普通小麦—华山新麦草二体异附加系的分子细胞遗传学鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦野生近缘种属植物中蕴藏着多种栽培品种所不具备的优良基因,野生近缘种属优良外源基因的导入及外源遗传物质的鉴定和利用,对丰富小麦育种基础和拓宽遗传改良途径具有重要意义。华山新麦草(Psathyrostachys huashanica Keng.)是小麦重要野生近缘种质资源种,具有早熟、矮杆、抗病、抗逆等优良特点。
     本研究以华山新麦草与普通小麦7182杂交获得的109株小麦-华山新麦草衍生后代为材料,综合利用细胞学、基因组原位杂交(GISH)、生化标记和DNA分子标记技术,对其进行外源遗传物质鉴定;在追踪被导入的外源染色体遗传稳定的基础上,确定添加在普通小麦背景中的华山新麦草染色体的部分同源性关系。另外,从普通小麦-华山新麦草衍生后代中,经多代选育分离出稳定遗传的大穗多花种质B46,以表型特征观察为基础,通过细胞学镜鉴结合基因组原位杂交(GISH)对其进行外源鉴定,研究和分析该大穗材料的大穗多花遗传特性和染色体组成。其主要结果如下:
     (1)对普通小麦-华山新麦草衍生后代的细胞学镜鉴结果表明,109个小麦-华山新麦草衍生后代中,其中有53个材料染色体数目为2n=42,26个材料染色体数目为2n=43,30个材料染色体数目为2n=44;对30个2n=44的材料染色体GISH分析结果表明,11个材料为二体异附加系,19个材料为双单体异附加系。小麦-华山新麦草二体附加系中导入的成对华山新麦草染色体能够较稳定地遗传给后代。
     (2)从定位于小麦七个部分同源上的78对EST-SSR引物中筛选出12对可用于追踪普通小麦背景中华山新麦草染色体的特异分子标记。运用筛选出的特异分子标记对11个普通小麦-华山新麦草二体异附加系进行外源染色体部分同源关系的鉴定。根据PCR检测和醇溶蛋白电泳谱带分析,异附加系5、附加系6和9、附加系7和11、异附加系2、异附加系8中附加的华山新麦草染色体分别与小麦第1、2、5、6、7部分同源群染色体有部分同源关系;附加系4中外源染色体涉及第2、4部分同源群染色体重排;附加系10中外源染色体涉及第4、7部分同源群染色体重排。
     (3)通过普通小麦(Triticum aestivum L.)与华山新麦草(Psathyrostachys huashanica)杂交、回交和自交,连续多代选育出遗传稳定的大穗多花种质B46,对其进行农艺性状调查、细胞学观察结合GISH检测的综合鉴定。结果表明,B46形态学特征表现大穗多花特性,穗长12cm左右,小穗达23个,小穗粒数平均6个;其根尖细胞染色体计数为2n=44;根尖原位杂交(GISH)及减数分裂中期Ⅰ染色体的基因组原位杂交(GISH)显示,B46附加一对来自于华山新麦草的同源染色体。由此可以确定B46为小麦-华山新麦草的二体异附加系,其综合农艺性状优于小麦亲本,可作为培育高产小麦品种的优良种质材料。
     普通小麦-华山新麦草二体异附加系中外源染色体部分同源关系的确定及大穗多花种质的创制,为进一步挖掘和利用华山新麦草优良基因、丰富小麦遗传种质资源、开发和利用华山新麦草这一珍稀濒危物种具有重要意义。
The wild relatives of wheat contain many valuable genes without in wheat. The transfers of alien genes from related species and genera into common wheat, and the identification and utilization of alien genetic chromatin in wheat, will enrich the foundation of wheat breeding and provide new approaches for wheat improvement. Psathyrostachys huashanica Keng(2n=2x=14,NsNs) is the vital wild germplasm resources for cultivated wheat, Which is characterized by early maturity and special resistantance under stresses.
