沥青路面有机硅预养护材料的性能表征与养护机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青路面的预防性养护日益引起公路管理部门及工作者的关注。目前国内外广泛应用的是基于乳化沥青基的预防性养护材料,而其他种类的预防性养护材料应用还比较有限。本文主要研究了有机硅预养护材料对沥青及沥青混合料的养护效果及机理。
     首先,采用接触角实验研究了有机硅预养护材料自身的憎水性能,然后通过简单渗透实验、渗水系数实验和冻融劈裂实验,研究了有机硅预养护材料在沥青混合料中的渗透与防水效果,并探讨了其防水养护机理。结果表明,有机硅预养护材料与水的接触角为93.6°,具有良好的憎水性能。当有机硅预养护材料用量为600ml/m2时,可使沥青混合料的渗水系数降为Oml/min。另外可以使得3次冻融循环后的沥青混合料的劈裂强度比提高7%-10%,表明有机硅预养护材料对沥青混合料具有良好的防水效果。
     其次,采用沥青紫外老化与沥青混合料长期热氧老化实验,评价了有机硅预养护材料对沥青及沥青混合料抗老化能力的影响。结果显示,有机硅预防性养护材料降低了紫外老化后沥青的复合模量及车辙因子,同时降低了长期热氧老化后沥青混合料的间接拉伸模量,提高了其抗低温开裂及疲劳性能,表明有机硅预养护材料可以减缓沥青的紫外老化及沥青混合料的热氧老化。
     最后,通过摆式摩擦仪与构造深度仪,分析了有机硅预养护材料对沥青混合料抗滑性能的影响,并且与改性乳化沥青封层的抗滑影响进行了对比分析。结果显示,有机硅预养护材料降低了沥青混合料的抗滑摆值8-12BPN、构造深度0.2mm,因此其明显降低了沥青混合料的抗滑能力,但其对沥青混合料抗滑性能的影响比改性乳化沥青封层要小。采用喷洒钢渣细料与橡胶粉的方法可以提高有机硅预养护材料处理后路面的抗滑摆值3-5BPN。此外,通过加速加载实验模拟了有机硅预养护材料在车辆荷载作用下的抗磨耗能力,结果表明有机硅预养护材料在加速加载条件下的磨耗损失与沥青膜一致,但是渗透入沥青混合料里面的有机硅预养护材料会继续存在,发挥其防水抗老化的作用。
     本文的研究结果表明有机硅预养护材料对沥青及其混合料具有良好的养护效果,为未来此类预养护材料在沥青路面中的进一步应用提供了指导。
Preventive maintenance of asphalt pavement is of increasing interest to highway agency and engineers, and many preventive maintenance materials based on emulsion asphalt are used all over the world, but other kinds of maintenance materials is limited. The objective of this paper is to investigate the effect of silicone maintenance materials on properties of asphalt and asphalt mixture and its maintenance mechanism.
     Firstly, contact angle test was conducted to evaluate the waterproof mechanism of silicone maintenance materials, and then the simple penetrate test, penetrability coefficient test and freezing-thawing test were used to evaluate the waterproof ability of silicone maintenance materials on asphalt mixture. The results show that contact angle between silicone maintenance materials and water is higher than 90°, which indicate silicone maintenance materials have excellent waterproof ability. In addition, the results also indicate the silicone maintenance materials can permeate into the void of asphalt mixture to prevent water form it.
     Furthermore, UV radiation aging test on asphalt and heat oxidative aging test on asphalt mixture were performed to evaluate the aging resistance of silicone maintenance materials. The results show that applying silicone maintenance materials decrease rutting parameter of UV radiation aged asphalt. What is more, the results also show that silicone maintenance materials can improve the low-temperature cracking resistance and fatigue resistance of aged asphalt mixture.
     Lastly, the effect of silicone maintenance materials on skidding resistance and polishing resistance of asphalt mixture were studied by means of British pendulum test, sand patch test as well as accelerated loading test. The results the silicone maintenance materials may decrease the skidding resistance of asphalt mixture to some degree, its still can meeting the requirements of China's specification. Moreover, the rubber powder and slag powder can be used to improve the skidding resistance of silicone maintenance materials seal on asphalt mixture. Accelerate loading tests show that silicone maintenance materials can still act as maintenance materials even when the surface of asphalt mixture is polished
     The result of this study mentioned above indicate that silicone maintenance materials exhibit excellent maintenance performance on asphalt mixture, which can support the applications of silicone maintenance materials in the future.
引文
[1].国家高速公路网规划(2004,).北京:人民交通出版社,2005..
    [2].沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社,2008.
