复合型磁流变弹性体的研制及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变弹性体(亦可称为磁敏弹性体)作为磁流变材料中的一个重要分支,其具有典型的流变学特征,即模量、阻尼等力学性能都可通过外加磁场进行控制。磁流变弹性体除具有上述磁控特性外,还具备磁致伸缩、磁致电阻、吸波性能等优异的电磁学特性。磁流变弹性体所具有这些独特的可控性使其在振动控制和电磁器械等领域有着广阔的应用前景。然而目前在磁流变弹性体材料研制方面还存在着一些问题,例如材料机械性能较差、磁流变效应较低以及耐久性能不好等。而且目前有关高性能磁流变弹性体研制方法的研究也较少。
     根据以上述存在问题,本文首先系统研究了基于天然橡胶和顺丁橡胶的混合橡胶基磁流变弹性体的制备方法。以设计高磁流变效应、高机械性能和低阻尼为优化目标,从材料设计的理念出发,对磁流变弹性体材料制备中的各相关条件进行深入研究和系统优化,并详细分析了制备过程中各条件对材料性能的影响。首先结合本课题组先前制备磁流变弹性体的经验和方法,同时天然橡胶和顺丁橡胶为基体,制备出了六种配比的混合基磁流变弹性体。
     为了更好地对混合基磁流变弹性体的各项性能进行评估,利用本课题组建立的粘弹性材料力磁耦合测试系统对磁流变弹性体的在外加磁场下的机械性能和动态力学性能进行了测量,并研究混合基磁流变弹性体的力学性能在不同疲劳和老化测试条件下的变化规律。这是首次研究不同的循环加载条件下(循环加载的幅值和加载次数)以及不同老化条件下(不同的老化温度和老化时间)对于混合基磁流变弹性体力学性能的影响。还结合橡胶材料的疲劳和老化理论推导出了有关磁流变弹性体疲劳性能和老化性能关系式。在实验中发现这些测试条件对材料的动态力学行为影响很大,特别是循环加载幅值和老化温度对材料动态力学性能的影响尤为显著,因此在实际测试和工程应用中需要特别注意以上条件对材料性能的影响。
     根据磁流变弹性体老化性能实验中得到的结果显示,温度对材料动态力学性能的影响非常显著,因此本文着重研究了环境温度对磁流变弹性体力学性能的影响。不同温度条件下对不同基体材料的力学性能进行了测试,其中包括顺丁橡胶基磁流变弹性体、天然橡胶基磁流变弹性体以及混合橡胶基磁流变弹性体。为了给出温度与磁流变弹性体力学性能之间的理论关系,给出了磁流变弹性体在不同温度条件下的应力应变本构关系。
     为了研制性能更高的磁流变弹性体,通过向磁流变弹性体中注入磁流变液和磁流变胶的方法,制备了两种新型夹杂磁流变弹性体(磁流变液弹性体和磁流变胶弹性体),目的主要是利用磁流变液和磁流变胶材料本身所固有的高磁流变效应来提高传统磁流变弹性体的性能。还对这种夹杂磁流变弹性体的各项性能(模量、磁流变效应、损耗因子及磁滞等)进行了测试,系统地研究了不同体积比含量注入物(磁流变液和磁流变胶)对新型混合磁流变弹性体力学性能的影响。最终通过一系列的实验找到最优的体积比含量。用复合材料力学的理论对这两种夹杂弹性体进行了力学解释,将注入的磁流变液和磁流变胶当做增强纤维考虑,将传统的磁流变弹性体当做基体,并结合磁流变液和磁流变胶本身的磁致模量计算方法,得出了夹杂磁流变弹性体的模量计算公式。
Magnetorheological (MR) materials are kinds of smart materials and Magnetorheological elastomers (MREs) are a class of MR materials. The mechanical properties of the MREs can be controlled by an applied magnetic field. Besides the modulus and damping, other properties such as magnetostriction and piezoresistivity are also controllable. These unique characteristics enable the MREs be applied in many areas, such as adaptive tuned vibration absorbers (TVAs), stiffness tunable mounts and suspensions, and variable impedance surfaces. Unfortunately, the present MREs products can not fully meat the requirments of the practical application due to their low MR effect, weak mechnical properties and large dynamic damping. To this end, more research should be done to prepare high-performanced MREs with improved mechanical properties. This dissertation is focused on the preparation of high-performance MREs which exhibits high MR effect, good mechanical performance and small dynamic damping. The influences of the preparation condition on the properties of MREs are systematically studied.