     In this paper, 109 derivative offspring from hybridizing between Triticum aestivum L cv. 7182 and P.huashanica were characterized using cytology, genomic in situ hybridization (GISH), protein electrophoresis and DNA molecular markers technology to detection the alien genetic chromatin. The investigations of homoeologous grouping of P.huashanica chromosomes were conducted on the basis of tracing transferred genetic stability of alien chromosomes in the wheat background. Moreover, a large-spike and fertile florets wheat germplasm, B46, was obtained from the offspring of the hybridizing between Triticum aestivum L cv. 7182 and P.huashanica. Main results are as follows:
     (1)The cytological observation showed 53 plants with chromosome constitution of 2n=42, 26 plants with chromosome constitution of 2n=43, 30 plants with chromosome constitution of 2n=44. The mitotic and meiotic GISH analysis of 30 plants( 2n=44), indicated that 11 plants were wheat-P. huashanica disomic addition lines, 19 plants were wheat-P. huashanica double monosomic addition lines . It has been proven that exotic chromosome pairs could be steadily transmitted into the descendants.
     (2)Seventy-eight pairs of EST-SSR primers from seven homoeologous groups of Triticeae were screened specific markers for P.huashanica chromosomes and revealed the homoeologous relationship between P.huashanica chromosomes of wheat-P. huashanica disomic addition lines and chromosomes of common wheat .The result showed that 12 pairs of primers can be preliminary used as P. huashanica chromosomes specific molecular markers. The homoeologous relationship between common wheat and P.huashanica chromosomes of wheat-P. huashanica disomic addition lines was analyzed by means of PCR and gliadin bands analysis showed that P.huashanica chromosomes of 11 wheat-P. huashanica disomic addition lines were grouped into homoeologous group 1, 2, 4, 5, 6and 7. The added chromosomes in disomic addition line 5 were grouped into homoeologous group 1; addition line 6 and 9 were grouped into homoeologous group 2; addition line 7 and 11 were grouped into homoeologous group 5; addition line 2 were grouped into homoeologous group 6; addition line 8 were grouped into homoeologous group 7, respectively. While chromosomal rearrangement of homoeologous group 2 and homoeologous group 4 was detected in the addition line 4, the chromosomal rearrangement between homoeologous group 4 and homoeologous group 7 was identified in the addition line 10.
     (3) Exploration on the genetic material of large-spike and fertile florets wheat germplasm B46, which was obtained by selection the offspring of hybridizing, back-crossing and self-crossing between Triticum aestivum L cv. 7182 and P.huashanica by means of combined morphological observation, cytological analysis and genomic in situ hybridization (GISH) analysis after years of backcross and selfing. The result shows that B46 is a large-spike and fertile florets wheat with12cm ear length, 23 spikelets per spike and 6 florets per spikelet. There are 44 chromosomes in the root tip cell of B46 and the GISH analyses revealed that B46 contains a pair of homologous P.huashanica chromosomes. Ultimately, B46 was a wheat-P.huashanica hybridization disomic addition line, and of comprehensive agronomy traits, which can be utilized as good resource for cultivating wheat varieties of high yield.
     These reseach will be crucial to exploit the advantageous genes of the endangered species P. huashanica, improve and enrich conventional germplasm in further study.
引文
蔡旭. 1988.植物遗传育种学.北京:科学出版社,427~428
    曹张军,王献平,王美南,曹双河,井金学,商鸿生,李振岐,张相岐. 2005.小麦背景中来自华山新麦草的抗条锈病基因的遗传学分析和分子标记.遗传学报, 32(7): 738~743
    陈发棣,陈佩度,王苏玲. 2001.普通小麦-大赖草-簇毛麦异附加、易位系的选育和鉴定.植物学报, 43(4): 359~363
    陈佩度,王兆佛,王苏玲,黄俐,王裕中,刘大钧. 1995.将大赖划种质转移给普通小麦的研究.遗传学报, 22(3): 206~210
    陈漱阳,侯文胜,张安静,傅杰,杨群慧. 1996.普通小麦—华山新麦草异附加系的选育及细胞遗传学研究.遗传学报, 23(6): 447~452
    陈漱阳,张安静,傅杰. 1991.普通小麦与华山新麦草的杂交.遗传学报, 18(6): 508~512
    董玉琛. 2000.小麦的基因源.麦类作物学报, 20(3):78~81
    杜万里. 2008.小麦—小黑麦大穗型衍生后代分子细胞学鉴定. [硕士毕业论文].西安:西北农林科技大学
    杜雅楠,陈新宏,赵继新,刘淑会,杨群慧,周博,武军,刘萍丽. 2010.小麦—华山新麦草衍生后代抗旱性分析.麦类作物学报, 30(4): 670~675
    樊路. 1998.小麦远缘杂交的现实意义.北京农业科学, 16(4) :4~6
    傅杰,王美南,赵继新,陈漱阳,侯文胜,杨群惠. 2003.抗全蚀病小麦—华山新麦草中间材料H8911 的细胞遗传学研究与利用.西北植物学报, 23 (12): 2157~2162
    傅杰,赵继新,陈漱阳,侯文胜,杨群惠. 2003.小麦—华山新麦草抗全蚀病新种质的分子细胞遗传学研究.西北植物学报, 23 (11) : 1905~1909
    郭本兆. 1987.中国植物志(第九卷第三分册).北京:科学出版社
    侯文胜,张安静,杨群慧,傅杰,陈漱阳. 1997.普通小麦—华山新麦草异代换系的选育及细胞遗传学研究.西北植物学报, 17(3):368~373
    吉万全,王长有,王秋英,薛秀庄,任志龙,张宏,蔡东明,王亚娟. 2003.小麦大穗种质创新研究进展.麦类作物学报, 23(4): 126~130.
