普通小麦冰草6P易位系的鉴定与遗传效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰草6P上含有很多可用于小麦改良的优异基因。因此小麦-冰草6P易位系的鉴定、遗传效应分析以及冰草6P特异分子标记的开发对于冰草6P的遗传研究具有重要意义。SM2-244是一株表现多花多粒的材料,由Luan鉴定为大小片段相互易位,是由藁城8901与普通小麦-冰草(Agropyron cristatum L. Gaertn,2n=4x=28, PPPP)6P附加系4844-12杂交获得的种子进行电离辐射获得的,并对其后代进行了GISH、FISH和P基因组特异标记分析确定出现的各种易位类型。利用本实验室开发的EST标记筛选新的冰草6P特异分子标记,将这些标记在获得的易位片段上进行定位,另一方面通过这些特异分子标记确定获得的易位片段之间的关系。同时对获得的不同的小麦-冰草6P易位系的农艺性状进行考察。分析易位片段在小麦背景下所表现出的遗传效应。研究结果如下:
     1、利用本实验室开发的EST-STS引物,获得了130个冰草6P特异分子标记。
     2、通过原位杂交(ish)和分子标记技术对一个表现多花多粒的小麦-冰草6P易位系SM2-244的自交后代进行鉴定,获得了4类不同的小麦-冰草6P易位系,分别为大片段易位系T6PS.6PL-5AL、小片段易位系T6PL-5AL.5AS、小片段纯合易位材料T6PL-3BS.3BL以及一个小片段纯合+臂端纯合易位系T6PS-5AL.5AS+T6PS-5AL。其中大片段易位系和小片段易位系中的易位片段是由一条完整的6P断裂形成的;一个小片段纯合+臂端纯合易位系在染色体组成上相当于6PL整臂附加;小片段易位系T6PL-5AL.5AS中易位片段为小片段易位系T6PL-5AL.5AS中易位片段的一部分。这些易位系中易位片段大小不同,可将6P分为4个部分。130个6P特异分子标记分布在6P短臂上为56个;分布在6P长臂1.00-0.69区段上24个,0.69-0.32区段上30个,0.32-0.00区段上20个。
     3、对不同的易位系的生物学性状进行考察,结果表明小片段易位系T6PL-5AL.5AS的穗长和小麦亲本相比表现极显著增加;在小穗粒数及穗粒数上表现显著增加;大片段易位系表现穗粒数减少,但是穗部形态和冰草相似。两者的小穗粒数及穗粒数和小麦-冰草附加系4844-12相比还有很大差距。说明在冰草6P的长臂和短臂上都含有多花多粒基因,在长臂1.00-0.32区段上有可以显著增加穗长的基因。
     4、对这些特异标记与NCBI nr蛋白质数据库及小麦EST序列进行了比对,发现4条冰草EST序列的功能注释与抗病、抗逆相关;36条冰草EST与已经定位的小麦EST具有较高的相似性,其中33条(91.67%)位于小麦第6部分同源群染色体。进一步对这些标记进行特异性验证,结果证明其确实可用于检测6P染色体。
     本研究获得了130个可以分布在冰草6P上的特异EST标记和4个不同的小麦-冰草异源易位系,对于小麦-冰草6P异源易位系的检测以及6P染色体的遗传分析具有重要意义;通过对不同易位系的生物学性状进行调查,认为在冰草6P长臂上携带有控制小麦穗长的基因,而在6P的长臂和短臂上都含有控制小麦的小穗粒数以及穗粒数的基因。
Agropyron cristatum (L.) Gaertn chromosome6P contains a lot of excellent genes for wheatimprovement. So it is very important for the genetic research of6P chromosome to identify wheat-Agropyron6P translocation lines and develop molecular markers specific to6P. In this study, wedeveloped EST markers specific to the A. cristatum6P chromosome using the wheat-A. cristatum6Pdisomic addition line4844-12(2n=44) and its common wheat parent ‘Fukuho’ as well as A. cristatumaccession Z559(2n=4X=28, PPPP), then detected the offspring of wheat-Agropyron6P addition linesand common wheat‘Gaocheng8901’with these markers. Positive plants which showed positive by6P-spicific markers were detected by GISH and FISH to identify their type of translocation. Locating the6P-specific molecular markers with these wheat-A. cristatum6P translocation lines, which is used todetermine the relationship among these6P translocation fragments. At the same time,traits of obtainedwheat-A. cristatum6P translocation lines were conducted to analyze the genetic effects brought bytranslocation fragments in common wheat background. The results are as following:
     1. A total of1306P-specific molecular markers were developed from1453PCR primers designedaccording to the sequences of ESTs gained from the transcriptome sequencing of A. cristatum.
     2. four wheat-Agropyron translocation lines were found in the self-progeny offspring of SM2-244by in situ hybridization (ISH) and EST markers, which are one large-fragment translocation line27-9(T6PS.6PL-5AL), one small-fragment translocation line37-1(T6PL-5AL.5AS),small-fragment line65-5(T6PL-3BS.3BL) and one arm-side additional translocation line9-1(T6PL-5AL.5AS+T6PS.6PL).The translocation fragments from27-9and37-1constitute a completely6P chromosome. Thetranslocation fragment from65-5were confirmed to be one part of37-1′s by EST markers. The threetranslocation lines divided6P chromosome into four parts: there are56markers located on the short armof6P chromosome,20markers located on the0.00-0.32section of long arm of6P chromosome,30markers located on the0.32-0.69section of long arm of6P chromosome,24markers located on the0.69-1.00section of long arm of6P chromosome.