     The preparation of high-performance MREs based on rubber natural rubber (NR) and cis-Polybutadiene rubber (BR) was studied at first. The synthetic parameters were optimized to produce MREs materials with high MR effect, good mechanical performance and small dynamic damping. MREs samples based on the mixed rubber were fabricated according to our previous reported method and the synthetic route was optimized. The hybrid MREs materials with different mass ratios (BR/NR) were prepared by using the high temperature vulcanization method and the mechanical property of the products was improved.
     To evaluate the performances of the as-prepared MREs under the applied magnetic field, a mechanical-magnetic coupled quasi-static shear mode load device was established. We first investigated the durability properties of the hybrid MREs under cyclic loading and high temperature conditions. The results revealed that the MR effect and modulus of all samples depended on the testing conditions, such as number of loading cycles, load amplitude, aging temperature and time. The relationship between the durability properties, cyclic loading and aging conditions were also analyzed.
     According to the results of the aging test,their mechanical properties, including modulus and damping capability, depend both on an external magnetic field and an environmental temperature. In order to systematically investigate their temperature-dependent mechanical properties, six different kinds of MREs samples which based on a mixed rubber matrices (cis-Polybutadiene rubber and natural rubber), were fabricated in this part. The steady-state and dynamic mechanical properties of the samples were measured under different conditions by using a rheometer. An improved constitutive equation was developed to model these properties under different magnetic fields and temperatures. The comparison between modeling predicting results with experimental data demonstrated that the model can well predict the modulus of MRE in different conditions.
     To further improve the mechanical performance of MREs, two novel hybrid MREs which were embed with MR fluids (MRFs) and MR gels (MRGs) were fabricated. In this work, MRF and MRG were injected into different numbers of holes, which were punched on MREs specimens regularly. The mechanical properties of MR fluid-elastomers (MRFEs) and MR gels-elastomers (MRGEs) investigated in the presence of externally applied magnetic fields. The modulus and loss factor have been evaluated by using a modified dynamic mechanical analyzer (DMA) and researched respectively. Dependence of the rheological response on volume fraction was also investigated. As a results, not only the foundation modulus of two novel hybrid MR materials were higher than both MRF's and MRGs's but also their MR effects were better than MREs's. The loss factor of two new hybrids was different from traditional MREs'. Moreover, their dynamic properties changed according to the difference volume ratio of MRFs and MRGs injected in MREs specimens. These results suggest that the two novel hybrid MREs are an improved system with volume fraction dependent rheological response. The mechanical properties of MREs can be improved by embedding with MRFs and MRGs. All their mechanical properties, especially MR effect, exhibit significant improvement compared with traditional MREs. A new model based on theory of composite materials and MRFs were used to explain the nonlinear mechanical properties of the hybrids, and it fit the experimental data well.
引文
[1] Rabinow J. Magnetic Fluid Clutch [J]. Technical News Bulletin, 1948, 32(4): 54-60.
    [2] Rabinow J. The Magnetic Fluid Clutch [J]. AIEE Transactions, 1948, 67, 1308-1315.
    [3] Carlson J D. What Makes a Good MR Fluid [J]. Journal of Intelligent Material Systems and Structures, 2002, 13(7-8): 431-435.
    [4] Macosko C W. Rheology: Principles, Measurements, and Applications [M]. 1994, New York: VCH Publishers.
    [5] Jolly M R, Bender J W, Carlson J D. Properties and Applications of Commercial Magnetorheological Fluids [J]. Journal of Intelligent Material Systems and Structures, 1999, 10 (1): 5-13.
    [6] Carlson J D, Catanzarite D M, StClair K A. Commercial Magneto-rheological Fluid Devices [J]. International Journal of Modern Physics B, 1996, 10 (23-24): 2857-2865.
    [7] Phule P P, Ginder J M. Synthesis and Properties of Novel Magnetorheological Fluids Having Improved Stability and Redispersibility [J]. International Journal of Modern Physics B, 1999, 13 (14-16): 2019-2027.
