PADI4基因与强直性脊柱炎和类风湿关节炎的关联分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强直性脊柱炎(Ankylosing spondylitis, AS)在中国人群发病率约0.3%。AS是一种复杂性状疾病,现证实AS与6号染色体上HLA-B27基因强相关,除此之外通过全基因组连锁和关联分析,提示染色体上其它区域还存在很多强关联性的易感基因。类风湿关节炎(rheumatoid arthritis, RA)是一种常见疾病,世界平均患病率为1%左右,在中国的患病率为0.1%-2%。通过家系、双生子研究证明,遗传因素在这两种疾病的发病机理中均发挥了重要作用。
     随着人们对AS和RA抗体谱的深入认识,提出了瓜氨酸相关自身免疫系统概念,此系统可能在AS和RA的发病和发展过程中起重要作用,并且与病情和预后有关。催化肽中精氨酸残基转化成瓜氨酸残基的过程叫做瓜氨酸化。瓜氨酸化由肽基精氨酸脱亚胺酶(peptidylarginine deiminase, PADI)完成。PADI4最早在日本人中报道与RA存在强关联。PADI4基因单核苷酸多态性位点在欧美、亚洲乃至东亚不同族群中有着极大分异,在中国汉族人中对这一基因的单核苷酸多态性尚无深入的研究。有研究结果揭示PADI4蛋白可能作为自身抗原在AS和RA的发病和病理过程中起重要作用。我们通过对AS和RA易感基因PADI4的连锁不平衡分析,希望能对AS和RA的发病机制有进一步的认识,为AS和RA的诊断和治疗提供新的理论依据。
     在实验室以往的候选基因关联分析基础上,本课题对汉族人群PADI4的单核苷酸多态性(single-nucleotide polymorphisms, SNPs)进行深入的研究。我们在316个AS患者和439个正常对照中,用直接测序法对PADI4上的5个SNPs-PADI4-89 A/G (rs11203366), PADI4-90 (rs11203367) C/T, PADI4-92 (rs874881) C/G, PADI4-94 C/T (rs2240340)和PADI4-104 C/T(rs1748033)进行了基因分型。结果显示5个SNPs的主等位基因频率在病例-对照中分别是0.57 vs 0.60,0.57 vs 0.59,0.57 vs 0.57, 0.45 vs 0.42,0.61 vs 0.62.两个主单倍型ACCGC和GTGAT的频率之和占了病例组的85.7%和对照组的83.7%。经群体遗传学分析,这5个SNP位点的等位基因频率、基因型频率和单倍型频率在患者和对照组中没有显著性差异(P>0.05)。研究结果表明在中国汉族人群中PADI4基因与AS没有关联。
     同时我们在378个RA病例和204个正常对照中,对PADI4上的5个SNPs-PADI4-89 A/G (rs11203366), PADI4-90 (rsl 1203367) C/T, PADI4-92 (rs874881) C/G, PADI4-94 C/T(rs2240340)和PADI4-104 C/T (rs1748033)进行了基因分型。5个SNPs的等位基因频率在病例-对照中依次是0.55 vs 0.56,0.55 vs 0.57,0.57 vs 0.62,0.54 vs 0.55,0.60 vs 0.60。两个主单倍型ACCCC和GTGTT的频率之和占了病例组的76.8%和对照组的81.5%。群体遗传学分析显示这5个SNP位点的等位基因频率、基因型频率和单倍型频率在患者和对照组中没有显著差异(P>0.05)。结果表明在中国汉族人群中PADI4基因不是RA的易感基因。
     不同种族人群间尽管在性别构成,患者年龄及类风湿因子阳性率上相似,由某些潜在易感基因决定的疾病表型是有显著差异的。这可能与等位基因的异质性和遗传背景差异有关。基因间的相互作用也在一定程度上影响了关联分析的结果,所以有必要检视PADI4信号通路上其它基因与AS和RA易感性的关联。在中国汉族人群中,PADI4不是AS和RA的易感基因,而它们与其他自身免疫性疾病是否相关,需要进一步更细致的研究。
Ankylosing spondylitis (AS) is a debilitating chronic inflammatory condition with a high degree of familiality and heritability that primarily affects spinal and sacroiliac joints. The elucidation of the genetic determinants will lead to a better understanding of disease pathogenesis, and enhanced prediction of disease risk, diagnosis, prognosis, and therapy. The cause of ankylosing spondylitis (AS) still remains unelucidated. Both genetic and environmental factors are suspected playing an important role in AS development. Peptidyl arginine deiminase, type IV (PADI4) is a member of a gene family which encodes enzymes responsible for the conversion of arginine to citrulline residues playing a pivotal role in bone mass and metabolism. Previously a strong linkage between PADI4 polymorphism and rheumatoid arthritis (RA) has been found in Japanese patients but there were very rare association study between PADI4 and AS.
