小麦冰草异源染色体易位的原位杂交与分子标记鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦产量三要素中穗粒数是最具提高潜力的因素。小麦野生近缘植物冰草不仅具有抗逆、抗病等优良性状,而且具有多分蘖、多花多粒等丰产特性。将冰草携带的优异基因转入小麦,是拓宽小麦遗传基础、提高产量的有效途径。本研究利用原位杂交和分子标记对电离辐照和山羊草杀配子染色体诱导产生的小麦-冰草异源染色体易位进行鉴定,研究结果如下:
     1、对杀配子染色体诱导小麦-冰草6P附加系产生的异源易位株系进行GISH鉴定,在F3代共获得18个易位株。F3、F4代共获得10个纯合易位株系。利用辐照4844-12/藁城8901杂交种的方法,在M4代中共获得两种大小片段相互易位和端部易位3种易位类型。
     2、利用双色GISH-FISH或双色FISH-GISH二次杂交方法对小麦-冰草6P异源易位系中参与易位的小麦染色体进行鉴定,结果表明:冰草6P染色体与小麦染色体的重组涉及小麦A、B、D 3个基因组,其重组频率A组>B组>D组。确定了其中8个异源易位系涉及小麦1A、2A、5A、3B、6B和3D共6条染色体。
     3、利用GISH方法筛选,鉴定出18个不同长度的6P染色体缺失系。
     4、利用实验室开发的3个冰草P基因组特异SCAR标记和6个冰草6P染色体特异的STS标记对82份具有大穗多粒表型而GISH检测阴性的辐照M4代渐渗系进行检测,共检测出52株(63.41%)阳性植株,证明这些渐渗系中携带有P染色质。SCAR标记的检测频率(36株,43.90%)高于STS标记(29株,35.37%)。
     5、利用整臂易位系对本实验室开发的冰草6P染色体特异STS标记进行定位,确定了12个标记所属的染色体臂,其中6个为6PS特异标记,6个位6PL特异标记。利用非整臂易位系和缺失系,对其中7个标记进行了更为细致的定位。
     6、通过电离辐照获得的6P易位系农艺性状比杀配子方法诱导的易位(渐渗)系材料农艺性状总体表现较好,其中M4-442、M4-757等19株(23.17%)渐渗系的穗粒数超过100粒,具有应用前景。
     7、对杀配子染色体诱导的小麦-冰草2P附加系F2代进行GISH鉴定,获得14个小麦-冰草2P异源易位,易位频率为5.34%。其中包括整臂易位6株、大片段易位1株、端部易位3株、中间插入易位2株和双着丝点易位2株。
     本研究获得的小麦-冰草6P异源易位系、缺失系和渐渗系为小麦穗粒数的遗传改良和基础研究提供了新材料。6P特异标记的开发和定位能够辅助快速追踪和鉴定小麦背景的6P异染色质,从而为冰草6P染色体物理图谱的绘制和多粒基因的定位与克隆奠定基础。
The kernel number per spike is the most important factor of the many potential characteristics that determine wheat yield. Agropyron cristatum (L.) Gaertn., a wild relative of wheat, is resist to abiotic stress, major diseases and has many high-yield characteristics, e.g. more tillers, more spikelets and more florets. Transfer the excellent gene(s) from A. cristatum to wheat, is an effective mothed to widen the wheat genetic background and improve the wheat yield. In this research, wheat-A. cristatum alien translocation lines induced by ionizing radiation and gametocidal chromosome were identified by GISH and molecular markers. The results are as following:
     1. Eighteen translocation lines were obtained in F3 of wheat-A. cristatum alien translocation lines induced by gametocidal chromosome and ten homozygous translocation lines in F3 and F4 were detected by GISH. There were two types of reciprocal translocation and one terminal translocation of M4 of irradiated hybrid seeds (4844-12/Gaocheng8901).
     2. The two-color GISH-FISH or twice hybridization of two color FISH-GISH showed that A. cristatum chromosome 6P could be translocated to wheat ABD genome, and the recombination frequency occurred with A and B genomes was higher than which with D genome. Wheat chromosomes involved in the eight translocaion lines were identified clearly, including 1A, 2A, 5A, 3B, 6B and 3D.