    [3].沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001.
    [4].曾峰,张肖宁.沥青路面预防性养护技术研究进展及关键问题[J].中外公路,2009,29(4):74-79.
    [5]. AASHTO lead States Team on Pavement Preservation Research Protocols for Pavement Preservation. AASHTO Lead States Work Plan 1999.
    [6]. Peshkin D G, Hoerner T E, Zimmerman K A. Optimal Timing of Pavement Preventive Maintenance Treatment Applications.NCHRP Report 523 [R]. Washington D C: Transportation Research Board,2004,7-17.
    [7]. Pavement maintenance guideline. America:Foundation for Pavement Preservation, 2001:22-26.
    [8].黄颂昌.改性乳化沥青与微表处技术[M].北京:人民交通出版社,2010.
    [9].严金海;倪富健;陶卓辉;改性乳化沥青-水泥就地冷再生混合料性能研究[J].公路交通科技,2009,26(9):4l-45.
    [10].李占锋.沥青路面就地热再生技术应用[J].交通世界(建养.机械),2010,(05):92-94.
    [11]. California Department of Transportation (CADOT) "Fog Seal Guidelines," Caltrans Division of maintenance.2003,10
    [12].吴少鹏,李波.沥青路面防水抗油剂的研究与应用[J].武汉理工大学学报(交通科学与工程版),2005,29(5):663-666.
    [13].凌天清,周杰.沥青混凝土路面防水剂路面性能试验研究[J].西部交通科技.2006,(06):1-4.
    [14]. PAVEMENT PRESERVATION:PRACTICES. RESEARCH PLANS AND INITIATIVES NCHRP Project No.20-07, Task 184.
    [15]. Smith R.E, Freeman T and Pendleton O. Pavement Maintenance Effectiveness. Report No.SH-RP-H-358. Strategic Highway Research Program, National Research Council, Washington, D.C.,1993.
    [16]. Geoffroy D.N. NCHRP Synthesis of Highway Practice 223:Cost-Effective Preventive Pavement Maintenance. TRB, National Research Council, Washington, D.C,1996.
    [17]. Prapaitrakul N. Analyzes existing fog seal asphalts and additives:literature review. Report No. FHWA/TX-06/0-5091-1,2005.
    [18]. Galehouse, L. Innovative Concepts for Preventive Maintenance. In Transportation Research Record 1627, TRB, National Research Council, Washington, D.C.,1998, pp. 1-6.
    [19]. Liu L.T, Hossain M, Mille R.W. Costs and Benefits of Thin Surface Treatments on Bituminous Pavements in Kansas. Journal of the Transportation Research Record 2010,2150:47-54.
    [20].王恩成.沥青路面同步碎石封层材料组成及力学性能分析[J].公路交通科技(应用技术版),2010,(03):15-18.
    [21].居浩,黄晓明.微表处混合料性能影响因素研究[J].公路,2007,(07):212-218.
    [22].姜涛.罩面类预防性养护方法[J].交通世界(建养.机械),2008,(01):90-92.
    [23].幸松民,王一璐.有机硅合成工艺及产品应用.[M].北京:化学工业出版社,2000.
    [24].张徐,蒲波.有机硅涂料中有效基团剖析[J].辽宁建材,2004,(6):27-29.
    [25].罗运军,桂红星.有机硅树脂及其应用[M].北京:化学工业出版社,2002.
    [26]. D.N Little J.A Epps.The Benefit of Hydration Lime in hot mix asphalt[R]. National Lime Association,2001.
    [27]. M Anderson. Tests to assess the potential for moisture damage in asphalt mixture[R].Asphalt institute spring 2002 meeting, Houston.2002
    [28].杨若冲,梁锡三,赖用满.沥青路面水损害典型原因与对策[J].同济大学学报(自然科学版),2008,36(06):749-753.
    [29].魏焕芬.沥青路面水损害的形成机理及治理措施[J].交通世界(建养.机械),2010,(04):89-90.
    [30].韩宝林,靳亮.沥青路面水损害的预防性养护措施[J].油气田地面工程,2009,28(01):69-70.
    [31].孙顺杰,洪永顺,张琳.建筑表面用有机硅防水剂的制备及性能研究.化学建材,2008;24(3):32-35.
    [32].朱淮军.建筑用有机硅防水剂[J].有机硅材料,2007;21(6):338~340.
    [33].宋金伦,李迁,朱效荣等.有机硅混凝土防水剂的研究[J].辽宁建材,2006,(2):9-10.
    [34].王正烈,周亚平,李松林等.物理化学[M].高等教育出版社,2003.