     3. The biological characteristics of different translocation lines shows that small-fragmentstranslocation line37-1has longer spikes, more grains per spikelet and spike compared to wheat parent.While large-fragment translocation line27-9has shorter spikes, less grains per spikelet and spikecompared with wheat parent, but its spike type is similar with wheat parent. Which suggests that the twoalien segments carries spike-related genes. The number of kernels per spike of the two translocation linesare much less than wheat-A. Cristatum6P disomic addition line4844-12(2n=44), and the reason ofcausing superior numbers of florets and kernels per spike is complicated. There are some genes relatedto spike length on the0.32-1.00section of long arm of6P chromosome.
     4. These specific markers were matched with protein database from NCBI and wheat EST sequenceto understand the potential function genes on chromosome6P and the gene synteny between A. cristatum and common wheat. The results showed that the function annotation of four A. cristatum EST sequencesare related to disease and stress resistance; Thirty six A. cristatum EST sequences could be matched withthe located wheat EST bin map, in which33(91.67%) sequences were located in the sixth homoeologousgroup.
     Conclusion:1306P-specific molecular markers and4wheat-A. Cristatum6P translocation lineswere gained in this study, which is helpful to the6P chromosome genetic research. The genes causingsuperior numbers of florets and kernels per spike may exist on both of the long and short arm. Here aresome genes related to spike length on the0.32-1.00section of long arm of6P chromosome.
引文
1.陈钢,高景慧.中间偃麦草和硬粒小麦小麦远缘杂交育种中的利用.麦类作物,1998,18(5):17-19
    2.崔志富,林志珊,辛志勇,唐益苗,张增艳,卢勤.应用GISH与STS标记鉴定小麦-中间偃麦草抗黄矮病端体系.作物学报,2008(12):56-60
    3.董玉琛.小麦的基因源.麦类作物学报,2000,20(003):78-81
    4.胡英考.诱导产生小麦外源基因易位系的研究进展.首都师范大学学报(自然科学版),2001,23(3):58-64
    5.李桂英,王琳清and施巾帼.辐照花粉对普通小麦×窄颖赖草杂种的细胞学效应.核农学报,2000,14(1):6-11
    6.李立会,董玉琛.冰草属研究进展.遗传,1993,15(1):45-48
    7.李立会,董玉琛.普通小麦冰草间杂种的细胞遗传学及其自交可育性.遗传学报,1995,22(2):109-115
    8.李立会,董玉琛.普通小麦与沙生冰草属间杂种的产生及细胞遗传学研究.中国科学: B辑,1990,(5):492-497
    9.李立会,赵桂慎.小麦冰草异源附加系的创建: I, F3, F2BC1, BC4和BC3F1世代的细胞学.遗传学报,1997,24(002):154-159
    10.李立会,李秀全,李培,董玉深,赵桂慎.小麦冰草异源附加系的创建.遗传学报,1998,25(6):538-544
    11.李立会,杨欣明,李秀全,董玉琛,陈学明.通过属间杂交向小麦转移冰草优异基因的研究.中国农业科学,1998,31(6):1-5
    12.刘三才.我国小麦穗粒数及多粒种质的研究进展.国外农学:麦类作物,1994,(5):41-43.
    13.卢翔,张锦鹏,王化俊,杨欣明,李秀全,李立会.小麦-冰草衍生后代3558-2穗部相关性状的遗传分析和QTL定位.植物遗传资源学报,2011,12(001):86-91
    14.孙仲平,王占斌,徐香玲,李集临.利用杀配子染色体2C诱导中国春-黑麦二体附加系染色体畸变的研究.遗传学报,2004,31(011):1268-1274
    15.王洪刚,刘树兵,亓增军,孔凡晶,高居荣.中间偃麦草在小麦遗传改良中的应用研究.山东农业大学学报:自然科学版,2000,31(3):333-336
    16.王健胜,王辉,刘伟华,武军,李立会.小麦-冰草多粒新种质及其多粒性遗传分析.中国农业科学,2009,42(6):1889-1895
    17.王文泉,杨欣明,李立会,李秀全,兰海燕,周新成.小麦-冰草异源二体附加系的分子鉴定及其重要基因的染色体定位. Advances in Chromosome Sciences Volume1,2001,19-25.