     In this study a total of 316 Chinese AS patients of Han nationality and 439 healthy controls were recruited. Five single-nucleotide polymorphisms (SNPs), PADI4-89 A/G (rs11203366), PADI4-90 (rs11203367) C/T, PADI4-92 (rs874881) C/G, PADI4-94 C/T (rs2240340) and PADI4-104 C/T (rs1748033), in the PADI4 gene were selected and the allele frequencies between cases and controls were assessed. The major allele frequency of the five SNPs in case-control is 0.57 vs 0.60,0.57 vs 0.59,0.57 vs 0.57,0.45 vs 0.42,0.61 vs 0.62, respectively. The frequency sum of the two major haplotype (ACCGC, GTGAT) was accounded 85.7% in cases and 83.7% in controls. No significant differences in the frequency of PADI4 alleles, genotypes and haplotypes were observed between the cases and controls. PADI4 gene polymorphism is not associated with ankylosing spondylitis in Chinese Han population.
     Rheumatoid arthritis (RA) is a complex disease which arises from interplay between genetic and environmental factors. Despite lots of advances in the treatment was achieved recently, the etiology of RA still remains elusive. Non-major histocompatibility complex genes have been identified and novel technologies promise that a more thorough examination of the rest of the genome will soon elucidate the genetic basis of this disease. This PADI4 gene is commonly expressed in RA synovial tissues reported by some studies. In this study we also investigate the five SNPs as PADI4 as PADI4-89 (rsl 1203366), PADI4-90 (rs11203367), PADI4-92 (rs874881), PADI4-94 (rs2240340) and PADI4-104 (rs1748033) in 378 unrelated patients with RA (cases) and 204 healthy individuals (controls) of Chinese Han population. The major allele frequency of the five SNPs in case-control is 0.55 vs 0.56,0.55 vs 0.57,0.57 vs 0.62,0.54 vs 0.55,0.60 vs 0.60, respectively. The frequency sum of the two major haplotype (ACCCC, GTGTT) was accounded 76.8% in case and 81.5% in controls. There were no significant differences in the frequency of PADI4 alleles, genotypes and haplotypes between RA cases and controls. The results indicate that PADI4 polymorphisms do not play an important role in the development of AS in Chinese Han population.
     The polymorphism of PADI4 gene might differ in different populations. To a homogeneous multigene disorders like AS and RA, PADI4 only plays a little part in the course of disease and the polymorphism of PADI4 gene differ in different populations. At the same time, many genetic and environmental factors involved in AS or RA onset and development. In an attempt to elucidate the etiology of AS or RA, the further association studies involving more cases and different ethnic groups will be required. In the post-genome era, the Genome-wide association study (GWAS) is a powerful tool in discovering clues to AS and RA, and indicate some directions for association study. Our research results suggested that the PADI4 gene is not associzted with AS and RA in Chinese Han population. Its association to other autoimmunological diseases needs further investigation.
引文
[1]Reveille JD. The genetic basis of spondyloarthritis. Curr Rheumatol Rep 2004; 6:117-25.
    [2]Wanders A, Landewe R, Dougados M, Mielants H, van der Linden S, van der Heijde D. Association between radiographic damage of the spine and spinal mobility for individual patients with ankylosing spondylitis:can assessment of spinal mobility be a proxy for radiographic evaluation? Ann Rheum Dis. 2005;64:988-94.
    [3]Braun J, Bollow M, Remlinger G, et al. Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors. Arthritis Rheum 1998;41:58-67.
    [4]Ng SC, Liao Z, Yu DT, Chan ES, Zhao L, Gu J. Epidemiology of spondylo- arthritis in the People's Republic of China:review of the literature and commentary. Semin Arthritis Rheum 2007; 37:39-47.
    [5]Reveille JD. The genetic basis of ankylosing spondylitis. Curr Opin Rheumatol 2006; 18:332-41.
    [6]Chavanas S, Mechin MC, Takahara H, et al. Comparative analysis of the mouse and human peptidylarginine deiminase gene clusters reveals highly conserved non-coding segments and a new human gene, PADI6. Gene 2004; 330:19-27.
    [7]Alessandri C, Scrivo R, Spinelli FR, et al. Autoantibody Production in Anti-TNF-a-Treated Patients. Ann N Y Acad Sci.2007;1110:319-29.
    [8]Carole FP, Fabienne C, Jacques GT, Jacques B, Nicole F. Infliximab therapy in rheumatoid arthritis and ankylosing spondylitis-induced specific antinuclear and antiphospholipid autoantibodies without autoimmune clinical manifestations: a two-year prospective study. Arthritis Res Ther 2004; 6(6): R535-43
    [9]Francois RJ, Gardner DL, Degrave EJ, Bywaters EG. Histopathologic evidence that sacroiliitis in ankylosing spondylitis is not merely enthesitis: Systematic study of specimens from patients and control subjects. Arthritis Rheum 2000; 43(9):2011-24
    [10]Zhou Z, Menard HA. Autoantigenic posttranslational modifications of proteins: does it apply to rheumatoid arthritis? Curr Opin Rheumatol 2002;14:250-3.