    [8] Ginder J M. Behavior of Magnetorheological Fluids [J]. MRS BULLETIN, 1998, 23 (8): 26-29.
    [9] Ginder J M, Davis L C, Elie L D. Rheology of Magnetorheological Fluids: Models and Measurements [J]. International Journal of Modern Physics B, 1996, 10(23-24): 3293-3303.
    [10] Jung H J, Spencer B F, Lee I W. Control of Seismically Excited Cable-stayed Bridge Employing Magnetorheological Fluid Dampers [J]. Journal of Structural Engineering-ASCE, 2003, 129(7): 873-883.
    [11] Dyke S J, Spencer B F, Sain M K, et al. An Experimental Study of MR Dampers for Seismic Protection [J]. Smart Materials & Structures, 1998, 7(5): 693-703.
    [12] Tao R, Jiang Q. Structural Transitions of an Electrorheological and Magnetorheological Fluid [J]. Physical Review E, 1998, 57(5): 5761-5765.
    [13] Tao R. Super-strong Magnetorheological Fluids [J]. Journal of Physics-Condensed Material, 2001, 13(50): 979-999.
    [14] Bossis G, Khuzir P, Lacis S, et al. Yield Behavior of Magnetorheological Suspensions [J]. Journal of Magnetism and Magnetic Materials, 2003, 258: 456-458.
    [15] Lemaire E, Bossis G. Yield Stress and Wall Effects in Magnetic Colloidal Suspensions [J]. Journal of Physics D-Applied Physics, 1991, 24 (8): 1473-1477.
    [16] Shkel Y M, Klingenberg D J. Magnetorheology and Magnetostriction of Isolated Chains of Nonlinear Magnetizable Spheres [J]. Journal of Rheology, 2001, 45(2): 351-368.
    [17] Promislow J, Gast A. Magnetorheological Fluid Structure in a Pulsed Magnetic Field [J]. Langmuir, 1996, 12: 4095-4102.
    [18] Promislow J, Gast A. Low-energy suspension structure of a magnetorheological fluid [J]. 1997, 56(1): 643-652.
    [19] Mohebi M, Jamasbi N, Liu J. Simulation of the Formation of Non-equilibrium Structures in Magnetorheological Fluids Subject to an External Magnetic Field [J]. Physical Review E, 1996, 54(5): 5407-5413.
    [20] Pfeil V, Graham M D, Klingenberg D J, et al. Morris. Structure Evolution in Electrorheological and Magnetorheological Suspensions from a Continuum Perspective [J]. Journal of Applied Physics, 2003, 93 (9): 5769-5779.
    [21]方生,张培强,旋转磁场作用下磁流变液颗粒运动及结构演化的模拟[J],化学物理学报, 2001, 14(5): 562-566.
    [22] Kordonsky W I. Elements and Devices Based on Magnetorheological Effect [J]. Journal of intelligent Material Systems and Structures, 1993, 4(1): 65-69.
    [23] Kordonsky W I. Magnetorheological Effect as a Base of New Devices and Technologies [J]. Journal of Magnetism and Magnetic Materials, 1993, 122(3): 395-398.
    [24] Kordonsky W I. Magnetorheological Fluids and Their Applications [J]. Materials Technology, 1993, 8 (11): 240-242.
    [25] Kordonsky W I. Magnetorheological Valve and Devices Incorporating Magnetorheological Elements. US Patent 5,353,839, 1994.
    [26] Kordonsky W I, Gorodkin SR. Magnetorheological Valve and Devices Incorporating Magnetorheological Elements. US Patent. 5,452,745, 1995.
    [27] Kordonsky W I, Demchuk S A. Additional Magnetic Dispersed Phase improves the Properties [C]. Proceeding of the 5th International Conference on ER andMR Fluids, 1995, 613-619.
    [28] www.lord .com
    [29]周刚毅,金昀,向勇,张培强.磁场作用下磁流变液结构演化的实验研究[J].实验力学, 2000, 15(2): 233-239.
    [30]金昀,张培强,汪小华,吴卅建.磁流变液剪切屈服应力的数值计算[J].中国科学技术大学学报, 2001, 31( 2): 168-173.