    18.武军,王辉,刘伟华,李立会,杨欣明,李秀全.小麦新种质4844中外源P染色质的GISH与SSR分析.西北植物学报,2006,26(6):1093-1097
    19.杨恩年,李俊,杨武云,邹裕春.矮杆大穗高产小麦育种亲本SW3243重要农艺性状特性及育种应用效果(英文). Agricultural Science&Technology,2011,115-119
    20.尹冬冬,安调过,李立会,许红星.分子标记技术在黑麦研究中的应用.中国生态农业学报,2011,19(2):477-483
    21.袁建华,陈佩度,刘大钧.利用杀配子染色体创造普通小麦—大赖草异易位系.中国科学: C辑,2003,33(2):110-116
    22.郑殿升,盛锦山.主要作物远缘杂交概况.植物遗传资源科学,2002,3(1):55-60
    23. Able JA, Langridge P and Milligan AS. Capturing diversity in the cereals: many options but littlepromiscuity. Trends in plant science,2007,12(2):71-79
    24. Ahmad F and Comeau A. A New Intergeneric Hybrid between Triticum aestivum L. andAgropyron fragile (Roth) Candargy: Variation in A. fragile for Suppression of the WheatPh‐L ocus Activity. PlantBreeding,1991,106(4):275-283
    25. Banks P, Larkin P, Bariana H, Lagudah E, Appels R, Waterhouse P, Brettell R, Chen X, Xu H andXin Z. The use of cell culture for subchromosomal introgressions of barley yellow dwarf virusresistance from Thinopyrum intermedium to wheat. Genome,1995,38(2):395-405
    26. Baum M and Appels R. Review: The cytogenetic and molecular architecture of chromosome1R—one of the most widely utilized sources of alien chromatin in wheat varieties. Chromosoma,1991,101(1):1-10
    27. Berzonsky WA and Francki MG. Biochemical, molecular, and cytogenetic technologies forcharacterizing1RS in wheat: A review. Euphytica,1999,108(1):1-19
    28. Brettell R, Banks P, Cauderon Y, Chen X, Cheng Z, Larkin P and Waterhouse P. A singlewheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Annalsof applied biology,1988,113(3):599-603
    29. Cainong J, Zavatsky L, Chen M, Johnson J, Friebe B, Gill B and Lukaszewski A. Wheat-ryeT2BS·2BL-2RL recombinants with resistance to Hessian fly (H21).2010, Genome,28(5):543-547
    30. Cao A, Wang X, Chen Y, Zou X and Chen P. A sequence‐specific PCR marker linked with Pm21distinguishes chromosomes6AS,6BS,6DS of Triticum aestivum and6VS of Haynaldia villosa.Plant Breeding,2006,125(3):201-205
    31. Cauderon Y, Saigne B and Dauge M (1973). The resistance to wheat rusts of Agropyronintermedium and its use in wheat improvement. Proc4th Int Wheat Gen Symp (Columbia, Mo), pp.401-407
    32. Chen H, Qian B, Zhuang L, Chen Q, Feng Y, Pei Z, Qi Z, Chen P and Liu D. Molecular MarkerAnalysis on Common Wheat Landrace Chinese Spring Alien Chromosome Lines Derived fromThinopyrum bessarabicum Love. Acta Agronomica Sinica,2007,33(8):12-32
    33. Chen Q, Jahier J and Cauderon Y. Production and cytogenetical studies of hybrids betweenTriticum aestivum L. Thell and Agropyron cristatum (L.) faertn. Comptes rendus de l'Académiedes sciences. Série3, Sciences de la vie,1989,308(15):425-430
    34. Chen Q, Jahier J and Cauderon Y. Intergeneric hybrids between Triticum aestivum and threecrested wheatgrasses: Agropyron mongolicum, A. michnoi, and A. desertorum. Genome,1990,33(5):663-667
    35. Chi S, Yi S, Chang Y, Yi K and Son F. Studies on wheat breeding by distant hybridization betweenwheat and Agropyron glaucum. Sci Agric Sin,1979,2:1-11
    36. Cooper HD, Vellvé R and Hobbelink H. Growing diversity: genetic resources and local foodsecurity. London, Intermediate Technology Publications,1992,88-92
    37. Dempsey GJ. Genetic Diversity and Disease Resistance in Crops: Two Debates Over theConservation and the Use of Plant Genetic Resources. Sussex,University of Sussex,1990,112-116
    38. Dewey D R. The genomic system of classification as a guide to intergeneric hybridization with theperennial triticeae. In: Gustafson J P ed. Gene manipulation in plant improvement. New York:Plenum Press,1984: pp209-279
    39. Dong Y, Zhou R, Xu S, Li L, Cauderon Y and Wang R. Desirable characteristics in perennialTriticeae collected in China for wheat improvement. Hereditas,1992,116(1-2):175-178
    40. Duggan B. Yield structure and kernel potential of winter wheat on the Canadian prairies. CropScience,2006,46(4):1479-1486
    41. Dvorak J and Knott D. Disomic and ditelosomic additions of diploid Agropyron elongatumchromosomes to Triticum aestivum. Canadian Journal of Genetics and Cytology,1974,16(2):399-417
    42. Fedak G. Molecular aids for integration of alien chromatin through wide crosses. Genome,1999,42(4):584-591
    43. Fedak G, Chen Q, Conner RL, Laroche A, Petroski R and Armstrong KW. Characterization ofwheat-Thinopyrum partial amphiploids by meiotic analysis and genomic in situ hybridization.Genome,2000,43(4):712-719
    44. Fedak G and Han F. Characterization of derivatives from wheat- Thinopyrum wide crosses.Cytogenetic and Genome Research,2005,109(1-3):360-367
    45. Fischer R. Understanding the physiological basis of yield potential in wheat. JOURNAL OFAGRICULTURAL SCIENCE CAMBRIDGE,2007,145(2):99-108