    贾继增, Miller T E, Reader S M, Gale M D. 1993.小麦抗白粉病基因Pm12的RFLP标记.中国科学(B辑), 23:589~594
    解俊峰,冯海生,窦全文. 1994.高原2D单体及巨穗小麦新种质创造.兰州大学学报, 30: 136~143
    金善宝. 1997.中国小麦品种志.北京:中国农业出版社, 436~439.
    井金学,傅杰,袁红旭. 1999.三个小麦野生近缘种抗条锈性传递的初步研究.植物病理学报, 29(2): 147~150.
    孔令娜,李巧,王海燕,曹爱忠,陈佩度,王秀娥. 2008.普通小麦—纤毛鹅观草染色体异附加系的分子标记鉴定.遗传, 30(10): 1356~1362.
    李立会,李秀全,李培,董玉琛,赵贵慎. 1997.小麦冰草异源附加系的创建:I.F3、F2BC1、BC4和BC3F1世代的细胞学.遗传学报, 24(2): 154~159
    李立会,杨欣明,周荣华,李秀全,董玉琛. 1998.小麦—冰麦异源附加系的创建:Ⅱ.异源染色质的检测与培育途径分析.遗传学报, 25(6): 538~544
    李家洋. 2007.李振声论文选集.北京:科学出版社
    李瑞芬,赵茂林,张敬原,杨海涛. 2006.单体异附加系花药培养创制小麦—中间偃麦草纯合易位系. 西北植物学报, 26(1):28~32
    李树贤. 2008.植物染色体与遗传育种.北京:科学出版社
    李占伟. 2004.普通小麦异代换系的选育研究进展.陕西农业科学, 12(5): 45~46
    李振声. 1985.小麦远缘杂交.北京:科学出版社
    刘芳,孙根楼,颜济,杨俊良. 1992.普通小麦和华山新麦草及其属间杂种F1同工酶分析.作物学报, 18(03): 169~175
    刘翠云,李璋. 1997a.大麦杂交的研究进展(Ⅰ).麦类作物, 17(4): 1~3
    刘翠云,李璋. 1997b.大麦杂交的研究进展(Ⅱ).麦类作物, 17(5): 8~11
    刘后利. 1993.作物育种研究与进展.北京:中国农业出版社
    刘文献,李立会,刘伟华,张正茂,吴振海,王成社. 2006.华山新麦草居群取样策略的SSR分析.麦类作物学报,26 (2) : 16~20
    马渐新,周荣华. 1997.用基因组原位杂交与RFLP标记鉴定小麦—簇毛麦抗白粉病代换系.遗传学报, 24(5): 447~452.
    任守杰,张志娥,陈晓玲,王建华,卢新雄.2006.基于醇溶蛋白的20份小麦种质遗传完整性分析. 植物遗传资源学报, 7(1): 44~48
    孙根楼,颜济,杨俊良. 1992.普通小麦和华山新麦草属间杂种的产生及细胞遗传学研究.遗传学报, 19(4):322~326
    孙其信,尤明山,倪中福.我国杂交小麦研究回顾与展望.第六届全国小麦遗传育种学术研讨会论文摘要集, 2010: 6.