     3. We also obtained eighteen deletion lines with different length of chromosome 6P by GISH.
     4. Three P genome-specific SCAR markers and six 6P-specific STS markers were used to identify 82 M4 introgression lines with characteristics of more spikelets and more florets but no GISH signals. We selected fifty-two positive plants (63.41%). The positive frequency detected by SCAR markers (36 plants, 43.90%) was higher than STS markers (28 plants, 34.14%).
     5. Utilized the whole-arm translocation lines, partial of the STS markers were mapping on the chromosome 6P. The results identified 12 STS markers belong to the short or the long arm. Six of them were 6PS-specific markers, and others were 6PS-specific markers. Seven of them were identified more elaborate utilized the fragment translocation lines and deletion lines.
     6. The translocation (introgression) lines induced by irradiate had the better agronomic features. The kernel number per spike of 19 introgression lines (23.17%) exceeds 100. These lines could be utilizaed directly in the wheat inprovement.
     7. Fourteen wheat-A. cristatum 2P translocation lines were detected in F2 progeny, and the frequency of translocation was 5.34%, including 6 plants of whole-arm translocation, 1 plant of large fragment translocation, 3 plants of terminal translocation, 2 plants of intercalary translocation and 2 plants of dicentric translocation.
     The wheat-A. cristaum 6P translocation, deletion and introgression lines obtained in this study had provided novel material for genetic improvement of kernels number per spike and basic researches of wheat. The development and location of the 6P-specific markers will be useful of tracing quickly and identifying the 6P chromatin in wheat background, which laid the foundation for constructing the physical map of 6P chromosome and locating and cloning the multi-kernel gene(s).
引文
1.白建荣,刘润堂,郭秀荣.用AFLP标记鉴定带有簇毛麦抗白粉病基因的小麦易位系.华北农学报,2000,15(4):29-34
    2.白瑞珍,王同昌,韩方普.小麦远缘杂交现状.黑龙江农业科学. 1990(4):27-30
    3.戴景瑞,谢友菊,卢江,等.玉米RFLP遗传图谱的构建及矮生基因定位.科学通报,1999(20):2178-2182
    4.“超高产多抗小麦与燕麦族属间杂种狗的种质与品种的研究利用”座谈纪要.种子, 1991(3):67-68
    5.董玉琛,郑殿升.中国小麦遗传资源.北京:中国农业出版社,2000
    6.董玉琛.小麦的基因源.麦类作物学报,2000,20(3):78-81
    7.范玲,王冬梅,师维军,马盾,王娟,吕萌,李建平,秦超,袁辉. TRAP分子标记在棉花海陆渐渗杂交后代选择中的应用研究.新疆农业科学,2009,46(4):784-788
    8.谷安琳,云锦凤.冰草属植物在内蒙古干草原的建植试验.中国草地,1994(3):37-41
    9.郭本兆.中国植物志,1987,第九卷,第三分册,pp.7-119.科学出版社
    10.何中虎,张爱民.中国小麦育种研究进展.北京:中国科学技术出版社,2000
    11.纪剑辉,曹爱忠,王海燕,覃碧,王苏玲,孔芳,陈佩度,刘大钧,王秀娥.利用基于PCR的分子标记区分普通小麦-提莫菲维小麦渐渗系.遗传, 2007,29(10):1256-1262
    12.金善宝.中国小麦品种志(1983-1993).北京:中国农业出版社,1997
    13.金善宝.中国小麦学.北京,中国农业出版社,1996,487-489
    14.雷和田,赵云云,王景林.小麦×羊草远缘杂交的受精和胚胎发育.华北农学报,1997,12(2):
    29-32
    15.李集临,徐香玲,徐萍等.利用中国春-山羊草2C二体附加系与中国春-燕麦草5E二体附加系杂交诱发染色体易位和缺失.遗传学报,2003(4):345-349
    16.李集临,王宁,郭东林,郭长虹,徐香玲.小麦-黑麦染色体代换的研究.植物研究,2002,
    22(2):220-224
    17.李集临,徐香玲.细胞遗传学.北京,科学出版社,2005
    18.李立会,李秀全,李培等.小麦-冰草异源附加系的创建. I. F3、F2BC1、BC4和BC3F1世代的细胞学.遗传学报,1997,24:154-159
    19.李立会,董玉琛.普通小麦与沙生冰草属间杂种的差生及细胞遗传学研究.中国科学(B辑),1990,5:492-496
    20.李立会,董玉琛.在组织培养中属间杂种的体细胞变异研究.中国农业科学,1995,28(6):9-19
    21.李立会,李秀全,孔令让,张继益,董玉琛,宁布.锡林郭勒草原上的冰草属植物.作物品种资源,1996(4):9-11
    22.李立会,李秀全等.小麦种质资源描述规范和数据标准.北京:中国农业出版社,2006
    23.李生强,窦秉德,侯北伟,等.小麦雌性不育基因的SSR多态性标记.新疆农业大学学报,2005,28(3):9-12
    24.李万隆,李振声,穆素梅.小麦品种小偃6号染色体结构变异的细胞学研究.遗传学报,1990,17(6):430-437
    25.李义文,唐顺学,赵铁汉等.利用两个小麦异源二体代换系杂交创造易位系.科学通报,1999,44(10):1052-1055