    46. Fischer R. The importance of grain or kernel number in wheat: A reply to Sinclair and Jamieson.Field Crops Research,2008,105(1-2):15-21
    47. Forster B, Gorham J and Miller T. Salt tolerance of an amphiploid between Triticum aestivum andAgropyron junceum. Plant Breeding,1987,98(1):1-8
    48. Forster B and Miller T. A5B deficient hybrid between Triticum aestivum and Agropyron junceum.Cereal Res. Commun,1985,13:93-95
    49. Frankel OH. Genetic dangers of the Green Revolution. World Agriculture,1970,19(3):9-13
    50. Frederick JR and Bauer PJ. Physiological and numerical components of wheat yield. Wheat:Ecology and Physiology of Yield Determination,1999,45-65
    51. Friebe B, Cainong J C, Qi L L, Chen P D, Bockus W W, Gill B S. Chromosome engineering andtransfer of alien sources for Fusarium head blight resistance in hard red winter wheat. In: Canty S,Clark A, Anderson A, Ellis D, and Sanford D ed. Proceedings of the2010National Fusarium HeadBlight Forum. USA:ASAP Printing,2010: pp:17Friebe B, Hatchett J, Sears R and Gill B. Transferof Hessian fly resistance from ‘Chaupon’rye to hexaploid wheat via a2BS/2RL wheat-ryechromosome translocation. TAG Theoretical and Applied Genetics,1990,79(3):385-389
    52. Friebe B, Heun M and Bushuk W. Cytological characterization, powdery mildew resistance andstorage protein composition of tetraploid and hexaploid1BL/1RS wheat-rye translocation lines.TAG Theoretical and Applied Genetics,1989,78(3):425-432
    53. Friebe B, Jiang J, Raupp W, McIntosh R and Gill B. Characterization of wheat-alien translocationsconferring resistance to diseases and pests: current status. Euphytica,1996,91(1):59-87
    54. Friebe B, Mukai Y, Gill B and Cauderon Y. C-banding and in-situ hybridization analyses ofAgropyron intermedium, a partial wheat x Ag. intermedium amphiploid, and six derivedchromosome addition lines. TAG Theoretical and Applied Genetics,1992,84(7):899-905
    55. Friebe B, Schubert V, Blüthner W and Hammer K. C-banding pattern and polymorphism ofAegilops caudata and chromosomal constitutions of the amphiploid T. aestivum—Ae. caudata andsix derived chromosome addition lines. TAG Theoretical and Applied Genetics,1992,83(5):589-596
    56. Friebe B, Webster J and Porter D. Inheritance of greenbug biotype G resistance in wheat. CropScience,1994,34(3):625-628
    57. Friebe B, Zeller F and Kunzmann R. Transfer of the1BL/1RS wheat-rye-translocation fromhexaploid bread wheat to tetraploid durum wheat. TAG Theoretical and Applied Genetics,1987,74(4):423-425
    58. Friebe B, Zeller F, Mukai Y, Forster B, Bartos P and McIntosh R. Characterization of rust-resistantwheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozymeanalysis. TAG Theoretical and Applied Genetics,1992,83(6):775-782
    59. Froidmont D. A co-dominant marker for the1BL/1RS wheat-rye translocation via multiplex PCR.Journal of cereal science,1998,27(3):229-232
    60. Gaju O, Reynolds M, Sparkes D and Foulkes M. Relationships between large-spike phenotype,grain number, and yield potential in spring wheat. Crop Science,2009,49(3):961
    61. Gill K, Friebe B, Tuleen N and Gill B. Transfer of wheat streak mosaic virus resistance fromAgropyron intermedium into wheat. Crop Science,1996,36(4):857-861
    62. Gorham J, Forster B, Jones RGW, Miller T and Law C. Salt tolerance in the Triticeae: soluteaccumulation and distribution in an amphidiploid derived from Triticum aestivum cv. ChineseSpring and Thinopyrum bessarabicum. Journal of Experimental Botany,1986,37(10):1435-1449
    63. Han F, Fedak G, Benabdelmouna A, Armstrong K and Ouellet T. Characterization of six wheatThinopyrum intermedium derivatives by GISH, RFLP, and multicolor GISH. Genome,2003,46(3):490-495
    64. Han F and Li J. Partial amphiploids from Triticum durum x Elytrigia intermedia and T. durum xtetraploid Elytrigia elongata. Wheat Information Service,1995,183-186
    65. Han F, Liu B, Fedak G and Liu Z. Genomic constitution and variation in five partial amphiploidsof wheat–Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storageprotein analysis. TAG Theoretical and Applied Genetics,2004,109(5):1070-1076
    66. Hanusova R, Hsam SLK, Bartos P and Zeller FJ. Suppression of powdery mildew resistance genePm8in Triticum aestivum L.(common wheat) cultivars carrying wheat-rye translocation T1BL.1RS. Heredity,1996,77:189-197
    67. Hassani H, King I, Reader S, Caligari P and Miller T. Can tritipyrum, a new salt tolerant potentialamphiploid, be a successful cereal like triticale. J. Agric. Sci. Technol,2000,2:177-195
    68. He M, Xu Z, Zou M, Zhang H, Chen D, Piao Z and Hao S. The establishment of two sets of alienaddition lines of wheat-wheatgrass. Sci Sin (ser. B),1988,32:695-705.