    [11]Suzuki A, Yamada R, Chang X, et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 2003;34: 395-402.
    [12]Lee YH, Rho YH, Choi SJ, Ji JD, Song GG. PADI4 polymorphisms and rheumatoid arthritis susceptibility:a meta-analysis. Rheumatol Int 2007; 27:827-33.
    [13]Harney SMJ, Meisel C, Sims AM, et al. Genetic and genomic studies of PADI4 in rheumatoid arthritis. Rheumatology 2005;44:869-872.
    [14]Martinez A, Valdivia A, Pascual-Salcedo D, et al. PADI4 polymorphisms are not associated with rheumatoid arthritis in the Spanish population. Rheumatology 2005;10:1263-6.
    [15]Caponi L, Petit-Teixeira E, Sebbag M, et al. A family based study shows no association between rheumatoid arthritis and the PADI4 gene in a white French population. Ann Rheum Dis 2005;64: 587-93.
    [16]Hoppe B, Haupl T, Gruber R, et al. Detailed analysis of the variability of peptidylarginine deiminase type 4 in German patients with rheumatoid arthritis: a case-control study. Arthritis Res Ther 2006; 8:R34.
    [17]Ikari K, Kuwahara M, Nakamura T, et al. Association between PADI4 and rheumatoid arthritis: a replication study. Arthritis Rheum 2005;52:3054-7.
    [18]Kang CP, Lee HS, Ju H, Cho H, Kang C, Bae SC. A functional haplotype of the PADI4 gene associated with increased rheumatoid arthritis susceptibility in Koreans. Arthritis Rheum 2006; 54:90-6.
    [19]Plenge RM, Padyukov L, Remmers EF, et al. Replication of putative candidate-gene associations with rheumatoid arthritis in>4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 2005;77:1044-60.
    [20]Feng M, Yin B, Shen T, et al. TAP1 and TAP2 polymorphisms associated with ankylosing spondylitis in genetically homogenous Chinese Han population. Hum Immunol 2009; 70:257-61.
    [21]Braun J, Sieper J. Ankylosing spondylitis. Lancet 2007; 369:1379-90.
    [22]Goie HS, Steven MM, van der Linden SM, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis: a comparison of the Rome, New York and modified New York criteria in patients with a positive clinical history screening test for ankylosing spondylitis. Br J Rheum1985;24:242-9.
    [23]Fang M, Chen R, Cai, Q, et al. Association of HLA genes with ankylosing spondylitis in Han population of eastern China. Scand J Immunol 2007;65:559-66.
    [24]Chen R, Fang M, Cai, Q, et al. Tumor necrosis factor alpha-308 polymorphism is associated with rheumatoid arthritis in Han population of Eastern China. Rheum Intl 2007; 28(12):121-6.
    [25]Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res.2005;15 (2):97-8.
    [26]Qin ZS, Niu T, Liu JS. Partition-ligation-expectation-maximization algorithm for haplotype inference with single nucleotide polymorphisms. Am J Hum Genet 2002;71:1242-7.
    [27]Rahman P. Genetics of ankylosing spondylitis:an update. Curr Rheumatol 2007; 9:383-9.
    [28]Harris ML, Darrah E, Lam GK, et al. Association of autoimmunity to peptidyl arginine deiminase type 4 with genotype and disease severity in rheumatoid arthritis. Arthritis Rheum 2008;58:1958-67.
    [29]Kinloch A, Lundberg K, Wait R, et al. Synovial fluid is a site of citrullination of autoantigens in inflammatory arthritis. Arthritis Rheum 2008; 58:2287-95.
    [30]Chang X, Zhao Y, Sun S, Zhang Y, Zhu Y. The expression of PADI4 in synovium of rheumatoid arthritis. Rheum Intl 2009;29(12):1411-6.
    [31]Kang CP, Lee HS, Ju H, Cho H, Kang C, Bae SC. A functional haplotype of the PADI4 gene associated with increased rheumatoid arthritis susceptibility in Koreans. Arthritis Rheum 2006;54:90-6.
    [32]Cordell HJ. Genome-wide association studies:Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 2009;10:392-404.
    [33]Burton PR, Clayton DG, Cardon LR, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 2007; 39:1329-37.
    [34]Altmuller J, Palmer LJ, Fischer G, Scherb H, Wjst M. Genomewide scans of complex human diseases:true linkage is hard to find. Am J Hum Genet 2001;69:936-50.