    26.李振岐,商鸿生.中国农作物抗病性及其利用.北京:中国农业出版社,2005,210-220
    27.李振岐,曾士迈.中国小麦锈病.中国农业出版社,2002
    28.李振声.小麦远缘杂交.北京:科学出版社,1985
    29.沈新莲,朱静,张香桂,张保龙,曹志斌,杨郁文,徐鹏,徐英俊,倪万潮.棉属野生种克劳茨基棉(Gossypium klotzschianum)基因组向陆地棉的渐渗.棉花学报,2008,20(4):256-263
    30.孙善澄.小偃麦新品种与中间类型的选育途径、程序和方法.作物学报,1981,7(1):1-3
    31.孙光祖,陈义纯,张月学,尚志敏,王广金,阎文义,唐凤兰.辐射选育小麦易位系的研究.核农学报,1990,4(1):1-6
    32.万安民,赵中华,吴立人,等.2002年我国小麦条锈病发生回顾.植物保护,2003,29(2):5-8
    33.王洪刚,李丹丹,等.抗白粉病小偃麦异代换系的细胞学和RAPD鉴定.西北植物学报,2003,23(2):280-284
    34.王家利,崔建海,郑宏伟,田纪春,丁兆堂,张炳乾.超级小麦育种计划的可行性分析及其育种新方法构想.科技导报,2001(10):54-56
    35.王晓光,杨国辉,郭勇,刘伟华,杨欣明,高爱农,李秀全,李立会.利用电离辐照创造小麦-冰草异源多粒新种质的初步研究.植物遗传资源学报,2008,9(3):288-292
    36.辛志勇,徐惠君,陈孝等.应用生物技术向小麦导入黄矮病抗性的研究.中国科学(B辑),1991,1:36-42
    37.薛秀庄, Richard R C Wang.用RAPD和染色体原位杂交检测Elymus rectisetus染色体附加到普通小麦中.遗传学报,1999,26(5):539-545
    38.姚景侠.小麦细胞与分子遗传研究.南京:南京出版社,2000,143-181,209-271
    39.袁建华,陈佩度,刘大钧.利用杀配子染色体创造普通小麦-大赖草易位系.中国科学C辑,2003(2):110-117
    40.于卓,云锦凤,马有志.几种小麦族禾草及其杂交后代基因组DNA的RAPD研究.草地学报,1999(7):287-292
    41.张娜,杨文香,李亚宁,等.小麦抗叶锈病基因Lr45的SSR分子标记.作物学报,2007,33(4):657-662
    42.张学勇.普通小麦异源易位系的产生及利用.遗传,1991,13(5):39-44
    43.张志清,郑有良,魏育明,等.四川主栽小麦品种遗传多样性的SSR标记研究.麦类作物学报,2002(2):8-12
    44.周兖晨,吴立人.滨麦抗条锈病基因的染色体定位和分子标记.遗传学报,2001,28(9):864-869
    45.庄巧生.中国小麦品种改良及系谱分析.北京:中国农业出版社. 2003
    46. Banks PM, Larkin PJ, Bariana HS et al. The use of cell culture for subchromosomal introgressionsof barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome, 1995, 38:395-405
    47. Biagetti M, Vitellozzi F, Ceoloni C. Physical mapping of wheat-Aegilops Longissima breakpoints in mildew-resistant recombinant lines using FISH with highly repeared and low-copy DNA probes. Genome, 1999, 42:1013-1019
    48. Bothmer R von, Claesson L. The hybrid Triticum turgidum ssp. dicoccum×Dasypyrum villosum and the cross and backcrosses to breadwheat, T. aestivum. Hereditas, 1998, 128:47-52
    49. Bothmer R von, Claesson L. Production and meiotic pairing of intergeneric hybrids of Triticum×Dasypyrum species. Euphytica, 1990, 51:109-117
    50. Botstein D R ,White R L ,Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980 ,32 :314 -331
    51. Chen PD, Liu WX, Yuan JH, Wang X, Zhou B, Wang SL, Zhang SZ, Feng YG, Yang BJ, Liu GX, Liu DJ, Qi LL, Zhang P, Friebe B, Gill BS. Development and characterization of wheat-Leymus racemosus translocation lines with resistance to Fusarium Head Blight. Theor Appl Genet, 2005, 111:941-948
    52. Chen PD, Liu DJ. Cytogenetieal studies of hybrid progenies between Triricum aestivum and Haynaldia villosa. Nanjing Agri Coll, 1982, 4:1-16
    53. Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ. Development and molecular cytogenetic analysis of wheat-Haynaldia villdsa 6VS/6AL transloeation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995, 91:1125-1128
    54. Chen Q, Amstrong KC. Genomic in situ hybridization in Avena sativa. Genome, 1994, 37:607-612
    55. Chen Q, Conner RL, Laroche A. Molecular characterization of Haynaldia villosa chromatin in wheat lines carrying resistance to wheat curl mite colonization. Theor Appl Genet, 1996, 93:679-684
    56. Chen Q., Jahier J., Cauderon, Y. Production and cytogentic studies of hybrids between Triticum aestivum (L.) Thell and Agropyron cristatum (L.) Gaertn. C.R. Acad. Sci. Ser. 3, 1989, 308: 411-416