    [31]仇中军,张飞虎,董申.光学玻璃研抛用磁流变液的研究光学技术[J]. 2002, 28(6): 497-499.
    [32]唐欣,凌虹,胡克鳌.磁流变液沉降稳定性研究现状与趋势[J].磁性材料及器件, 2004,35(3): 5-10.
    [33]瞿伟廉,樊友川.磁流变液阻尼器的磁路有限元分析与优化设计方法[J].华中科技大学学报(城市科学版), 2006, 23(3): 1-4.
    [34]李金海,关新春,刘敏等.斜拉索磁流变液阻尼器半主动振动控制系统的设计与应用[J],功能材料, 2006, 5(37): 827-830.
    [35]温洪昌,廖昌荣,严小锐.磁流变液阻尼器的电流驱动器设计与实验测试[J].电子测量技术, 2008, 31(7): 52-55.
    [36]易成建,彭向和,李海涛.静磁场下磁流变液微结构形态稳定性分析[J].功能材料, 2008, 12 (39): 1961-1964.
    [37]黄橙,周岱,马骏.基于磁流变液阻尼杆件的空间网壳风振半主动控制[J].上海交通大学学报, 2008, 42(6): 961-965.
    [38]程海斌,王金铭,马会茹等.有机分子修饰铁粒子表面改善水基磁流变液的抗氧化性和稳定性[J],物理化学学报, 2008, 24(10): 1869-1874.
    [39] Carlson J D, Jolly M R. MR Fluid, Foam and Elastomer Devices [J]. Mechatronics, 2000, 10(4-5): 555-569.
    [40] Brigadnov I A, Dorfmann A. Mathematical modelling of magneto-sensitive elastomers [J]. International Journal of Solids and Structures, 2003, 40 (18): 4659-4674.
    [41] Bossis G, Coquelle E, Noel C, et al. Monitoring Interparticle Distance in Magnetorheological Composites [J].International Journal of Modern Physics B, 2007, 21(28-29): 4868-4874.
    [42] Nikitin L V, Korolev D G, Stepanov G V, et al. Experimental study of magnetoelastics [J]. Journal of Magnetism and Magnetic Materials, 2006, 300(1): 234-238.
    [43] Demchuk S A, Kuz’min V A. Viscoelastic properties of magnetorheologicalelastomers in the regime of dynamic deformation [J]. Journal of Engineering Physics and Thermophysics, 2002, 75(2): 396-400.
    [44] Bellan C, Bossis G. Field dependence of viscoelastic properties of elastomers [J]. International Journal of Modern Physics B, 2002, 16(17&18): 2447-2453.
    [45] Lokander M, Stenberg B. Improving the magnetorheological effect in isotropic magnetorheological rubber materials [J]. Polymer Testing, 2003, 22: 677–680.
    [46] Lokander M, Stenberg B. Performance of isotropic magnetorheological rubber Materials [J]. Polymer Testing, 2003, 22: 245–251.
    [47] B?SE H. Proceedings of the 10th International Conference on ERMR 2006, Lake Tahoe, USA, June 18-22, 2006[C]. World Scientific Publishing Co., 2006.
    [48] Boczkowska A, Awietjan S F, Wroblewski R. Microstructure–property relationships of urethane magnetorheological elastomers [J]. Smart Materials and Structure, 2007, 16: 1924-1930.
    [49] Woods B K S, Wereley N, Hoffmaster R, et al. Manufacture of bulk magnetorheological elastomers using vacuum assisted resin transfer molding [J]. International Journal of Modern Physics B, 2007, 21(28-29): 5010-5017.
    [50] Paris R, Lockette v, Lofland S E, et al. Dynamic characterization of bimodal particle mixtures in silicone rubber magnetorheological materials [J]. Polymer Testing, 2008, 27: 931-935.
    [51] Gong X L, Zhang X Z, Zhang P Q. Study of mechanical behavior and microstructure of magnetorheological elastomers [J]. International Journal of Modern Physics B, 2005, 19(7, 8&9): 1304-1310.
    [52] Gong X L, Zhang X Z, Zhang P Q. Fabrication and characterization of isotropic magnetorheological elastomers [J]. Polymer Testing, 2005, 24: 669–676.