    69. Heisey PW, Smale M, Byerlee D and Souza E. Wheat rusts and the costs of genetic diversity in thePunjab of Pakistan. American Journal of Agricultural Economics,1997,726-737
    70. Helmsj rgensen J and Jensen C. Gene Pm6for resistance to powdery mildew in wheat. Euphytica,1973,22(2):423-423
    71. Hsam S, Lapochkina I and Zeller F. Chromosomal location of genes for resistance to powderymildew in common wheat (Triticum aestivum L. em Thell.).8. Gene Pm32in a wheat-Aegilopsspeltoides translocation line. Euphytica,2003,133(3):367-370
    72. Hsam S, Mohler V, Hartl L, Wenzel G and Zeller F. Mapping of powdery mildew and leaf rustresistance genes on the wheat‐rye translocated chromosome T1BL·1RS using molecular andbiochemical markers. Plant Breeding,2000,119(1):87-89
    73. Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Duan X and Sun Q. Identification and geneticmapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wildemmer (Triticum turgidum var. dicoccoides). TAG Theoretical and Applied Genetics,2009,119(2):223-230
    74. Huang XQ and R der MS. Molecular mapping of powdery mildew resistance genes in wheat: areview. Euphytica,2004,137(2):203-223
    75. Huang ZF, Zhang WJ, Yu BL, Zhou WJ, Li M and Li AS. The chromosome-specific PCR marker'sscreening and identification of barley6H chromosome]. Yi chuan xue bao=Acta genetica Sinica,2000,27(8):7-13
    76. JAUHAR PP. Chromosome pairing in hybrids between hexaploid bread wheat and tetraploidcrested wheatgrass (Agropyron cristatum). Hereditas,1992,116(1‐2):107-109
    77. Jia J, Li G, Liu C, Lei M and Yang Z. Characterization of wheat yellow rust resistance gene Yr17using EST-SSR and rice syntenic region. Cereal Research Communications,2011,39(1):88-99
    78. Jiang J, Friebe B and Gill B. Chromosome painting of Amigo wheat. TAG Theoretical and AppliedGenetics,1994,89(7):811-813
    79. Jiang J, Friebe B and Gill BS. Recent advances in alien gene transfer in wheat. Euphytica,1993,73(3):199-212
    80. Jia JZ, MAJZRJIA. Identification of Wheat-Haynaldia villosa Substitution Lines ConferringResistance to Powdery Mildew Using Genomic in situ Hybridization (GISH) and RFLP Markers[J]. Acta Genetica Sinica,1997,24(5):447-452
    81. Kato A, Vega JM, Han F, Lamb JC and Birchler JA. Advances in plant chromosome identificationand cytogenetic techniques. Current opinion in plant biology,2005,8(2):148-154
    82. Katto MC, Endo TR and Nasuda S. A PCR-based marker for targeting small rye segments in wheatbackground. Genes&genetic systems,2004,79(4):245-250
    83. Kibirige-Sebunya I and Knott D. Transfer of stem rust resistance to wheat from an Agropyronchromosome having a gametocidal effect. Canadian Journal of Genetics and Cytology,1983,25(3):215-221
    84. King I, Law C, Cant K, Orford S, Reader S and Miller T. Tritipyrum, a potential new salt‐tolerantcereal. Plant Breeding,1997,116(2):127-132
    85. King IP, Forster BP, Law CC, Cant KA, Orford SE, Gorham J, Reader S and Miller TE.Introgression of salt‐tolerance genes from Thinopyrum bessarabicum into wheat. Newphytologist,1997,137(1):75-81
    86. Knott D. The inheritance of rust resistance. VI. The transfer of stem rust resistance fromAgropyron elongatum to common wheat. Canadian Journal of Plant Science,1961,41(1):109-123
    87. Knott D. Translocations involving Triticum chromosomes and Agropyron chromosomes carryingrust resistance. Canadian Journal of Genetics and Cytology,1968,10(3):695-696
    88. Knott D and Dvorak J. Alien germ plasm as a source of resistance to disease. Annual Review ofPhytopathology,1976,14(1):211-235
    89. Ko JM, Do GS, Suh DY, Seo BB, Shin DC and Moon HP. Identification and chromosomalorganization of two rye genome-specific RAPD products useful as introgression markers in wheat.Genome,2002,45(1):157-164
    90. Kuchel H, Fox R, Reinheimer J, Mosionek L, Willey N, Bariana H and Jefferies S. The successfulapplication of a marker-assisted wheat breeding strategy. Molecular Breeding,2007,20(4):295-308
    91. Larkin P, Banks P, Lagudah E, Appels R, Xiao C, Zhiyong X, Ohm H and McIntosh R. DisomicThinopyrum intermedium addition lines in wheat with barley yellow dwarf virus resistance andwith rust resistances. Genome,1995,38(2):385-394
    92. Leitch A, Schwarzacher T and Leitch I. The use of fluorochromes in the cytogenetics of thesmall-grained cereals (Triticeae). The Histochemical Journal,1994,26(6):471-479
    93. Li G, Fang T, Zhang H, Xie C, Li H, Yang T, Nevo E, Fahima T, Sun Q and Liu Z. Molecularidentification of a new powdery mildew resistance gene Pm41on chromosome3BL derived fromwild emmer (Triticum turgidum var. dicoccoides). TAG Theoretical and Applied Genetics,2009,119(3):531-539
    94. Li G, Li Z, Yang W, Zhang Y, He Z, Xu S, Singh R, Qu Y and Xia X. Molecular mapping of striperust resistance gene YrCH42in Chinese wheat cultivar Chuanmai42and its allelism with Yr24and Yr26. TAG Theoretical and Applied Genetics,2006,112(8):1434-1440
    95. Li L and Dong Y. Hybridization between Triticum aestivum L. and Agropyron michnoi Roshev.TAG Theoretical and Applied Genetics,1991,81(3):312-316
    96. Limin A and Fowler D. An interspecific hybrid and amphiploid produced from Triticum aestivumcrosses with Agropyron cristatum and Agropyron desertorum. Genome,1990,33(4):581-584
    97. Liu W, Jin Y, Rouse M, Friebe B, Gill B and Pumphrey MO. Development and characterization ofwheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferringresistance to stem rust. TAG Theoretical and Applied Genetics,2011,1-9