    57. Chen X, Shi AN, Shang LM, Leath S, Murphy JP. The resistanee reaction of Haynaldia villosa to powdery mildew isolates and its expression in wheat background. Acta Phytopathol Sin, 1997, 27(l):17-22
    58. Dewey DR. The genomic system of classification as a guide to intergeneric hybirdization with the perennial triticeae. In: Gustafeson J.P. (Ed.), Gene Manipulation in Plant Improvement. Plenum Press, New York, 1984:209-279
    59. Dhaliwal AS, Mares DJ, Marshall DR. Effect of 1B/1R chromosome translocation on milling and quality characteristic of bread wheat. Cereal Chem, 1987, 64:72-76
    60. Dong YS, Zhou RH, Xu SJ, etc. Desirable characteristics in perennial triticeae collected in China for wheat improvement. Hereditas, 1992, 116:175-178
    61. Doniskeller H, Green P , Helms C , et al. A genetic linkage map of the human genome. Cell,1987,51:319 -377
    62. Dubcovsky J, Lukaszewski AJ, Echaide M, Antonelli EF, Porter DR (1998) Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci 38:1655-1660
    63. Durnam DM, Gelinas RE, Myerson D. Detection of species chromosomes in somatic cell hybrids. Somatic Cell Genet, 1985, 11:571-577
    64. Dvorak J, Knott DR. Location of a Triticum speltoids chromosome segment conferring resistance to lesf rust in Triticum aestivum. Genome, 1990, 33:892-897
    65. Endo TR, Gill B S. The deletion stocks of common wheat. Heredity, 1996, 87:295-307
    66. Endo TR, Tsunewaki K. Sterility of common wheat with Aegilops triuncialis cytoplasm. Heredity, 1975, 66:13-18
    67. Endo TR. Induction of chromosomal structural changes by a chromosome of Aegilops cylindrical in common wheat. Hereditas, 1988, 79:366-370
    68. Endo TR. Rewiew gametocidal chromosome and their induction of chromosome mutation in wheat. Jpn J Genet., 1990, 65:135-152
    69. Endo TR. The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Research, 2007, 15:67-75
    70. Eser V. Characterisation of powdery mildew resistant lines derived from crosses between Triticum aestivum and Aegilops speltoides and Ae. Mutica. Euphytica, 1998, 100:269-272
    71. Friebe B, Jiang J, Paupp W J, et al. Characterization of wheat-alien translocation of conferring resisteance to diseases and pets currect status. Euphytica, 1996, 91:59-87
    72. Gall JG, Pardue ML. Formation and detection of RNA-DNA hybrid molecules cytological preparations. Proc Natl Acad Sci, 1969, USA, 63:378-383
    73. Gupta SK, Charpe A, Koul S, Prabhu KV, Haq QMR. Development and validation of molecular markers linked to an Aegilops umbelulata-derived leaf-rust-resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome, 2005, 48:823-830
    74. Helentjaris T, Slocum M, Wright S, et al. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet, 1986, 72:761-769
    75. Hernández P., Rubio MJ., and Martín A. RAPDs as molecular markers for the detection of Hordeum chilense chromosomes in wheat addition lines and in Tritordeum. Chromosome Res, 1995, 3: 100-105
    76. Hernández, P., Laurie, DA., Martín, A., Snape JW. Utility of barley and wheat simple sequence repeat (SSR) markers for genetic analysis of Hordeum chilense and tritordeum. Theor Appl Genet, 2002, 104(4):735-739
    77. Huang WN, Hoseney RC. Isolation and identification of a wheat flour compound causing sticky dough. Cereal Chem, 1999, 76(2):276-281
    78. Hsam SLK, Lapochkina IF, Zeller FJ. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triricum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilopsspeltoides translocation line. Euphytica, 2003, 133:367-370