    [35]Brown MA. Breakthroughs in genetic studies of ankylosing spondylitis. Rheumatology 2008; 47: 132-7.
    [1]Harris ED JR. Rheumatoid arthritis:Pathophysiology and implications for therapy. N Engl J Med 1990; 322:1277-89.
    [2]Seldin MF, Amos CI, Ward R, Gregersen PK. The genetics revolution and the assault on rheumatoid arthritis. Arthritis Rheum 1999;42:1071-9.
    [3]The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661-78.
    [4]Cornelis F, Faure S, Martinez M et al. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc Natl Acad Sci USA 1998;95:10746-50.
    [5]Shiozawa S, Hayashi S, Tsukamoto Y et al. Identification of the gene loci that predispose to rheumatoid arthritis. Int Immunol.1998;10:1891-5.
    [6]Marsha A, Wilcox, Li Z, Tapper W. Genetic association with rheumatoid arthritis - Genetic Analysis Workshop 15:summary of contributions from Group 2. Genetic Epidemiol 2007; 31 S1:S12-S21.
    [7]Kinloch A, Lundberg K, Wait R, Wegner N, Lim NH, Zendman AJ, et al. Synovial fluid is a site of citrullination of autoantigens in inflammatory arthritis. Arthritis Rheum 2008; 58:2287-95.
    [8]Chang X, Zhao Y, Sun S, Zhang Y, Zhu Y. The expression of PADI4 in synovium of rheumatoid arthritis. Rheum Intl.2009;29(12):1411-6.
    [9]Rantapaa-Dahlqvist S, de Jong BA, Berglin E et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 2003;48: 2741-9.
    [10]Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ. PAD, a growing family of citrullinating enzymes:genes, features and involvement in disease. Bioessays 2003;25:1106-8.
    [11]Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 2003;34:395-402.
    [12]Ikari K, Kuwahara M, Nakamura T, Momohara S, Hara M, Yamanaka H, et al. Association between PADI4 and rheumatoid arthritis: a replication study. Arthritis Rheum 2005;52:3054-7.
    [13]Kang CP, Lee HS, Ju H, Cho H, Kang C, Bae SC. A functional haplotype of the PADI4 gene associated with increased rheumatoid arthritis susceptibility in Koreans. Arthritis Rheum 2006; 54:90-6.
    [14]Plenge RM, Padyukov L, Remmers EF, Purcell S, Lee AT, Karlson EW, et al. Replication of putative candidate-gene associations with rheumatoid arthritis in>4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 2005; 77:1044-60.
    [15]Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988;31:315-24.
    [16]Chen R, Fang M, Cai Q, Duan S, Lv K, Cheng N, et al. Tumor necrosis factor alpha-308 polymorphism is associated with rheumatoid arthritis in Han population of Eastern China. Rheumatol Int 2007;28(2):121-6
    [17]Cheng N, Cai Q, Fang M, Duan S, Lin J, Hu J, et al. No significant association between genetic polymorphisms in the TNAP gene and ankylosing spondylitis in the Chinese Han population. Rheumatol Int 2009;29:305-10.
    [18]Fan LY, Wang WJ, Wang Q, Zong M, Yang L, Zhang H, et al. A functional haplotype and expression of the PADI4 gene Associated with increased rheumatoid arthritis susceptibility in Chinese. Tissue Antigens 2008; 72(5):469-73.
    [19]Lee YH,.Rho YH, Choi SJ. PADI4 polymorphisms and rheumatoid arthritis susceptibility: a meta-analysis Rheumatol Int 2007; 27:827-33
    [20]Rahman P. Genetics of ankylosing spondylitis: an update. Curr Rheumatol 2007; 9:383-9.
    [21]Harris ML, Darrah E, Lam GK, Bartlett SJ, Giles JT, Grant AV, et al. Association of autoimmunity to peptidyl arginine deiminase type 4 with genotype and disease severity in rheumatoid arthritis. Arthritis Rheum 2008;58:1958-67
    [22]Huang J, Li C, Xu H, Gu J. Novel non-HLA-susceptible regions determined by meta-analysis of four genomewide scans for ankylosing spondylitis. J Genet 2008;87:75-81.
    [23]Harney SMJ, Meisel C, Sims AM, Woon PY, Wordsworth BP Brown MA, et al. Genetic and genomic studies of PADI4 in rheumatoid arthritis. Rheumatology 2005;44:869-72.
    [24]Caponi L, Petit-Teixeira E, Sebbag M, Bongiorni F, Moscato S, Pratesi F, et al. A family based study shows no association between rheumatoid arthritis and the PADI4 gene in a white French population. Ann Rheum Dis 2005;64:587-93.