    陶文静,金元,王秀娥,刘大钧,陈佩度. 1999. RFLP鉴定普通小麦—纤毛鹅观草二体附加系中外源染色体的同源转化性.作物学报, 25(06): 657~661
    万平. 2000.小麦Rht3_Gai3基因的分子标记和被导入外源染色体的部分同源群归属研究. [博士毕业论文].南京:南京农业大学
    万平,王苏玲,陈佩度,马正强,刘大钧. 2002.利用RFLP分子标记确定导入小麦的鹅观草(R .kamoji)染色体的部分同源群归属.遗传学报, 29(2): 153~160
    万永芳,颜济,杨俊良,刘法圈. 1997.小麦近缘野生植物的赤霉病抗性研究.植物病理学报, 27(2): 107~111
    王洪刚,张建民,刘树兵. 2000.抗白粉病小麦—中间偃麦草异附加系的细胞学和RAPD鉴定.西北植物学报, 20(1): 64~67
    王金平,王洪刚. 2009.兼抗白粉和条锈病小滨麦种质系山农6343的细胞学和SSR鉴定.植物遗传资源学报, 10(1): 45~50
    王静,王献平,纪军,王志国,李俊明,安调过,张相歧. 2006.小麦—黑麦1RS/1BL新易位系的创制和分子遗传学鉴定.作物学报, 32(1): 30~33
    王琳清,陈秀兰,柳学余. 2004.小麦突变育种学.北京:中国农业出版社
    王美南,商鸿生. 2000.华山新麦草对小麦全蚀病菌的抗病性研究.西北农业大学学报, 28(6): 69~71
    王益,康厚扬,原红军,蒋云,张海琴,周永红. 2008.普通小麦与华山新麦草衍生后代的农艺性状和细胞遗传学研究.四川农业大学学报, 26(4):405~410
    魏芳勤,武军,赵继新,陈新宏,刘淑会,庞玉辉. 2009.普通小麦和华山新麦草衍生系H9021对全蚀病抗性的遗传分析.麦类作物学报, 29(1): 153~156.
    武军,赵继新,陈新宏,刘淑会,杨群慧,刘文献,魏芳琴,董剑,朱建楚. 2007a.普通小麦~华山新麦草二体附加植株减数分裂中期染色体行为及形态学分析.西北农林科技大学学报(自然科学版), 35(9): 45~48
    武军,赵继新,陈新宏,刘淑会,杨群慧,刘文献,魏芳琴,董剑,朱建楚. 2007b.普通小麦~华山新麦草衍生后代的细胞学特点及GISH分析.麦类作物学报, 27(5): 772~775
    武军,赵继新,陈新宏,刘淑会,杨群慧,魏芳琴. 2007c.普通小麦~华山新麦草异附加系的SSR分析.河北农业大学学报, 30(5): 9~13
    谢晓玲,邓自发,解俊峰. 2003.巨穗小麦种质主要特异性状的遗传和相关性研究.种子, 4: 12~16
    薛秀庄, Richard R C W. 1999.用RAPD和染色体原位杂交检测Elymus rectisetusr染色体附加到普通小麦中.遗传学报, 26(5): 539~545.
    薛秀庄,许喜堂,王祥正. 1992.用染色体工程法培育小麦新品种.遗传学报, 19(4): 316~321
    薛秀庄,吉万全,许喜堂,陈建莉,赵会贤,薛秀庄. 1993.小麦染色体工程与育种.石家庄:河北科学出版社
    尤明山,李保云,唐朝晖,刘守斌,宋健民,毛善锋,刘广田. 2002.偃麦草E染色体组特异RAPD和SCAR标记的建立.中国农业大学学报, 7(5): 1~6
    岳明,张林静,马凯,赵桂仿. 2001.华山新麦草濒危原因及种群繁殖对策.生态学报, 21(8): 1314~1320
    张林静,王丽,李智选,赵桂仿. 2002.华山新麦草小孢子发生及雄配子体的形成.西北大学学报(自然科学版), 32(2): 77~80
    张茂银,刘云英,杨克锐,顾爱星,王子霞,海热古力,杨公杰. 2003.大赖草DNA导入小麦获得大穗品系的农艺性状和贮藏蛋白研究.麦类作物学报, 20(3) : 6~10
    张荣琦,陈春环,赵晓农,钟冠昌. 2006.利用远缘杂交技术选育小麦新品种之研究.中国农学通报, 6: 186~188
    张天真. 2003.作物育种学总论.北京:中国农业出版社
    张正斌. 2001.小麦遗传学.北京:中国农业出版社
    赵继新,陈新宏,王小利,武军,傅杰,何蓓如,宋亚珍,孙志刚. 2003.普通小麦~华山新麦草异代换系和附加系的C-分带鉴定.西北农林科技大学学报, 31(6) : 1~4
    赵继新,陈新宏,王小利,武军,傅杰,何蓓如,孙晓娟. 2004a.普通小麦~华山新麦草异代换系的分子细胞遗传学研究.西北植物学报, 24(12) : 2277~2281
    赵继新,陈新宏,王小利,武军,傅杰,何蓓如,孙志刚. 2004b.普通小麦~华山新麦草异附加系的分子细胞遗传学研究.西北农林科技大学学报, 32(11) : 105~108
    郑殿升,马瑞,刘三才,宋春华. 2000.小麦远缘杂交的珍贵种质沙丘小麦.植物遗传资源科学, 2 : 38~41
    郑殿升,盛锦山. 2002.主要作物远缘杂交概况.植物遗传资源科学, 3(1) : 55~60
    中国科学院西北植物研究所. 1976.秦岭植物志(第一卷第一册).北京:科学出版社: 99.