    79. Hyde BB. Addition of individual Haynaldia villosa chromosomes to hexaploid wheat. Amer. Jour. Botany, 1953, 40:174-182
    80. Jia JZ, Zhou RH. Identifying the alien chromosomes in wheat-Leymus multicaulis derivatives using GISH and RFLP techniques. Euphytica, 2002, 127(2):201-207
    81. John HA, Birnstiel ML, Jones KW. Nature, 1969, 223(9):582-587
    82. Johnson DA. Seed and seedling relations of crested wheatgrass: A review. In: K.L. Johnson (Ed.), Crested wheatgrass: its values, problem and myths; symposium proceedings, Utah State Univ., Utah, Logan, 1986, pp:65-90
    83. Korzun, V., B?rner, A., Worland, A. J., et al. Application of microsatellite markers to distinguish intervarietal chromosome substitution lines of wheat (Triticum aestivum L.). Euphytica, 1997, 95:149-155
    84. Kynast RG et al. Fate of multicentric and ring chromosomes induced by a new gametocidal factor located on chromosome 4Mg of Aegilops geniculata. Theor Appl Genet., 2000, 101:51-58
    85. Lane R and Gill B C. Molecular identification of the D gene chromosomes of wheat. The Journal of Heredity, 1986, 77:253-255
    86. Lapitan NLV, Sears RG, Gill BS.Translocation and other karyotypic structural changes in wheat x rye hybrids regenerated from tissue culture. Theor Appl Genet, 1984, 68:547-554
    87. Lapitan NLV, Sears RG, Rayburn AL. Wheat-rye translocations detection of chromosome breakpoints by in situ hybridization with a biotin-1abelled DNA probe. J. Hered, l986, 77:415-419
    88. Larkin P J. From somatic variation to variant plants: mechanism and applications. Genome, 1989, 31:705-711
    89. Larkin P J. Somaclonal variation-a naval source of variability from cell cultures for plant improvement. Theor Appl Genet, 1981, 60:197-214
    90. Li H, Chen X, Xin zy, Ma YZ, Xu HJ, Chen XY, Jia X. Development and identification of wheat- Haynaldia villosa T6DL.6VS chromosome translocation lines conferring resistance to powdery mildew. Plant Breeding, 2005, 124:203-205
    91. Li HJ, Conner RL, Chen Q, Jia X, Li H, Graf RJ, Laroche A, Kuzyk AD. Different reactions to the wheat curl mite and wheat streak mosaic virus in various wheat-Haynaldia villosa 6V and 6VS lines. Plant Dis, 2002, 86:423-428
    92. Li LH, Li XQ, Li P, Dong YC, Zhao GS. Establishment of wheat-Agropyron cristatum alien additon lines:Ⅰ. Cytology of F3, F2BC1, BC4 and BC3F1 progenies. Acta Genet Sin, 1997, 24(2):154-159
    93. Li WL, Chen PD, Qi LL, Liu DJ. Isolation, chaaracterization and application of a species-specific repeated sequence from Haynaldia villosa. Theor Appl Genet, 1995, 90:526-533
    94. Limin AE, Fowler DB. An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome, 1990, 33:581-584
    95. Linde-Laursen I, Jensen HP and Jorgensen JH. Resistance of Triticale, Aegilops and Haynaldiaspecies to the take-all fungus, Gaeumannomyces graminis.Z. Pflanzenzüchtung, 1973, 70:200-213
    96. Liu DJ, Chen PD, Pei GZ, Wang YN, Qiu BX, Wang SL. Transfer of Haynaldia villsoa chromosome into Triticum aestivum. In: Proeeedings of 7th Intemational Wheat Geneties SymPosium. Cambridge, U.K. 1988:355-361
    97. Liu WH, Luan Y, Wang JC, Wang XG, Su JJ, Zhang JP, Yang XM, Gao AN, Li LH. Production and identification of wheat-Agropyron cristatum (1·4P) alien translocation lines. Genome, 2010, 53:472-481.