    [25]Martinez A, Valdivia A, Pascual-Salcedo D, Lamas JR, Fernandez-Arquero M, Balsa A, et al. PADI4 polymorphisms are not associated with rheumatoid arthritis in the Spanish population. Rheumatology 2005;10:1263-6.
    [26]Hoppe B, Haupl T, Gruber R, Kiesewetter H, Burmester GR, Salama A, et al. Detailed analysis of the variability of peptidylarginine deiminase type 4 in German patients with rheumatoid arthritis: a case-control study. Arthritis Res Ther 2006;8:R34.
    [27]Cordell HJ. Genome-wide association studies:Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 2009;10:392-404.
    [28]Brown MA. Breakthroughs in genetic studies of ankylosing spondylitis. Rheumatology 2008; 47:132-7.
    [1]Silman A J, MacGregor A J, Thomson W, Holligan S, Carthy D, Farhan A, et al. Twin concordance rates for rheumatoid arthritis:results from a nationwide study. Br J Rheumatol,1993;32:903-7.
    [2]Wang W Y, Barratt B J, Clayton D G, Todd J A. Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet,2005;6:109-8.
    [3]Frazer K A, Ballinger D G, Cox D R, Hinds D A, Stuve L L, Gibbs R A, Belmont, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007; 449:851-61.
    [4]Stastny P. Mixed lymphocyte cultures in rheumatoid arthritis. J Clin Invest,1976; 57:1148-57.
    [5]Jawaheer D, Seldin M F, Amos C I, Chen W V, Shigeta R, Etzel C, et al. Screening the genome for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multi-case families. Arthritis Rheum,2003;48:906-16.
    [6]van der Helm-van A H, Huizinga T W, Schreuder G M, Breedveld F C, de Vries R R, Toes R E. An independent role of protective HLA classⅡalleles in rheumatoid arthritis severity and susceptibility. Arthritis Rheum,2005;52:2637-44.
    [7]Barnetche T, Constantin A, Cantagrel A, Cambon-Thomsen A, Gourraud P A. New classification of HLA-DRB1 alleles in rheumatoid arthritis susceptibility: a combined analysis of worldwide samples. Arthritis Res Ther.2008; 10:26.
    [8]The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature,2007;447:661-78.
    [9]Plenge R M, Seielstad M, Padyukov L, Lee A T, Remmers E F, Ding B, et al. TRAF1-C5 as a risk locus for rheumatoid arthritis-a genome-wide study. N Engl J Med,2007;357:1199-209.
    [10]Taylor K E, Criswell L A. Conditional analysis of the major histocompatibility complex in rheumatoid arthritis. BMC Proc 2009; 3 Suppl 7:S36.
    [11]Reynolds RJ, Kelley JM, Hughes LB, Yi N, Bridges SL, Jr. Genetic association of htSNPs across the major histocompatibility complex with rheumatoid arthritis in an African-American population. Genes Immun 2010; 11(1):94-7.
    [12]Dieguez-Gonzalez R, Akar S, Calaza M, Gonzalez-Alvaro I, Fernandez-Gutierrez B, Lamas JR, de la Serna AR, Caliz R, Blanco FJ, Pascual-Salcedo D, Velloso ML, Perez-Pampin E, Pablos JL, Navarro F, Narvaez J, Lopez-Longo FJ, Herrero-Beaumont G, Gomez-Reino JJ, Gonzalez A. Lack of association with rheumatoid arthritis of selected polymorphisms in 4 candidate genes: CFH, CD209, eotaxin-3, and MHC2TA. J Rheumatol 2009; 36 (8):1590-5.
    [13]Cui J, Taylor KE, Destefano AL, Criswell LA, Izmailova ES, Parker A, Roubenoff R, Plenge RM, Weinblatt ME, Shadick NA, Karlson EW. Genome-wide association study of determinants of anti-cyclic citrullinated peptide antibody titer in adults with rheumatoid arthritis. Mol Med 2009; 15(5-6):136-43.
    [14]Monsuur AJ, de Bakker PI, Zhernakova A, Pinto D, Verduijn W, Romanos J, Auricchio R, Lopez A, van Heel DA, Crusius JB, Wijmenga C. Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms. PLoS One 2008; 3(5):e2270.
    [15]Lee HS, Lee AT, Criswell LA, Seldin MF, Amos CI, Carulli JP, Navarrete C, Remmers EF, Kastner DL, Plenge RM, Li W, Gregersen PK. Several regions in the major histocompatibility complex confer risk for anti-CCP-antibody positive rheumatoid arthritis, independent of the DRB1 locus. Mol Med 2008;14(5-6):293-300.
    [16]Swanberg M, Lidman O, Padyukov L, Eriksson P, Akesson E, Jagodic M, Lobell A, Khademi M, Borjesson O, Lindgren CM, Lundman P, Brookes AJ, Kere J, Luthman H, Alfredsson L, Hillert J, Klareskog L, Hamsten A, Piehl F, Olsson T. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat Genet 2005;37(5):486-94.