    [53] Hu Y, Wang Y L, Gong X L, et al. New magnetorheological elastomers based on polyurethane/Si-rubber hybrid [J]. Polymer Testing, 2005, 24: 324–329.
    [54] Hu Y, Wang Y L, Gong X Q, et al. Magnetorheological elastomers based on polyurethane/si-rubber hybrid [J]. International Journal of Modern Physics B, 2005, 19(7, 8&9): 1114-1120.
    [55] Wang Y L, Hu Y, Chen L, et al. Effects of rubber/magnetic particle interactions on the performance of magnetorheological elastomers [J]. Polymer Testing, 2006, 25: 262–267.
    [56] Gong X L, Chen L, Li J F. Study of utilizable mangetorheological elastomers [J]. International Journal of Modern Physics B, 2007, 21(28&29): 4875-4882.
    [57] Chen L, Gong X L, Jiang W Q, et al. Investigation on magnetorheological elastomers based on natural Rubber [J]. Journal of Materials science, 2007, 42: 5483-5489.
    [58] Zhang X Z, Peng S L, Wen W J, et al. Analysis and fabrication of patterned magnetorheological elastomers [J]. Smart Materials and Structure, 2008, 17: 045001(1)- 045001(5).
    [59] Chen L, Gong X L, Li W H. Effect of carbon black on the mechanical performances of magnetorheological elastomers [J]. Polymer Testing, 2008, 27: 340–345.
    [60] Jiang W Q, Yao J J, Gong X L, et al. Enhancement in magnetorheological effect of magnetorheological elastomers by surface modification of iron particles [J]. Chinese Journal of Chemical Physics, 2008, 21(1): 87-92.
    [61] Davis L C. Model of magnetorheological elastomers [J]. Journal of Applied Physics, 1999, 85(6): 3348-3351.
    [62] Shiga T, Okada A, Kurauchi T. Magnetroviscoelastic behavior of composite gels [J]. Journal of Applied Polymer Science, 1995, 58: 787-792.
    [63] Bossis G, Abbo C, Cutillas S, et al. Electroactive and electrostructured elastomers [J]. International Journal of Modern Physics B, 2001, 15(6&7): 564-573.
    [64] Coquelle E, Bossis G. Mullins effect in elastomers filled with particles aligned by a magnetic field [J]. International Journal of Solids and Structures, 2006, 43: 7659–7672.
    [65] Shen Y, Golnaraghi M F, Heppler G R. Experimental research and modeling of magnetorheological elastomers [J]. Journal of Intelligent Material Systems and Structures, 2004, 15: 27-35.
    [66] Farshad M, Roux M L. Compression properties of magnetostrictive polymer composite gels [J]. Polymer Testing, 2005, 24: 163–168.
    [67] Varga Z, Filipcsei G, Zr?ìyi M. Magnetic field sensitive functional elastomers with tuneable elastic modulus [J]. Polymer, 2006, 47: 227-233.
    [68] Abramchuk S, Kramarenko E, Stepanov G, et al. Novel highly elastic magnetic materials for dampers and seals: Part I. preparation and characterization of the elastic materials [J]. Polymers for Advanced Technologies [J], 2007, 18: 883–890.
    [69] Abramchuk S, Grishin D A, Kramarenko E Y, et al. Effect of a Homogeneous Magnetic Field on the Mechanical Behavior of Soft Magnetic Elastomers underCompression[J]. Polymer Science, Ser. A, 2006, 48(2): 138–145.
    [70] Fuchs A, Zhang Q, Elkins J, et al. Development and characterization of magnetorheological elastomers [J]. Journal of Applied Polymer Science, 2007, 105: 2497–2508.
    [71] Kallio M, Lindroos T, Aalto S, et al. Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer [J]. Smart Materials and Structures, 2007, 16: 506–514.
    [72]张先舟,博士学位论文:磁流变弹性体的研制及其机理研究[D].合肥:中国科学技术大学, 2005.
    [73] Jolly M R, Carlson J D, Mu?oz B C, et al. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix [J]. Journal of Intelligent Material Systems and Structures, 1996, 7: 613-622.
    [74] Maranville C W, Ginder J M. Small-strain dynamic mechanical behavior of magnetorheological fluids entrained in foams [J]. International Journal of Applied Electromagnetics and Mechanics, 2005, 22: 25–38.