    98. Liu WH, Luan Y, Wang JC, Wang XG, Su JJ, Zhang JP, Yang XM, Gao AN and Li LH.Production and identification of wheat-Agropyron cristatum (14P) alien translocation lines.Genome,2010,53(6):472-481
    99. Liu Z, Sun Q, Ni Z, Yang T and McIntosh R. Development of SCAR markers linked to the Pm21gene conferring resistance to powdery mildew in common wheat. Plant Breeding,1999,118(3):215-219
    100. Lopato S, Bazanova N, Morran S, Milligan AS, Shirley N and Langridge P. Isolation of planttranscription factors using a modified yeast one-hybrid system. Plant Methods,2006,2(1):3-17
    101. Luan Y, Wang X, Liu W, Li C, Zhang J, Gao A, Wang Y, Yang X and Li L. Production andidentification of wheat-Agropyron cristatum6P translocation lines. Planta,2010,232(2):501-510
    102. Lukaszewski A and Gustafson J. Translocations and modifications of chromosomes in triticale×wheat hybrids. TAG Theoretical and Applied Genetics,1983,64(3):239-248
    103. Lukaszewski AJ. Frequency of1RS.1AL and1RS.1BL translocations in United States wheats.Crop Science,1990,30(5):1151-1153
    104. Lulin M, Yi S, Aizhong C, Zengjun Q, Liping X, Peidu C, Dajun L and Xiu-e W. Molecularcloning and characterization of an up-regulated UDP-glucosyltransferase gene induced by DONfrom Triticum aestivum L. cv. Wangshuibai. Molecular biology reports,2010,37(2):785-795
    105. Madsen L, Collins NC, Rakwalska M, Backes G, Sandal N, Krusell L, Jensen J, Waterman E,Jahoor A and Ayliffe M. Barley disease resistance gene analogs of the NBS-LRR class:identification and mapping. Molecular genetics and genomics,2003,269(1):150-161
    106. Mago R, Miah H, Lawrence G, Wellings C, Spielmeyer W, Bariana H, McIntosh R, Pryor A andEllis J. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31,Lr26and Yr9on the short arm of rye chromosome1. TAG Theoretical and Applied Genetics,2005,112(1):41-50
    107. Manyowa N, Miller T, Forster B and Koebner R. Alien species as sources for aluminium tolerancegenes for wheat, Triticum aestivum, Institute of Plant Science Research. UK,1988,851-857
    108. Marè C, Mazzucotelli E, Crosatti C, Francia E, Stanca A and Cattivelli L. Hv-WRKY38: a newtranscription factor involved in cold-and drought-response in barley. Plant molecular biology,2004,55(3):399-416
    109. Masoudi-Nejad A, Nasuda S, McIntosh R and Endo T. Transfer of rye chromosome segments towheat by a gametocidal system. Chromosome Research,2002,10(5):349-357
    110. Mayer KFX, Taudien S, Martis M, Simková H, Suchánková P, Gundlach H, Wicker T, Petzold A,Felder M and Steuernagel B. Gene content and virtual gene order of barley chromosome1H. Plantphysiology,2009,151(2):496-503
    111. McIntosh R. A catalogue of gene symbols for wheat. Volume4, Sydney,1983,1-17
    112. Mettin D, Bluthner W, Schlegel G, Sears E and Sears L. Additional evidence on spontaneous1B/1R wheat-rye substitutions and translocations,USA, University of Missouri.1973,288-296
    113. Breeding for large number of spikelets per spike in wheat Miranda L, Murphy J, Marshall D andLeath S. Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. tocommon wheat (Triticum aestivum L.). TAG Theoretical and Applied Genetics,2006,113(8):1497-1504
    114. Mohler V, Hsam S, Zeller F and Wenzel G. An STS marker distinguishing the rye‐derivedpowdery mildew resistance alleles at the Pm8/Pm17locus of common wheat. Plant Breeding,2001,120(5):448-450
    115. Mujeeb-Kazi A, Roldan S, Suh D, Sitch LA and Farooq S. Production and cytogenetic analysis ofhybrids between Triticum aestivum and some caespitose Agropyron species. Genome,1987,29(4):537-553
    116. Mukai Y, Friebe B, Hatchett J, Yamamoto M and Gill B. Molecular cytogenetic analysis ofradiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detectionof rye chromatin specifying resistance to Hessian fly. Chromosoma,1993,102(2):88-95
    117. Pedersen C and Langridge P. Identification of the entire chromosome complement of bread wheatby two-colour FISH. Genome,1997,40(5):589-593
    118. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ,Worland AJ and Pelica F.'Green revolution'genes encode mutant gibberellin response modulators.Nature,1999,400(6741):256-260
    119. Perugini L, Murphy J, Marshall D and Brown-Guedira G. Pm37, a new broadly effective powderymildew resistance gene from Triticum timopheevii. TAG Theoretical and Applied Genetics,2008,116(3):417-425
    120. Peterson C, Graybosch R, Baenziger P, McVey D and Moreno-Sevilla B. The1BL/1RStranslocation: agronomic performance of F3-derived lines from a winter wheat cross. Crop Science,1995,35(4):1051-1055
    121. Peusha H, Enno T and Priilinn O. Chromosomal location of powdery mildew resistance genes andcytogenetic analysis of meiosis in common wheat cultivar Meri. Hereditas,2000,132(1):29-34
    122. Purnhauser L, Bóna L and Láng L. Occurrence of1BL.1RS wheat-rye chromosome translocationand of Sr36/Pm6resistance gene cluster in wheat cultivars registered in Hungary. Euphytica,2011,1-9
    123. Qi L, Echalier B, Chao S, Lazo G, Butler G, Anderson O, Akhunov E, Dvo ák J, Linkiewicz A andRatnasiri A. A chromosome bin map of16,000expressed sequence tag loci and distribution ofgenes among the three genomes of polyploid wheat. Genetics,2004,168(2):589-597
    124. Qi L, Pumphrey M, Friebe B, Zhang P, Qian C, Bowden R, Rouse M, Jin Y and Gill B. A novelRobertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effectiveagainst race Ug99from Dasypyrumvillosum into bread wheat. TAG Theoretical and AppliedGenetics,2011,1-9