    [17]Akkad DA, Jagiello P, Szyld P, Goedde R, Wieczorek S, Gross WL, Epplen JT. Promoter polymorphism rs3087456 in the MHC class Ⅱ transactivator gene is not associated with susceptibility for selected autoimmune diseases in German patient groups. Int J Immunogenet 2006; 33(1):59-61.
    [18]Allcock RJ, Windsor L, Gut IG, Kucharzak R, Sobre L, Lechner D, Gamier JG, Baltic S, Christiansen FT, Price P. High-Density SNP genotyping defines 17 distinct haplotypes of the TNF block in the Caucasian population:implications for haplotype tagging. Hum Mutat2004 Dec;24(6):517-25.
    [19]Herbert A, Gerry N P, McQueen M B, Heid I M, Pfeufer A, Illig T, et al. A common genetic variant is associated with adult and childhood obesity. Science,2006; 312:279-83.
    [20]Plenge R M, Cotsapas C, Davies L, Price A L, de Bakker P I, Mailer J, et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet,2005;39:1477-82.
    [21]Kirsten H, Petit-Teixeira E, Scholz M, Hasenclever D, Hantmann H, Heider D, Wagner U, Sack U, Hugo Teixeira V, Prum B, Burkhardt J, Pierlot C, Emmrich F, Cornelis F, Ahnert P. Association of MICA with rheumatoid arthritis independent of known HLA-DRB1 risk alleles in a family-based and a case control study. Arthritis Res Ther 2009;11(3):R60.
    [22]Kochi Y, Yamada R, Kobayashi K, Takahashi A, Suzuki A, Sekine A, Mabuchi A, Akiyama F, Tsunoda T, Nakamura Y, Yamamoto K. Analysis of single-nucleotide polymorphisms in Japanese rheumatoid arthritis patients shows additional susceptibility markers besides the classic shared epitope susceptibility sequences. Arthritis Rheum 2004; 50(1):63-71.
    [23]Kang EH, Kim DJ, Lee EY, Lee YJ, Lee EB, Song YW. Downregulation of heat shock protein 70 protects rheumatoid arthritis fibroblast-like synoviocytes from nitric oxide-induced apoptosis. Arthritis Res Ther 2009; 11(4):R130.
    [24]Balog A, Gal J, Gyulai Z, Zsilak S, Mandi Y. Tumour necrosis factor-alpha and heat-shock protein 70-2 gene polymorphisms in a family with rheumatoid arthritis. Acta Microbiol Immunol Hung 2004; 51(3):263-9.
    [25]Ranganathan P, Culverhouse R, Marsh S, Mody A, Scott-Horton TJ, Brasington R, Joseph A, Reddy V, Eisen S, McLeod HL. Methotrexate (MTX) pathway gene polymorphisms and their effects on MTX toxicity in Caucasian and African American patients with rheumatoid arthritis. J Rheumatol 2008; 35(4):572-9.
    [26]Harangi M, Kaminski WE, Fleck M, Orso E, Zeher M, Kiss E, Szekanecz Z, Zilahi E, Marienhagen J, Aslanidis C, Paragh G, Bolstad AI, Jonsson R, Schmitz G. Homozygosity for the 168His variant of the minor histocompatibility antigen HA-1 is associated with reduced risk of primary Sjogren's syndrome. Eur J Immunol 2005;35(1):305-17.
    [27]Mei L, Li X, Yang K, Cui J, Fang B, Guo X, Rotter JI. Evaluating gene x gene and gene x smoking interaction in rheumatoid arthritis using candidate genes in GAW15. BMC Proc 2007; Suppl 1:S17.
    [28]de la Fontaine L, Schwarz MJ, Riedel M, Dehning S, Douhet A, Spellmann I, Kleindienst N, Zill P, Plischke H, Gruber R, Muller N. Investigating disease susceptibility and the negative correlation of schizophrenia and rheumatoid arthritis focusing on MIF and CD 14 gene polymorphisms. Psychiatry Res 2006;144(1):39-47.
    [29]Han S, Li Y, Mao Y, Xie Y. Meta-analysis of the association of CTLA-4 exon-1 +49A/G polymorphism with rheumatoid arthritis. Hum Genet,2005; 118:123-32.
    [30]Sansom D M, Walker L S. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev,2006;212:131-48.
    [31]Barton A, Bowes J, Eyre S, Spreckley K, Hinks A, John S, et al. A functional haplotype of the PADI4 gene associated with rheumatoid arthritis in a Japanese population is not associated in a United Kingdom population. Arthritis Rheum,2008; 50:1117-21.