    钟冠昌,穆素梅,张正斌. 2002.麦类远缘杂交.北京:科学出版社
    周汉平,李滨,李振声. 1995.蓝粒小麦易位系选育的研究.西北植物学报, 15(02) : 125~128.
    周荣华,贾继增. 1996.新麦草属4个种的生化标记分析.作物品种资源, 2 : 1~5
    朱振东,贾继增. 2003.小麦SSR标记的发展及应用.遗传学报, 25(1) : 355~360.
    庄丽芳,宋立晓,冯祎高,钱保俐,徐海滨,裴自友,亓增军. 2008.小麦EST~SSR标记的开发和染色体定位及其在追踪黑麦染色体中的应用.作物学报. 34(6) : 926~933
    Chen Q, Amst rong K C. 1994. Genomic in situ hybridization in Avena sativa. Genome, 37 : 607~612.
    Dvorak J. 1980. Homoeology between Agropyron elongatum chromosomes and Triticum aesrivum chromosomes. Genet. Cytol., 22 : 237~259
    Bielig L.M, Driscoll C.J. 1970. Substitution of rye chromosome 5RL for chromosome 5B of wheat and its effect on chromosome pairing. Genetics, 65 : 241~247.
    Bothmer R von, Lu B R, Linde~Laursen I. 1994. Intergeneric hybridization and C-banding patterns in Hordelymus (Triticeae: Poaceae). Pl. Syst. Evol. 189 : 259~266
    Chai J F, Wu Z M, Zhao H, Laroche A, Wang H B. 2003. Using subtracted AFLP to efficiently mark an alien chromosome fragment in wheat background. Acta Bot Sin, 45(4) : 379~383
    Chen H M, Li L Z, Wei X Y, Li S, Lei T, Hu H, Wang H, Zhang X. 2005. Development chromosome location and genetic mapping of EST-SSR marker in wheat. Chinese Science Bulletin, 50(20) : 2328~2336
    Dewey DR. 1984. The genome system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene Manipulation in Plant Improvement. Plenum, New
    York, 209~279
    Donini P, Elias M L, Bougourd S M. 1997. AFLP fingerprinting reveals pattern differences between template DNA extracted from different plant organs. Genome, 40 : 521~526
    DOU Q W, CHEN P D, XIE J F. 2003. Cytological and molecular identification of alien chromatin in giant spike wheat germplasm. Acta Botanica Sinica, 45(9) : 1109~1115.
    Draper S R. 1987. ISTA Variety Committee Report of the Working Group for Biochemical Tests for Cultivar Identification 1983–1986. Seed Sci Technol, 15 : 431~434
    Driscoll C J, Sears E R .1971.Individual addition of the chromosomes of‘Imperial’rye to wheat. Agron Abstr, 6
    Dvorak J, Knott D R. 1974. Disomic and ditelosomic additions of diploid Agropyron elongatum chromosomes to Triticum aestivum. Genet Cytol, 16 : 399~417
    Fedak G. 1999. Molecular aids for integration of alien chromatin through wide crosses, Genome, 42(4) : 584~591
    Feldman M., Levy A A. 2005. Allopolyploidy—a shaping force in the evolution of wheat genomes. Cytogenetic and Genome Research. 109 : 250~258
    Friebe B R, Tuleen N A, Gill B S. 1999. Development and identification of a complete set of Triticum aestivum-Aegilops geniculata chromosome addition lines. Genome, 42 : 374~380
    Han F P, Liu B, Fedak G, Liu Z H. 2004. Genomic constitution and variation in five partial amphiploids of wheat–Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet, 109 : 1070~1076.