    125. Qi X, Cui F, Yu L, Ding A, Li J, Chen G and Wang H. Molecular Tagging Wheat PowderyMildew Resistance Gene Pm21by EST-SSR and STS Markers. Molecular Plant Breeding,2010,1(0):28-36
    126. Qi Z, Du P, Qian B, Zhuang L, Chen H, Chen T, Shen J, Guo J, Feng Y and Pei Z.Characterization of a wheat–Thinopyrum bessarabicum (T2JS-2BS·2BL) translocation line. TAGTheoretical and Applied Genetics,2010,121(3):589-597
    127. Rabinovich S. Importance of wheat-rye translocations for breeding modern cultivar of Triticumaestivum L. Euphytica,1998,100(1):323-340
    128. Ren S, McIntosh R and Lu Z. Genetic suppression of the cereal rye-derived gene Pm8in wheat.Euphytica,1997,93(3):353-360
    129. Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW and Angus WJ. Raising yieldpotential in wheat. Journal of Experimental Botany,2009,60(7):1899-1918
    130. Rogers SO and Bendich AJ. Extraction of DNA from milligram amounts of fresh, herbarium andmummified plant tissues. Plant molecular biology,1985,5(2):69-76
    131. Rong J, Millet E, Manisterski J and Feldman M. A new powdery mildew resistance gene:introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica,2000,115(2):121-126
    132. Rozen S and Skaletsky H. Primer3on the WWW for general users and for biologist programmers.Methods Mol Biol,2000,132(3):365-386
    133. Saal B and Wricke G. Development of simple sequence repeat markers in rye (Secale cereale L.).Genome,1999,42(5):964-972
    134. Schlegel R and Meinel A. A quantitative trait locus (QTL) on chromosome arm1RS of rye and itseffect on yield performance of hexaploid wheat. Cereal Research Communications,1994,22(7):1-7
    135. Schulz-Schaeffer J and Haller S. Alien chromosome addition in durum wheat. II. Advancedprogeny. Genome,1988,30(3):303-306
    136. Schwarzacher T, Anamthawat-Jonsson K, Harrison G, Islam A, Jia J, King I, Leitch A, Miller T,Reader S and Rogers W. Genomic in situ hybridization to identify alien chromosomes andchromosome segments in wheat. TAG Theoretical and Applied Genetics,1992,84(7):778-786
    137. Sears E and Gustafson J. Use of radiation to transfer alien chromosome segments to wheat. CropScience,1993,33(5):897-901
    138. Sears ER (1973). Agropyron-wheat transfers induced by homoeologous pairing.
    139. Sebesta E and Wood E (1978). Transfer of greenbug resistance from rye to wheat with X-rays.Agron Abst,61-62
    140. Sebesta E, Wood Jr E, Porter D, Webster J and Smith E. Registration of Amigo wheat germplasmresistant to greenbug. Crop Sci,1995,35:293-301
    141. Sepsi A, Molnár I, Szalay D and Molnár-Láng M. Characterization of a leaf rust-resistantwheat–Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH andFISH. TAG Theoretical and Applied Genetics,2008,116(6):825-834
    142. Sharma D and Knott D. The transfer of leaf-rust resistance from Agropyron to Triticum byirradiation. Canadian Journal of Genetics and Cytology (Canada),1966,8:388-396
    143. Sharma H, Ohm H, Goulart L, Lister R, Appels R and Benlhabib O. Introgression andcharacterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat.Genome,1995,38(2):406-413
    144. Shi F and Endo TR. Genetic induction of structural changes in barley chromosomes added tocommon wheat by a gametocidal chromosome derived from Aegilops cylindrica. Genes&geneticsystems,1999,74(2):49-54
    145. Shiva V (1991). The violence of the green revolution: Third World agriculture, ecology, andpolitics, Zed Books.195-198
    146. Smith D. Intergeneric hybridization of cereals and other grasses. J. Agric. Res,1942,64:33-47
    147. Snape J, Parker B, Simpson E, Ainsworth C, Payne P and Law C. The use of irradiated pollen fordifferential gene transfer in wheat (Triticum aestivum). TAG Theoretical and Applied Genetics,1983,65(2):103-111
    148. Sun S. The approach and methods of breeding new varieties and new species from Agrotriticumhybrids. Acta Agron Sin,1981,7:51-58
    149. Tang S, Li Z, Jia X and Larkin P. Genomic in situ hybridization (GISH) analyses of Thinopyrumintermedium, its partial amphiploid Zhong5, and disease-resistant derivatives in wheat. TAGTheoretical and Applied Genetics,2000,100(3):344-352
    150. Varshney RK, Sigmund R, B rner A, Korzun V, Stein N, Sorrells ME, Langridge P and Graner A.Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, ryeand rice. Plant Science,2005,168(1):195-202
    151. Villareal R, Rajaram S, Mujeeb‐Kazi A and Toro E. The effect of chromosome1B/1Rtranslocation on the yield potential of certain spring wheats (Triticum aestivum L.). Plant Breeding,1991,106(1):77-81
    152. Wang C, Bie T, Chen Q, Cao A and Chen P. Development and application of molecular markersspecific to chromosome6VS of Haynaldia villosa. Acta Agronomica Sinica,2007,33(10):1595
    153. Wang J, Liu W, Wang H, Li L, Wu J, Yang X, Li X and Gao A. QTL mapping of yield-relatedtraits in the wheat germplasm3228. Euphytica,2011,1-16
    154. Wang J, Wang H, Liu W, Wu J and Li L. The large kernel number in the novel wheat-Agropyrongermplasm3228and its inheritance analysis. Sci Agric Sin,2009,42:1889-1895
    155. White WJ. Intergeneric crosses between Triticum and Agropyron. Scientific Agriculture,1940,21:198-232
    156. W Wienhues, A.,1966. Transfer of rust resistance of Agropyron to wheat by addition substitutionand translocation. p.328-341. In: J. MacKey (Ed). Proc.2nd Int. Wheat Genet. Symp. HereditasSuppl. Vol.2, Lund, Sweden.