    [75] Zhou G Y. Shear properties of a magnetorheological elastomer [J]. Smart Materials and Structures, 2003, 12 (1): 139-146.
    [76] Ginder J M, Nichols M E, Elie L D, et al. Proceedings of SPIE, Smart Structures and Materials 1999: Smart Materials Technologies, Newport Beach CA, March 3-4, 1999[C]. Bellingham WA, SPIE, 1999.
    [77] Chen L, Gong X L, Li W H. Damping of magnetorheological elastomers [J]. Chinese Journal of Chemical Physics, 2008, 21(6): 581-585.
    [78] Sun T L, Gong X L, Jiang W Q, et al. Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber [J]. Polymer Testing, 2008, 27: 520–526.
    [79] Fan YC, Gong XL, Jiang, WQ, et al. Effect of maleic anhydride on the damping property of magnetorheological elastomers [J]. Smart Materials and Structures 2010, 19(5): 055015.
    [80] Ginder J M, Schlotter W F, Nichols M E. Proceedings of SPIE, Smart Structures and Materials 2001: Damping and isolation, Newport Beach, CA, March 5-7, 2001[C]. Bellingham WA, SPIE, 2001.
    [81] Ginder J M, Clark S M, Schlotter W F, et al. Magnetostrictive phenomena in magnetorheological elastomers [J]. International Journal of Modern Physics B,2002, 16 (17&18): 2412-2418.
    [82] Peter B, Leif K. Amplitude and frequency dependence of magneto-sensitive rubber in a wide frequency range [J], Polymer Testing, 2005, 24: 656–662.
    [83] Kchit N, Bossis G. Piezoresistivity of magnetorheological Elastomers [J]. Journal of Physics: Condensed Matter, 2008, 20: 204136(1)-204136(5).
    [84] Kchit N,Lancon P,Bossis G. Thermoresistance and giant magnetoresistance of magnetorheological elastomers [J]. Journal of Physics D-Applied Physics, 2009, 42(10): 105506.
    [85] Kchit N,Bossis G. Electrical resistivity mechanism in magnetorheological elastomer [J]. Journal of Physics D-Applied Physics, 2009, 42(10): 105505.
    [86] Bednarek S. The giant magnetostriction in ferromagnetic composites within an elastomer matrix [J]. Apply Physics A, 1999, 68: 63-67.
    [87] Guan X C, Dong X F, Ou J P. Magnetostrictive effect of magnetorheological elastomer [J]. Journal of Magnetism and Magnetic Materials, 2008, 320: 158–163.
    [88] Mitsumata T, Furukawa K, Juliac E, et al. Compressive modulus of ferrite containing polymer gels [J]. International Journal of Modern Physics B, 2002, 16: 2419-2425.
    [89] Lokander M, Reitberger T, Stenberg B. Oxidation of natural rubber-based magnetorheological elastomers [J], Polymer Degradation and Stability, 2004, 86:467-471.
    [90] Lerner A A, Cunefare K A. Performance of mre-based vibration absorbers [J]. Journal of Intelligent Material Systems and Structures, 2008, 19: 551-563.
    [91] Watson J R. Method and Apparatus for Varying the stiffness of a Suspension Bushing: US, 5609353[P/OL]. 1997.
    [92] Ginder J M, Nichols M E, Elie L D, et al. Proceedings of SPIE, Smart Structures and Materials 2000: Smart Structures and Integrated Systems, Newport Beach, CA, March 06, 2000[C]. Bellingham WA, SPIE, 2000.
    [93] Farshad M, Roux M L. A new active noise abatement barrier system [J]. Polymer Testing, 2004, 23: 855-860.
    [94] Albanese A M, Cunefare K A. Proceedings of SPIE, Smart Structures and Materials 2003: Damping and Isolation, San Diego, CA, March 03 2003[C]. Bellingham WA, SPIE, 2003.
    [95] York D, Wang X J, Gordaninejad F. A new MR fluid-elastomer vibration isolator[J]. Journal of Intelligent Material Systems And Structures, 2007, 18: 1221-1225.
    [96] Blom Peter, Kari L. Smart audio frequency energy flow control by magneto-sensitive rubber isolators [J]. Smart Materials and Structures, 2008, 17: 015043(1)- 015043 (5).
