大瑞铁路高黎贡山越岭段(高地震烈度区)地质灾害易发性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大瑞铁路穿行于青藏高原南东缘之横断山脉南段,它是我国第一条穿越横断山脉的国家Ⅰ级铁路线。研究区高黎贡山越岭段地质环境条件复杂,崩、滑、流等地质灾害极为发育,伴随着西部大开发战略的贯彻落实,各种线性工程(公路、铁路、石油管道等)在高黎贡山地区大规模建设,工程地质评价备受关注。汶川8.0级特大地震给国家的基础设施造成了巨大破坏,经济损失严重,救援工作难以正常开展。因此,论文针对铁路线选线工作需要,对研究区进行降雨工况、强震+降雨工况地质灾害易发性评价。
     论文在充分分析野外地质灾害调查资料的基础上,总结了研究区地质灾害类型及分布规律,归纳了地质灾害易发性影响因素。结合汶川8.0级地震诱发地质灾害分布规律提出的“三种因素十大效应”及龙陵7.4级地震地质灾害发育特征,建立了以历史因素、基本因素和诱发因素为一级评价指标的降雨工况和强震+降雨工况评价指标体系。相比降雨工况,后者多考虑了与地震有关的断层控制因素。两种工况均选取模糊综合评判模型作为基本数学模型,采用层次分析法(AHP)确定评价指标权重。评价过程基于ArcGIS软件工作平台,将1:50000比例尺航片解译地质图按50m×50m划分为约149万个评价单元,选择怒江断裂、泸水-瑞丽断裂、龙陵-澜沧江断裂为强震+降雨工况拟发震断裂,按照低易发性、中易发性、高易发性、极高易发性的四级评价进行两种工况下的地质灾害易发性评价。
     评价结果表明,不同工况不同断裂发震其评价结果显著不同,降雨工况、怒江断裂发震、泸水-瑞丽断裂发震、龙陵-澜沧江断裂发震情况下的极高易发区面积均在200~300km2左右,分别占总面积的7.2%,8.4%,9.2%,6.7%。沿铁路线极高易发区主要集中在怒江东岸河流深切陡坡地带、高黎贡山山脉断裂密集发育区及凹子地。对比1976年龙陵地震(怒江断裂发震)地质灾害分布,评价结果与客观实际基本吻合。评价模型为工程建设提供了强有力的技术支撑。
Darui-Railway through in south of Hengduan Mountains which is in the south-east of qinghai-tibet plateau. It is the firstⅠlevel railway which through the Hengduan Moun- tains in our country. The geological environmental conditions of the research region that across Gao Ligong Mountains area is complex.There devleloped many geological hazards, such as collapses, landslide, debris flow and so on. With the implementation of the strategic development of western China, various kinds of linear geo-engineering projects( like highway, railway, oil pipeline) are large-scale constructed in this area.The engineering geological evaluation is under the spotlight. Wenchuan 8.0 earthquake to the state’s infrastructure caused great destruction, economic lost serious, the rescue work hard to develop smoothly. So, thesis aims at the need of railway lines location, to evaluate the susceptibility of geological hazard for rainfall condition and strong earth- quake + rainfall condition.
     Based on the full analysis geological hazard material which survey in the field, sum- marize the research area geological hazards type and distribution, conclude the influen- cing factors of geological disasters geo-hazard susceptibility. Combined with the geol- ogical hazards distribution of Wenchuan 8.0 earthquake proposing”Three factors ten effect”and Longling 7.4 earthquake’s, establish rainfall condition and strong earthqua- ke + rainfall condition evaluation index system which take the historical factors, the basic factors and inducing factors as the first level evaluation index. Compared with the rainfall condition, the other considering the faults control factors which associated with earthquake. Both conditions are selection fuzzy comprehensive evaluation model as the basic mathematical model. Using analytic hierarchy process( AHP) determining the evaluation indexes weights. The evaluation process based on ArcGIS software platform. 1:50000 scale navigation piece interpretation frontpiece is divided into about 1.49 million sssessment units. Choose nujiang river fracture, lushui-ruili fracture, longling- lancang river fracture as the seismogenic fault of strong earthquake + rainfall condition. Two kinds of geological disasters geo-hazard susceptibility are evaluated, that accord- ing to four level geo-hazard susceptibility, they are low in geo-hazard susceptibility, geo-hazard susceptibility, high geo-hazard susceptibility and remotest geo-hazard susceptibility.
     The evaluation results show that different conditions and under different fracture seismogenic its evaluation results significantly different. The area of the remotest geo- hazard susceptibility region is around 200~300 km2 when in the rainfall condition and in the condition of nujiang river fracture, lushui-ruili fracture, longling-lancang river fracture seismogenic. They accounted the total area for 7.2%, 8.4%, 9.2%, 6.7%. The remotest geo-hazard susceptibility area along the railway lines are mainly concentrated in eastern of nujiang river deep steep zone, and the zone of fracture intensive develop- ment in Gao Ligong Mountains and Ao Zidi. Contrast the distribution of geological hazards of Longling earthquake in 1976 ( nujiang river fracture seismogenic), the eva- luation results and objective reality are mostly fitted. A strong technical support in engineering construction is provided by evaluation model.