    Harlan J R, De Wet J M J. 1971. Toward a rational classification of cultivated plants . Taxon, 20(4) : 509~517
    Hart G E, Islam A K M R, Shepherd K W. 1980. Use of isozymes as chromosome markers in the isolation and characterization of wheat-barley chromosome addition lines. Gene Res, 36 : 311~325
    Hart G E, Tuleen N A. 1983. Chromosomal locations of eleven Elytrigia elongata (Agropyron elongatum) isozyme structural genes. Genet Res, 41 : 181~202
    Hyde B B.1953. Addition of individual Haynaldia villosa chromosomes to hexaploid wheat. Am J Bot, 40 :174~182
    Islam A K M R, Shepherd K W. 1992. Substituting ability of individual barley chromosomes for wheat chromosomes. 1. Substitutions involving barley chromosomes 1, 3 and 6. Plant Breed, 109(2) : 141~150
    Jia J Z, Zhou R H. 2002. Identifying t he alien chromosomes in wheat-Leymus multicaulis derivatives using GISH and RFLP techniques. Euphytica, 127(2) : 201~207.
    Jia, J., K.M. Devos, S. Chao, T.E. Miller, S.M. Reader, M.D. Gale. 1996. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet, 92 : 559~565.
    Jiang J B, Friebe B, Gill B S. 1994. Recent advance in alien gene transfer in wheat. Euphytica, 73 : 199~212
    Kong Fang, Wang Haiyan, Cao Aizhong, Qin Bi, Ji Jianhui, Wang Suling, Wang Xiu-E. 2008. Characterization of T. aestivum-H. californicum chromosome addition lines DA2H and MA5H. J. Genet. Genomics, 35: 673~678
    Kang H Y, Qian Chen, Yi Wang, Mei Yu Zhong, Hai Qin Zhang, Yong Hong Zhou. 2009a. Molecular cytogenetic characterization of the amphiploid between bread wheat and Psathyrostachys huashanica. Genet Res Crop Evol, 57 : 111~118
    Kang H Y, Wang Y, Sun GL, Zhang H Q, Fan X, Zhou Y H. 2009b. Production and characterization of an amphiploid between common wheat and Psathyrostachys huashanica Keng ex Kuo. Plant breeding, 128 : 36~40
    Kang H Y, Zhang H Q, Fan X, Zhou Y H. 2008. Morphological and cytogenetic studies on the hybrid between bread wheat and Psathyrostachys huashanica Keng ex Kuo. Euphytica, 162 : 441~448
    Keim P, Schupp J M, Travis S E. 1997. A High-Density Soybean Genetic Map Based on AFLP Markers. Crop Sci, 37 : 537~543
    Leach R C, Dundas I S, Houben A. 2006. Construction of comparative genetic maps of two 4Bs.4Bl-5Rl translocations in bread wheat (Triticum aestivum L.). Genome, 49(7) : 729~34
    Linde Laursen I, von Bothmer R. 1986. Comparison of the karyotype of Psathyrostachys juncea and P. huashanica (Poaceae) studied by banding techniques. Plant System Evolve, 151 : 203~213
    Littlejohn G M, Pienaar R de V. 1995. Thinopyrum distichum addition lines: production, morphological and cytological characterisation of 11 disomic addition lines and stable addition-substitution line. Theor Appl Genet, 90 : 33~42
    Masahiro Kishii, Dou Q W, Garg M, Ito M, Tanaka H, Tsujimoto H. 2010. Production of wheat-Psathyrostachys huashanica chromosome addition lines. Genes Genet Syst, 85(4) : 281~286
    Masahiro Kishii, Toyomi Yamada, Tetsuo Sasakuma , Hisashi Tsujimoto. 2004. Production of wheat– Leymus racemosus chromosome addition lines. Theor Appl Genet, 109(2) : 255~260
    McClean P E, Lee P K, Otto C, Getps P, Bassett M J. 2002. Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). Journal of Heredity, 93(2) : 148~152
    Miller T E, Reader S M. 1987. A guide to the homoeology of chromosomes within the Triticeae. Theor Appl Genet, 74 : 214~217
    Miller T E, Reader S M. 1987. A guide to the homology of chromosomes within the tritilease. Theor Appl Genet, 74 : 214~217.