    157. William M and Mujeeb-Kazi A. Thinopyrum bessarabicum: biochemical and cytological markersfor the detection of genetic introgression in its hybrid derivatives with Triticum aestivum L. TAGTheoretical and Applied Genetics,1993,86(2):365-370.
    158. William M and Mujeeb-Kazi A. Biochemical and molecular diagnostics of Thinopyrumbessarabicum chromosomes in Triticum aestivum germ plasm. TAG Theoretical and AppliedGenetics,1995,90(7):952-956
    159. Woodger FJ, Gubler F, Pogson BJ and Jacobsen JV. A Mak‐like kinase is a repressor ofGAMYB in barley aleurone. The Plant Journal,2003,33(4):707-717
    160. Wu J, Yang X, Wang H, Li H, Li L, Li X and Liu W. The introgression of chromosome6Pspecifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. TAGTheoretical and Applied Genetics,2006,114(1):13-20
    161. Wu M, Zhang J, Wang J, Yang X, Gao A, Zhang X, Liu W and Li L. Cloning and characterizationof repetitive sequences and development of SCAR markers specific for the P genome ofAgropyron cristatum. Euphytica,2010,172(3):363-372
    162. Xie W, Ben-David R, Zeng B, Dinoor A, Xie C, Sun Q, R der MS, Fahoum A and Fahima T.Suppressed recombination rate in6VS/6AL translocation region carrying the Pm21locusintrogressed from Haynaldia villosa into hexaploid wheat. Molecular Breeding,2011,1-14
    163. Xin Z, Brettell R, Cheng Z, Waterhouse P, Appels R, Banks P, Zhou G, Chen X and Larkin P.Characterization of a potential source of barley yellow dwarf virus resistance for wheat. Genome,1988,30(2):250-257
    164. Xu H, Yin D, Li L, Wang Q, Li X, Yang X, Liu W and An D. Development and Application ofEST-Based Markers Specific for Chromosome Arms of Rye ( Secale cereale L.).Cytogenetic and Genome Research,2012,37(1):13-21
    165. Yan H, Yang W, Zhang W and Liu D. Preliminary study on differential expression of wheat leafrust resistance gene Lr38. Journal of Agricultural Science and Technology,2007,9(3):118-120
    166. Yu JK, La Rota M, Kantety R and Sorrells M. EST derived SSR markers for comparative mappingin wheat and rice. Molecular genetics and genomics,2004,271(6):742-751
    167. Zeller, F. J.,1973.1B/1R wheat-rye chromosome substitutions and translocations. p.209-221. In:E. R. Sears&L. M. S. Sears (Eds). Proc.4th Int. Wheat. Genet. Symp. Univ. of Missouri,Columbia, USA.
    168. ZHANG A. ZHANG Jun-zu, LIU Feng-qin, WANG Bin-long, ZHAO Hui-li, LUO Hong-xi.Analysis of Combining Ability and Genetic Model on Spike Length and Number of Spikelets ofSuper Large Spike Wheat [J]. Journal of Triticeae Crops,2006,4(1):25-31
    169. Zhang J, Liu T, Fu J, Zhu Y, Jia J, Zheng J, Zhao Y, Zhang Y and Wang G. Construction andapplication of EST library from Setaria italica in response to dehydration stress. Genomics,2007,90(1):121-131
    170. Zhang JY, Li XM, Wang RRC, Cortes A, Rosas V and Mujeeb‐Kazi A. Molecular CytogeneticCharacterization of Eb‐Genome Chromosomes in Thinopyrum bessarabicum Disomic AdditionLines of Bread Wheat1. International Journal of Plant Sciences,2002,163(1):167-174
    171. Zhang Z, Lin Z and Xin Z. Research progress in BYDV resistance genes derived from wheat andits wild relatives. Journal of Genetics and Genomics,2009,36(9):567-573
    172. Zhenglong R. Effect of Wheat Genetic Background on the Expression of the Rye Gene Lr26forResistance to Leaf Rust in Wheat [J]. Acta Genetica Sinica,1993,4(2):123-129
    173. Zou HD, Wu Y, Liu HK, Lin Z, Ye XS, Chen X and Yuan YP. Development and identification ofwheat–barley2H chromosome translocation lines carrying the Isa gene. Plant Breeding,2012,131(1):69-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700