    98. Love A. Conspectus of the Triticeae. Feddes Report. 1984, 95:425-521
    99. Marais GF, Callum B, Snyman JE, Pretorius ZA, Marais AS. Leaf rust and stripe rust genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breeding, 2005, 124:538-541
    100. Martín-Sánchez JA, Gómez-Colmenarejo M, Del Moral J, Sin E, Montes MJ, González-Belinchón C, Lópenz-Braňa I, Delibes A. A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor Appl Genet, 2003, 106:1248-1255
    101. McCouch S R, Kochert G K,Yu Z H ,et al. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76:148-149
    102. Melderis A, Humphries CJ, Tutin TG, Heathcots SA. Tribe Triticeae Dumort. In: Flora Europaea, Vol. 5, T.G. Tutin et al., eds. Cambridge University Press, Cambridge, 1980, pp:190-206
    103. Monteove L. Pace DC, Jan CC, Scarascia Mugnozza GT, Qualset CO. Chromosomal location of isozyme and seed storage protein genes in Dasypyrum villosum (L.) Candargy. Theor Appl Genet, 1987, 73:836-845
    104. Montes MJ, Lópenz-Braňa I, Romero MD, Sin E, Andrés, Martín-Sánchez JA, Delibes A. Biochemical and genetic studies of two Heteodera avenae resistance genes transferred from Aegilops ventricosa to wheat. Theor Appl Genet, 2003, 107:611-618
    105. Moore S S, Sargeant L L,King T G,et a1.Conservation of dinucleotide mircrosatelletes among mammalian genomes allows use of heterologo PCR primer pairs in closely related species. Genomtics, 1991, 10:654-660
    106. Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 1993, 36: 489-494
    107. Murray TD, De La Pena RC , Yildirim A, Jones SS. A new source of resistance to Pseudocereasporella herpotricoides, cause of eye spot disease of wheat, located on chromosome 4V of Dasypyrum villosum. Plant Breeding, 1994, 113:281-286
    108. Pedersen C, langridge P. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome, 1997, 40:589-593
    109. Peil A. V. SchubertáE. SchumannáW. E. Weber. RAPDs as molecular markers for the detection of Aegilops mark grafiichromatin in addition and euploid introgression lines of hexaploid wheat. Theor Appl Genet, 1997, 94;934-940
    110. Peil A., Korzun V., Schubert V., Schumann E, Weber WE; R?der. The application of wheatmicrosatellites to identify disomic Triticum aestivum-Aegilops markgrafii addition lines. Theor Appl Genet, 1998, 96:138-146
    111. Pestsova, E., Salina, E., B?rner, A., et al. Microsatellites confirm the authenticity of intervarietal chromosome substitution lines of wheat (Triticum aestivum L.). Theor Appl Genet, 2000, 101(1-2):95-99
    112. Poland JA. Mapping of Aegilops tauschii derived leaf rust resistance genes in common wheat. Journal of Natural Resources and Life Science Education, 2003, 32:8-11
    113. Prasad M,Vamhney R K,Roy J K,et a1.The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor and Appl Genet, 2000, 100(3-4):584-592
    114. Qi LL, Cao MS, Chen PD, et al. Identification, mapping and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome, 1996, 39:191-197
    115. Qi LL, Chen PD, Liu DJ, et al. Development of translocation lines of Triticum aestivum with powdery mildew resistance introduced form Haynaldia villosa. Proc. 8th Int. Wheat. Genet.Symp. Beijing, China, 1993:333-337
    116. Qi LL, Chen PD, Liu DJ. The gene Pm21-a new source of resistance to wheat powdery mildew. Acta Agron Sin 1995, 21(3):257-262
    117. Schwarzacher T, Anamthawat-Jonsson L, Harrison GE. Genomic in situ hybridization to identity alien chromosome and chromosome segment in wheat. Theor Appl Genet, 1996, 93:697-684