    [32]Kuwahara M, Ikari K, Nakamura T, Momohara S, Saito S, Hara M, et al. Independent confirmation of the association between PADI4 and rheumatoid arthritis. Arthritis Rheum,2004; 50:S353.
    [33]Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet,2003;34:395-402.
    [34]Simon M, Girbal E, Sebbag M, Gomes-Daudrix V, Vincent C, Salama G, et al. The cytokeratin filament-aggregating protein filaggrin is the target of the so-called "antikeratin antibodies" auto-antibodies specific for rheumatoid arthritis. J Clin Invest,1993;93:1387e93.
    [35]Girbal-Neuhauser E, Durieux J J, Arnaud M, Dalbon P, Sebbag M,Vincent C, et al. The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin auto-antibodies are posttranslationally generated on various sites of (pro) filaggrin by deimination of arginine residues. J Immunol,1999; 162: 585-94.
    [36]Schellekens G A, de Jong B A, van den Hoogen F H, van de Putte L B, van Venrooij W J. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific auto-antibodies. J Clin Invest,1998;101:273-81.
    [37]Schellekens G A, Visser H, de Jong B A, van den Hoogen F H, Hazes J M,Breedveld F C, et al. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum,2000;43:155-63.
    [38]Rantapaa-Dahlqvist S, de Jong B A, Berglin E, Hallmans G, Wadell G,Stenlund H, et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum,2000;48:2741-9.
    [39]Vossenaar E R, Zendman A J, van Venrooij W J, Pruijin G J. PAD, a growing family of citrullinating enzymes:genes, features and involvement in disease. Bio-essays,2003;25:1106-18
    [40]Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang S I, Puc J, Miliaresis C, Rodgers L, McCombie R, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science,1997; 275:1943-7.
    [41]Carlton V E, Hu X, Chokkalingam A P, Schrodi S J, Brandon R, Alexander H C, et al. PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis. Am J Hum Genet, 2005;77:567-81.
    [42]Kawasaki E, Awata T, Ikegami H, Kobayashi T, Maruyama T, Nakanishi K, et al. Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase gene (PTPN22):association between a promoter polymorphism and type 1 diabetes in Asian populations..Am J Med Genet,2006; 140:586-93.
    [43]Carlton V E, Hu X, Chokkalingam A P, Schrodi S J, Brandon R, Alexander H C, et al. PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis. Am J Hum Genet, 2005; 77:567-81.
    [44]Kurreeman F A, Padyukov L, Marques R B, Schrodi S J, Seddighzadeh M, Stoeken-Rijsbergen G, et al. A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med,2007; 4:278.
    [45]Weinblatt M E, Kremer J M, Bankhurst A D, Bulpitt K J, Fleischmann R M, Fox R I, et al. A trial of etanercept, a recombinant tumor necrosis factor receptor: Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med,1999; 340:253-9.
    [46]Tsitsikov E N, Laouini Dunn I F, Sannikova, T Y, Davidson L, Alt F W, Geha R S. TRAF1 is a negative regulator of TNF signaling enhanced TNF signaling in TRAF1-deficient mice. Immunity,2001; 15:647-57.
    [47]Bradley J R, Pober J S. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene, 2001;20:6482-91.
    [48]Wang Y, Kristan J, Hao L, Lenkoski CS, Shen Y, Matis LA. A role for complement in antibody-mediated inflammation: C5-deficient DBA/1 mice are resistant to collagen-induced arthritis. J Immunol 2000;164:4340-7.
    [49]Wang Y, Rollins SA, Madri JA, Matis LA. Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease. Proc Natl Acad Sci U S A,1995;92: 8955-9.
    [50]Ji H, Ohmura K, Mahmood U,Lee D M, Hofhuis F M, Boackle S A, et al. Arthritis critically dependent on innate immune system players. Immunity,2002; 16:157-68.
    [51]Lee H S, Remmers E F, Le J M, Kastner D L, Bae S C, Gregersen P K. Association of STAT4 with rheumatoid arthritis in the Korean population. Mol Med,2007; 13:455-60.
    [52]Remmers E F, Plenge R M, Lee A T, Graham R R, Hom G, Behrens T W, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med,2007; 357:977-86.
    [53]Barton A, Thomson W, Ke X, Eyre S, Hinks A, Bowes J, et al. Re-evaluation of putative rheumatoid arthritis susceptibility genes in the post-genome wide association study era and hypothesis of a key pathway underlying susceptibility. Hum Mol Genet,2008;17:2274-9.
    [54]Becskei A, Grusby M J. Contribution of IL-12R mediated feedback loop to Th1 cell differentiation. FEBS Lett,2007;581:5199-206.
    [55]Tamai I, Ohashi R, Nezu J I, Sai Y, Kobayashi D, Oku A, et al. Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem,2000;275: 40064-72.