引文
[1]黄润秋,许向宁,唐川.地质环境评价与地质灾害管理[M].北京:科学出版社,2008;
    [2]陈立德,赵维城.一九七六年龙陵地震[M].北京:地震出版社,1979;
    [3]向喜琼.区域滑坡地质灾害危险性评价与风险管理[D].成都:成都理工大学,2005;
    [4]许强,汤明高,陈伟.西南山区城镇建设地质灾害风险管制办法及示范[R].成都:成都理工大学,2009;
    [5]中国中铁二院工程集团有限责任公司.大瑞铁路复杂地质艰险山区重大工程地质问题研究——深大活动断裂工程影响分析评价和强震及其诱发地质灾害预测研究成果报告[R].成都,2010;
    [6]许强,郑光.高黎贡山越岭段大(巨)型滑坡、崩塌、泥石流、危岩落石等(强震)地质灾害的发育分布特征与形成机制研究[R].成都:成都理工大学,2010;
    [7]吴秀芹.ArcGis 9地理信息系统应用与实践[M].北京:清华大学出版社,2007;
    [8]张倬元,王士天,王兰生.工程地质分析原理(第二版)[M],北京:地质出版社,1994;
    [9]黄润秋.汶川地震地质灾害研究[M].北京:科学出版社,2009;
    [10]周爱国,周建伟.地质环境评价[M].北京:中国地质大学出版社,2008;
    [11]赵建华,陈汉林,杨树锋.滑坡灾害危险性评价模型比较[J].自然灾害学报,2006,15(1),128~133;
    [12]邢秋菊,赵纯勇,高克昌,郭跃.基于GIS的滑坡危险性逻辑回归评价研究[J].地理与地理信息科学,2004,20(3),49~51;
    [13]王志旺,廖勇龙,李端有.基于逻辑回归法的滑坡危险度区划研究[J].地下空间与工程学报,2006,2(8),1451~1454;
    [14]张桂荣,陈丽霞,殷坤龙.浙江省永嘉县滑坡灾害危险性区划[J].水文地质工程地质,2005(3),27~31;
    [15]吴柏清,何政伟.GIS技术在四川省九龙县地质灾害危险性评价中的应用[J].中国地质灾害与防治学报,2008,19(2),114~117;
    [16]匡乐红,徐林荣,刘宝琛.地质灾害危险性评价指标规范化方法研究[J].铁道科学与工程学报,2007,4(1),39~43;
    [17]滕继东,项梦杰,李苏,李小虎.改进模糊层次分析法确定地质灾害危险性评价指标权重的研究[J].安徽农业科学,2008,36(1),22~23;
    [18]张春山,张业成,马寅生.黄河上游地区崩塌、滑坡、泥石流地质灾害区域危险性评价[J].地质力学学报,2003,9(2),143~153;
    [19]袁明,何政伟,张俊峰.基于GIS的天山公路地质灾害危险性评价[J].地理空间信息,2007,5(6),70~73;
    [20]吴柏清,何政伟,刘严松.基于GIS的信息量法在九龙县地质灾害危险性评价中的应用[J].测绘科学,2008,33(4),146~147;
    [21]王萌,乔建平,吴彩燕.基于GIS和本底因素贡献权重模型的区域滑坡危险性评价[J].地质通报,2008,27(11),1802~1809;
    [22]杨泰平,唐川,齐信.基于GIS技术的汶川8.0级地震诱发地质灾害危险性评价[J].灾害学,2009,24(4),68~72;
    [23]陈奇,李智毅,石怀伦.区域地质灾害评价的思路与方法[J].地质力学学报,2004,10(1),71~80;
    [24]陈国华,张静,张晖等.区域风险评价方法研究[J].中国安全科学学报,2006,16(6),112~117;
    [25]向喜琼.区域滑坡地质灾害危险性评价与风险管理[J].地球与环境,2005(33),136~138;
    [26]陈伟,许强,陈棠茵.基于ARCGIS的区域滑坡易发性区划评价[J].工程地质计算机应用,2010(2),29~32;
    [27]周建伟,张帅,陈成名,肖锐铧.基于GIS的建设场地地质灾害危险性综合评价研究[J].中国水运,2009,9(12),143~144;
    [28]尚彦军,杨志法.川藏公路林芝-八宿段工程地质分区定量表述[J].工程地质学报,2004,31(9),31~39;
    [29]张洪,况明生.基于GIS的云南省海子沟流域危险性评价[J].西南师范大学学报,2006,31(6),139~142;
    [30]张峰,何政委.基于GIS和神经网络的泥石流危险性评价系统[J].计算机工程,2009,35(3),205~210;
    [31]陈成名,张帅,周建伟.西南山区小城镇地质灾害易损性评价[J].山西建筑,2010,36(5),92~93;
    [32]刘勇,巫锡勇.浅谈GIS在地质灾害中的几点应用[J].岩土工程,2004,24(5),74~76;
    [33]张帅.水电工程地质灾害风险评价技术研究——以梨园水电工程为例[D].成都理工大学,2010;
    [34]周建伟.汶川县城地质灾害危险性评价研究[D].成都:成都理工大学,2010;
    [35]陈成名.西南山区城镇地质灾害易损性评价理论与实践[D].成都:成都理工大学,2010;
    [36]张丽.区域地质灾害危险性的定量化研究[D].长春:吉林大学,2005;
    [37]张立明.三峡工程库区地质灾害易损性评价与区域研究[D].长沙:中南大学,2008;
    [38]李新华.基于层次分析法的水电站工程的风险评价与风险管理研究[D].昆明:昆明理工大学,2007;
    [39]姜琪文.基于ARCGIS的区域滑坡危险性评价[D].成都:成都理工大学,2005;