    [35].宋付权.低渗透多孔介质和微管液体流动尺度效应[J].自然杂志,2004;26(3):128— 131.
    [36].但汉成,李亮,杨小礼等.基于渗流理论的沥青路面渗入率计算与分析[J].中南大学学报(自然科学版),2010,2(41):742-748.
    [37].张林洪,王苏达,吴培关等.沥青路面结构的渗透性能测试研究[J].中南公路工程,2005,30(3):10-14.
    [38].冯德成,易军艳,王东升.沥青混合料渗水特性的渗水研究[J].建筑材料学报,2010,13(2):182-187.
    [39]. Lu X.H, Isacsson U. Effect of ageing on bitumen chemistry and rheology[J]. Construction and Building Materials,2002,16 (1):15-22.
    [40]. Kliewer J.E, Bell C.A, Sosnovske D.A. Investigation of the relationship between field performance and laboratory aging properties of asphalt mixtures[J]. ASTM STP 1995,(1265):3-20.
    [41]. Edwards Y, Tasdemirand Y, Isacsson U. Influence of Commercial Waxes on Bitumen Aging Properties[J]. Energy & Fuels,2005,19 (6):2519-2525.
    [42]. Airey G D, Browm S F. Rheological performance of aged polymer modified bitumen [J]. Association of Asphalt Paving Technologists,1998,67:66-93.
    [43].陈华鑫,周燕,王秉纲.SBS改性沥青老化后的动态力学性能[J].长安大学学报(自然科学版),2009,29(2):1-6.
    [44].胡兴安.沥青路面还原剂预养护技术的研究[J].四川建筑,2010,30(2):230-233.
    [45].李春雷,张天.一种沥青路面预防性养护的好方法——沥青路面封涂层[J].交通标准化,2006,(10):119-121.
    [46]. Michalica P, Kazatchkov I.B, Stastna J, Zanzotto L. Relationship between chemical and rheological properties of two asphalts of different origins[J]. Fuel 2005; 87(6): 3247-3253.
    [47]. Ruan Y.h, Richard R.D, Charles J.G. The effect of long-term oxidation on the rheological properties of polymer modified asphalts[J]. Fuel,2003; 82(5):1763-1773.
    [48]. Peter E. Sebaaly, Andrew Lake, Jon Epps. Evaluation of Low-Temperature Properties of HMA Mixtures[J]. J. Transp. Engrg,2001,28(6):578-586.
    [49]. Hassan B, Herve D.B, Pierre C. Effect of binder characteristics on fatigue of asphalt pavement using an intrinsic damage approach[J]. Road Mater Pav Des,2005,6(2):147-174.
    [50]. Hilde S, Chantal D, Per R. Fatigue behavior of bituminous materials:from binders to mixes[J]. Road Mater Pav Des,2003,4(1):7-27
    [51]. Davis, R.M, Flintsch, G.W, Al-Qadi, I.L.K et.al. Effect of Wearing Surface Characteristics on Measured Pavement Skid Resistance and Texture. Presented at 81st Transportation Research Board Annual Meeting, Washington, D.C.2002
    [52]. Chelliah, T, Stephanos P, Shah, M.G et.al. Developing a Design Policy to Improve Pavement Surface Characteristic. Presented in Transportation Research Board 82nd Annual Meeting, Washington, D.C.2003
    [53]. Hall, J.W., Glover, L.T., Smith, K.L. et.al. Guide for Pavement Friction. Project No. 1-43, Final Guide, National Cooperative Highway Research Program, Transportation Research Board Research Council, Washington, D.C.2006
    [54]. Noyce D.A., Bahia, H.U., Yambo, J.M et.al. Incorporating Road safety into Pavement Management:Maximizing Asphalt Pavement Surface FrictioRoad Safety Improvements. Midwest Regional University Transportation Center Washington, D.C.2005
    [55]. Masad E, Rezaei A, Chowdhury A. Predicting asphalt mixture skid resistance based on aggregate characteristics[R]. Report No. FHWA/TX-09/0-5627-1 report 2009,8.
    [56]. Ibrahim M.A. Evaluating skid resistance of different asphalt concrete mixes[J]. Building and Environment 2007,42(1):325-329.
    [57]. Fwa, T.F, Choo, Y.S, Liu YR. Effect of Aggregate Spacing on skid resistance of asphalt pavement. Journal of Transportation Engineering,2003,129(4):420-426.
    [58]. Ong G.P, Fwa T.F, Guo J. Modeling Hydroplaning and Effects of Pavement Microtexture. Presented at Transportation Research Board 84th Annual Meeting.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700