., and B. S. Gill. 1998. Identification and physical mapping of three Haynaldia villosa chromosome-6V deletion lines. Theor. Appl. Genet 91 (7): 1042-1046
    Qi, L. L., Wang, S. L., Chen, P. D., Liu, D. J., Friebe, B., and B. S. Gill. 1997. Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat. Theor. Appl. Genet 95 (7): 1084-1091
    Qi, L.L., Friebe, B., and B.S. Gill. 2000. Recombination in an isochromosome preferentially occurs between cis isochromatids. Chromosoma 109 (6): 390-396
    Robertsona, M., Swainc, S. M., Chandlera, P. M., and N. E. Olszewskic. 1998. Identification of a negative regulator of gibberellin action, HvSPY, in Barley. Plant Cell 10: 995-1008
    ROder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P., and Ganal, M. W. 1998. A microsatellite map of wheat, Genetics 149: 2007-2023
    Rong, J. K., Millet, E., Manisterski, J., and M. Feldman. 2000. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica115 (2): 121-126
    Sanchez-Moran, E., Benavente, E. and J. Orellana. 2001. Analysis of karyotypic stability of homoeologous-pairing (ph) mutants in allopolyploid wheats. Chromosoma 110 (5): 371-377
    Sandhu, D., Champoux, J. A., Bondareva, S. N., and K. S. Gill. 2001. Identification and Physical Localization of Useful Genes and Markers to a Major Gene-Rich Region on Wheat Group 1S Chromosomes. Genetics 157: 1735-1747
    Sandhu, D., and K. S. Gill. 2002. Gene-Containing Regions of Wheat and the Other Grass Genomes. Plant Physiol 128: 803-811
    SanMiguel, P., Tikhonov, A., Jin, Y. K., Motchoulskaia, N., Zakharov. 1996. Nested Retrotransposons in the Intergenic Regions of the Maize Genome. Science 274 (5288): 765-768
    Scheets, K, Rafalski, J. A., Hedgcoth C, and D.G. Soil. 1985. Heptapeptide repeat structure of a wheat γ-gliadin. Plant Science Letters 37: 221-225
    Schwarzacher, Trude. 1997. Three stages of meiotic homologous chromosome pairing in wheat: cognition, alignment and synapsis. Sexual Plant Reproduction 10 (6): 324-331
    Serizawa, N., Nasuda, S., Shi, F., and T.R. Endo. 2001. Deletion-based physical mapping of barley chromosome 7H. Theor. Appl. Genet 103 (6/7): 827-834
    Sharma, H.C. and B.S. Gill. 1983. Current status of wide hybridization in wheat. Euphytica 82:43-64
    Sharp, P.J., Chao, S., Desai, S., and M.D. Gale. 1989. The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm. Theor. Appl. Genet 78:342-348
    Sherman, J.D., Smith, L.Y., Blake, T.K., and L.E. Talbert. 2001. Identification of barley genome segments introgressed into wheat using PCR markers. Genome 44(1): 38-44
    Shi, A. N., Leath, S., and J. P. Murphy. 1998. A Major Gene for Powdery Mildew Resistance Transferred to Common Wheat from Wild Einkom Wheat. P hytopathology 88:144-147
    Shi, F., and T.R. Endo.2000.Genetic induction of chromosomal rearrangements in barley chromosome 7H added to common wheat. Chromosoma 109 (5): 358-363
    Smith, D.C. 1942. Intergeneric hybridization of cereals and other grasses, J. Agric. Res 54:33-47
    Von Buren M, Luthy J & Hubner P. 2000. A spelt-specific γ-gliadin gene: discovery and detection. Theor Appl Genet 100:271-279
    Wang, X. E., Chen, P. D., Liu, D. J., Zhang, P., Zhou, B., Friebe, B., and B. S. Gill. 2001. Molecular eytogenetie characterization of Roegneria eiliaris chromosome additions in common wheat. Theor Appl. Genet 102 (5): 651-657
    Wei Y. M., Zheng Y.L., Liu D.C., Zhou Y.H. and X.J. Lan. 2000. Genetic diversity of Gli-1, Gli-2 and Glu-1 alleles in Sichuan wheat landraces. Acta Botanica Sinica. 42: 496-501
    Wilson, A.S. 1876. Trans. Bot. Soc. Edinb 12:286
    Yan, H., Liu, G., Cheng, Z., Min, S., and L. Zhu.2001.Oryza sativa and O. eichingeri by restriction fragment length polymorphism (RFLP) analysis and genomic in situ hybridization (GISH). Genome 44(1): 86-95
    Yang, Q., Hanson, L., Bennett, M. D., and I. J. Leitch.1999.Genome structure and evolution in the allohexaploid weed Avena fatua L. (Poaceae). Genome 42 (3): 512-518
    Zhang, D., and T. Sang. 1998. Chromosomal structural rearrangement of Paeonia brownii and P. californica revealed by fluorescence in situ hybridization. Genome 41(6): 848-853
    Zhang, H., Jia, J., Gale, M. D. and K. M. Devos. 1998. Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor. Appl. Genet 96 (1): 69-75
    Zhang, H., Reader, M., Liu, X., Jia, J. Z., Gale, M. D., and K. M. Devos. 2001. Comparative genetic analysis of the Aegilops longissima and Ae. sharonensis genomes with common wheat. Theor. Appl. Genet 103 (4): 518-525
    Zhang, P., Friebe, B., Lukaszewski, A. J., and B.S. Gill. 2001. The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma 110 (5): 335-344
    Zhiyong Liu, Qixin Sun, Zhongfu Ni, Eviatar Nevo and Tsomin Yang. 2002. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123 (1): 21-29
    Zwierzykowski, Z., Lukaszewski, A.J., Naganowska, B. and A. Lesniewska. 1999. The pattern of homoeologous recombination in triploid hybrids of Lolium multiflorum with Festuca pratensis. Genome 42 (4): 720-726

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700