    [40]岳跃.基于GIS的崩塌地质灾害危险性评价研究[D].上海:同济大学,2008;
    [41]魏海霞.滇西红层区地质灾害易发性评价研究[D].昆明:昆明理工大学,2007;
    [42]张姬.基于GIS的高速公路沿线地质灾害危险性评价研究—以同三线山东段为例[D].青岛:青岛大学,2009;
    [43]贺敬.云南省泸水县地质灾害防治区划研究[D].昆明:昆明理工大学,2005;
    [44]张博.天山公路地质灾害发育分布特征及防治对策研究[D].成都:成都理工大学,2006;
    [45]吴亚子.山区公路地质灾害危险性评估方法研究[D].成都:成都理工大学,2005;
    [46]徐新艳.基于GIS的滑坡灾害危险性评价研究[D].南京:南京师范大学,2007;
    [47]张自标.地震作用下西攀高速公路边(滑)坡工程稳定性分析[D].成都:西南交通大学,2007;
    [48]秦晓敏.基于GIS的滑坡地质灾害危险性评价研究—以巩留县为例[D].乌鲁木齐:新疆大学,2007;
    [49]池长艳.基于高分辨率遥感影像的滑坡灾害危险性评价研究[D].青岛:山东科技大学,2009;
    [50]张会刚.西南山区水电站建设用地地质灾害危险性评估方法研究[D].成都:成都理工大学,2005;
    [51]向望.内六线横江-大关段主要地质灾害危险性评估及防治对策研究[D].成都:西南交通大学,2005;
    [52]曾金华.基于3S技术的滑坡时间预报系统研究[D].西安:长安大学,2004;
    [53]李开超.宝鸡市区地震地质灾害危险性评价研究[D].西安:西北大学,2010;
    [54]裴拙勤.基于AHP的煤矿安全文化模糊综合评价与应用研究[D].西安:西安科技大学,2009;
    [55]梁吉.基于模糊综合评判方法的铁路隧道施工风险评价研究[D].杭州:浙江大学,2010;
    [56]门治军.模糊数学法在建设工程项目评标中的研究及应用[D].西安:西安科技大学,2010;
    [57]宋俊杰.基于改进AHP模糊综合评判的洞库围岩质量分级研究[D].北京:中国地质大学,2010;
    [58] P. J. Finlay, G. R. Mostyn, R. Fell. Landslides: Prediction of Travel Distance and Guidelines for Vulnerability of Persons[C]. Australia New Zealand conference on Geomechanics. Hobart;
    [59] Randall W. Jibson, Edwin L. Harp, John A. Michael. A method for producing digital probabilistic seismic landslide hazard maps[J]. Engineering Geology, 2000(58), 271~289;
    [60] Kuang-Tsung Chang, Shiuan Wan, Tsu-Chiang Lei. Development of a spatial decision support system for monitoring earthquake-induced landslides based on aerial photographs and the finite element method[J]. International Journal of Applied Earth Observation andGeoinformation, JAG-350, No. of Pages9;
    [61] Julian J. Bommer, Carlos E. Rodr?′guez. Earthquake-induced landslides in Central America[J]. Engineering Geology, 2002(63), 189~ 220;
    [62] Robin Fell, Jordi Corominas, Christophe Bonnard. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning[J]. Engineering Geology, 2008(102), 99–111;
    [63] Aurelian Catalin Trandafir, Kyoji Sassa. Performance-based assessment of earthquake-induced catastrophic landslide hazard in liquefiable soils[J]. Geotechnical and Geological Engineering,(2006) 24: 1627–1639;
    [64] S.B. Miles, C.L. Hob. Rigorous landslide hazard zonation using Newmark’s method and stochastic ground motion simulation[J]. Soil Dynamics and Earthquake Engineering, 1999(18), 305~323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700