    [56]Peltekova V D, Wintle R F, Rubin L A, Amos C I, Huang Q, Gu X, et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet,2004; 36:471-5.
    [57]Yamamoto K, Yamada R. Lessons from a genome-wide association study of rheumatoid arthritis. N EnglJ Med,2007; 357:1250-1.
    [58]Jung M, Kang S, Kim S, Kim HJ, Yun D, Yim SV, Hong S, Chung JH. The interleukin-1 family gene polymorphisms in Korean patients with rheumatoid arthritis. Scand J Rheumatol 2010; Feb 9.
    [59]Rueda B, Gonzalez-Gay MA, Mataran L, Lopez-Nevot MA, Martin J. Interleukin-18-promoter polymorphisms are not relevant in rheumatoid arthritis. Tissue Antigens 2005;65(6):544-8.
    [60]Martinez A, Pascual M, Pascual-Salcedo D, Balsa A, Martin J, de la Concha EG. Genetic polymorphisms in Spanish rheumatoid arthritis patients:an association and linkage study. Genes Immun. 2003;4(2):117-21.
    [61]Tateishi M, Taniguchi A, Moriguchi M, Hara M, Kashiwazaki S. Cyclophosphamide pulse therapy for refractory rheumatic diseases. Nihon Rinsho Meneki Gakkai Kaishi 1997; 20(3):152-8.
    [62]Rozman B. Clinical pharmacokinetics of leflunomide. Clin Pharmacokinet 2002; 41(6):421-30.
    [63]Rordorf CM, Choi L, Marshall P, Mangold JB. Clinical pharmacology of lumiracoxib:a selective cyclo-oxygenase-2 inhibitor. Clin Pharmacokinet 2005; 44(12):1247-66.
    [64]Kovarik JM, Koelle EU. Cyclosporin pharmacokinetics in the elderly. Drugs Aging 1999;15(3): 197-205.
    [65]Fu YF, Liu GL. Mycophenolate mofetil therapy for children with lupus nephritis refractory to both intravenous cyclosphosphamide and cyclosporine. Clin Nephrol 2001;55(4):318-21.
    [66]Cornelis MC, Bae SC, Kim I, El-Sohemy A. CYP1A2 genotype and rheumatoid arthritis in Koreans. Rheumatol Int 2009 Jul 5.
    [67]Mieliauskaite D, Venalis P, Dumalakiene I, Venalis A, Distler J. Relationship between serum levels of TGF-beta1 and clinical parameters in patients with rheumatoid arthritis and Sjogren's syndrome secondary to rheumatoid arthritis. Autoimmunity 2009; 42(4):356-8.
    [68]Chang WW, Su H, He L, Zhao KF, Wu JL, Xu ZW. Association between transforming growth factor-betal T869C polymorphism and rheumatoid arthritis: a meta-analysis. Rheumatology (Oxford) 2010;49(4):652-6.
    [69]Kim SY, Han SW, Kim GW, Lee JM, Kang YM. TGF-beta1 polymorphism determines the progression of joint damage in rheumatoid arthritis. Scand J Rheumatol 2004;33(6):389-94.
    [70]Pawlik A, Kurzawski M, Gawronska-Szklarz B, Drozdzik M, Herczynska M. NOD2 allele variants in patients with rheumatoid arthritis. Clin Rheumatol.2007;26(6):868-71..
    [71]Addo A, Le J, Li W, Aksentijevich I, Balow J, Jr., Lee A, Gregersen PK, Kastner DL, Remmers EF. Analysis of CARD15/NOD2 haplotypes fails to identify common variants associated with rheumatoid arthritis susceptibility. Scand J Rheumatol 2005;34(3):198-203.
    [72]Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411(6837): 603-6.
    [73]Ferreiros-Vidal I, Barros F, Pablos JL, Carracedo A, Gomez-Reino JJ, Gonzalez A. CARD15/NOD2 analysis in rheumatoid arthritis susceptibility. Rheumatology (Oxford) 2003;42(11): 1380-2.
    [74]Bowes J, Barton A. Recent advances in the genetics of RA susceptibility. Rheumatology,2008;47: 399-402.
    [75]Pratt A G, Isaacs J D, Mattey D L. Current concepts in the pathogenesis of early rheumatoid arthritis. Best Pract Res Clin Rheumatol,2008;23:37-48.
    [76]Kingsmore S F, Lindquist I E, Mudge J, Gessler D D, Beavis W D. Genome-wide association studies: progress and potential for drug discovery and development. Nat Rev Drug Discov,2008; 7: 221-30.
    [77]Barrett J C, Cardon L R. Evaluating coverage of genome-wide association studies. Nat Genet,2006; 38:660.
    [78]Kazuhiko Y, Ryo Y. Lessons from a Genome-wide Association Study of Rheumatoid Arthritis. N EnglJ Med,2007;357:12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700