    118. Schwarzlaff SS, Uriyo MG, Johnson JM, Barbeau WE, Griffer CA. Apparent dough stickiness of selected 1B/1R translocated soft wheat flours. Cereal Chem, 2001, 78(1):93-96
    119. Sears ER. Agropyron-wheat transfers induced by homoelogous pairing. In: Sears E.R., Sears L.M.S. (Eds), Proc 4th Int Wheat Genet Symp. Columbia, Missouri, 1973, pp: 191-199
    120. Sears ER. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol, 1956, 9:1-22
    121. Singh NK, Shepherd KW, Mcintosh RA. Linkage mapping of genes for resistance to leaf, stem, and stripe rusts and w-secalins on the short arm of rye chromosome 1R. Theor Appl Genet, 1990, 80:609-616
    122. Smith DC. Intergeneric hybridization of cereals and other grasses. J Agric Res, 1942, 54:33-47
    123. Sprague R. Relative susceptibility of certain species of Gramineae to Cercosporella herpotrichoides. J Agric Res, 1936, 53:659-670
    124. Stacbel M, Lelley T, Gmusgrubex H, t a1. Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor Appl Genet, 2000, 100(2):242-248
    125. Tadesse W, Schmolke M, Hsam SLK, Mohler V, Wenzel G, Zeller FJ. Molecular mapping of resistance genes to tan spot [Pyrenophora tritici-repentis race 1] in synthetic wheat lines. Theor Appl Genet, 2007, 114:855-862
    126. Tsujimoto, H.Tsunewaki, K. Proc. Of the 6th Int. wheat Genet. Symp. Kyoto, 1983:1077-1081
    127. Tzvelev NN. Triber 3. Triticeae Dum. In: Grasses of Soviet Union. New Deohi, Oxonian Pr. PVT. Ltd, 1983, pp. 146-298
    128. Villareal RL, Mujeeb-Kazi A, Rajarm S. Associated effects of chromosome 1B/1R translocation on agronomic traits in hexaploid wheat. Breed Sci, 1994, 44:7-11
    129. Wang R.R-C. Intergeneric hybrids involving perennial Triticeae. Genet. (Life Sci. Adv.), 1989, 8:57-64
    130. Wang ZG, An TG, Li JM. Fluorescent in situ hybridization analysis of rye chromatin in the background of“xiao yan No.6”. Acta Botanica Sinica, 2004, 46(4): 436-442
    131. White WJ. Intergeneric crosses between Triticum and Apropyron. Sci Agric, 1940, 21: 198-232
    132. Wieser H, Kieffer R, Lelley T. The infuence of 1B/1R chromosome translocation on gluten protein compisition properties of bread wheat. J Sci Food Agric, 2000, 80:1640-1647
    133. Yildirim A, Jones SS, Murray TD, Line RF. Evaluation of Dasypyrum villosum Populations for resistance to cereal eyespot and stripe rust pathogens. Plant Dis, 2000, 84:40-44
    134. Yildirim A, Jones SS, Murray TD. Mapping a gene conferring resistance to Pseudocercosporella herpotrichoides on chromosome 4V of Dasypyrum villosum in a wheat background. Genome, 1998, 41:l-6
    135. Zabeau M, Vos P,1992, European Patent Application 92402629 7 (Publication number: 0534858 A)
    136. Zeller FJ. 1B/1R wheat-rye chromosome substitution and translocations. In: Proc. 4th Intl Wheat Genet Symp. Sears ER and Sears L M S (eds), Univ. of Missouri, Columbia, USA, 1973, 209-221
    137. Zhang QP, Li Q, Wang XE, Wang HY, Lang SP, Wang YN, Wand SL, Chen PD, Liu DJ. Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS·4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica. 2005, 145:317-320
    138. Zhang X. Y., Dong Y. S., and Wang R. C. Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum×Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome, l996, 39:1062-l071
    139. Zhu ZD, Zhou RH, Kong XY, Dong YC, Jia JZ. Microsatellite markers identification of a Triticum aestivum-Aegilops umbellulata substitution line with powdery mildew resistance. Euphytica, 2006, 150:149-153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700