    Mujeeb Kazi A, Rajaram S. 2002. Transferring Alien Genes from Related Species and Genera for Wheat Improvement. In Bread Wheat Improvement and Production, pp. Rome: FAO, 199~215
    Mukai Y, Gill B S.1991. Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome, 34 : 448~452
    Olson M, Hood L, Cantor C, Botstein D. 1989. A common language for physical mapping of the human genome. Science, 245 : 1434~1435
    Peil A, Korzun V, Schubert V, Schumann E, Weber W E, R?der M S. 1998. The application of wheat microsatellites to identify disomic Triticum aestivum-Aegilops markgrafii addition lines. Theor Appl Genet, 96 : 138~146
    Peil A, Schubert V, Schumann E, Weber W E. 1997. RAPDs as molecular markers for the detection of Aegilops markgrafii chromatin in addition and euploid introgression lines of hexaploid wheat. Theor Appl Genet, 94 : 934~940.
    Powell W, Morgante M, Ander C. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 2 : 225~238
    Qi L, Friebe B, Zhang P, Gill B S. 2007. Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res, 15 : 3~19.
    Reynolds M, Foulkes M J, Slafer G A, Berry P, Parry M A, Snape J W, Angus W J. 2009. Raising yield potential in wheat. Exp Bot. 60 : 1899~1918
    Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. 1998 . A microsatellite map of wheat. Genetics, 149 : 2007~2023
    Schneider A, Molnár I, Molnár-Láng M. 2010 . Production and fish identification of wheat-Aegilops biuncialis addition lines and their use for the selection of U and M genome-specific molecular (SSR) markers. Acta Agronomica Hungarica. 58(2): 151~158
    Sears E R. 1953. Addition of the genome of Haynaldia villosa to Triticum aestivum. Am. J. Bot, 40 : 168~174
    Sharp P J, Chao S, Desai S, Gale M D. 1989. The isolation characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homologous chromosome. Theor. Appl. Genet, 78(3) : 342~348
    Singh R J, Jauhar P P. 2006. Genetic Resources, Chromosome Engineering, and Crop Improvement: Cereals. Biologia Plantarum, 51(1) : 33
    Singh S and Sethi G S. 2002. Expression of 17 rye (Secale cereale L.) traits in a range of durum wheat (Triticum durum Desf.) and bread wheat (T. aestivum L.) genetic backgrounds. Euphytica, 60(1): 37~44
    Wang D W. 2009. Wide hybridization: engineering the next leap in wheat yield. Genet Genomics, 36 : 509~510
    Wang J, Xiang F N , Xia G M. 2005. Agropyron elongatum chromatin localization on the wheat chromosomes in an introgression line. planta, 221(2) : 277~286
    Wang R C. 1987. Synthetic and natural hybrids of Psathyrostachys huashanica. Genome, 29 : 811~816
    Wright S I, Bi I V, Schroeder S G, Yamasaki M, Doebley J F, McMullen M D, Gaut B S. 2005. The effects of artificial selection on the maize genome. Science, 308 : 1310~1314
    Wu J, Yang X M, Wang H, Li H J, Li L H, Li X Q, Liu W H. 2006. The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor.Appl.Genet. 114(1) : 13~20
    Yen C,Y. L.Zheng ,J. L.Yang. 1993. An ideotype for high yield breeding in theory and practice. Proceedings of 8th International wheat Genetic Symposium, 1113~1117
    Zhang H, Jia J Z, Gale M D, Devos K M.1998. Relationship between the chromosome of Aegilops umbellulata and wheat. Theor. Appl. Genet. 96 : 69~75.
    Zhang Z Y, Xin Z Y, Larkin P J. 2001. Molecular characterization of a Thinopyrum intermedium Group 2 chromosome (2Ai-2) conferring resistance to barley yellow dwarf virus. Genome, 44(6) : 1129~1135
    Zhao J X, Ji W Q, Wu J, Chen X H, Cheng X N, Wang J W, PangY H, Liu S H, Yang Q H. 2010. Development and identification of a wheat-Psathyrostachys huashanica addition line carrying HMW-GS, LMW-GS and gliadin genes. Genet Resour Crop Evol, 57 : 387–394

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700