    [97] Hu W, Wereley N M. Hybrid magnetorheological fluid–elastomeric lag dampers for helicopter stability augmentation [J]. Smart Materials and Structures, 2008, 17: 045021(1)- 045021(16).
    [98] Deng H X, Gong X L, Wang L H. Development of an adaptive tuned vibration absorber with magnetorheological elastomer [J]. Smart Materials and Structures, 2006, 15: N111–N116.
    [99] Shiga T, Okada A, Kurauchi T. Magnetro-viscoelastic Behavior of Composite Gels [J]. Journal of Applied Polymer Science, 1995, 58(4): 787-792.
    [100]
    [101] Wilson M J, Fuchs A, Gordannejad F. Development and Characterization of Magnetorheological Polymer Gels [J], Journal of Applied Polymer Science, 2002, 84(14), 2733-2742.
    [102] Lokander M, Stenberg B. Improving the Magnetorheological Effect in Isotropic Magnetorheoligcal Rubber Materials [J]. Polymer Testing, 2003, 22: 677-680.
    [103] Ginder J M, Nichols M E, Elie L D, et al. Magnetorheological Elastomers: Properties and Applications [C]. Proceedings of SPIE, 1999, 3675: 131-138.
    [104] Jolly M R, Carlson J D, Munoz B C. A model of the behaviour of magnetorheological materials [J]. Smart Materials & Structures, 1996, 5(5): 607-614.
    [105] Wilson M J, Fuchs A, Gordannejad F. Development and Characterization of Magnetorheological Polymer Gels [J], Journal of Applied Polymer Science, 2002, 84(14), 2733-2742.
    [106] Lemaire E, Meunier A, Bossis G, et al. Influence of the Particle Size on the Rheology of Magnetorheological Fluids [J]. Journal of Rheology, 1995: 39(5): 1011-1020.
    [107] Phule P P, Mihalsin M P, Genc S. The Role of the Dispersed-phase Remnant Magnetization on the Redispersibility of Magnetorheological Fluids [J]. Journal of Materials Research, 1999, 14(7): 3037-3041.
    [108] Liu J, Flores G A, Sheng R. In-virtro Investigation of Blood Embolization inCancer Treatment Using Magnetorheological Fluids [J]. Journal of Magnetism and magnetic materials, 2001, 225(1-2): 209-217.
    [109] Ginder J M, Davis L C. Shear Stresses in Magnetorheological Fluids: Role of Magnetic Saturation [J]. Applied Physics Letters, 1994, 65(26): 3410-3412.
    [110] Vicente J de, Bossis G, Lacis S, et al. Permeability Measurements in Cobalt Ferrite and Carbonyl Iron Powders and Suspensions [J]. Journal of Magnetism and Magnetic Materials, 2002, 251: 100-108.
    [111] Dorfmann A, Ogden R W. Magnetoelastic Modeling of Elastomers [J]. European Journal of Mechanics A/Solids, 2003, 22: 495-507.
    [112] Melle S, Martin J E. Chain Model of a Magnetorheological Suspension in a Rotating Field [J]. Journal of Chemistry Physics, 2003, 118(21): 9875-9881.
    [113] Carletto P, Bossis G. Field-Induced Structures and Rheology of a Magnetorheological Suspension Confined Between Two Walls [J]. Journal of Physics: Condensed Material, 2003, 15: 1437-1449.
    [114] Bossis G, Lacis S, Meunier A, et al. Magnetorheological Fluids [J]. Journal of Magnetism and Magnetic Materials. 2002, 252(1-3): 224-228.
    [115] Melle S, Fuller G G, Rubio M A. Structure and Dynamics of Magnetorheological Fluids in Rotating Magnetic Fields [J]. Physical Review E, 2000, 61(4): 4111-4117.
    [116] Climent E, Maxey M R, Karniadakis G E. Dynamics of Self-Assembled Chaining in Magnetorheological Fluids [J]. Langmuir, 2004, 20(13): 507-513.
    [117]傅政.橡胶材料性能与设计应用[M].北京:化学工业出版社, 2003.
    [118]赵振华.橡胶硫化温度的模糊控制[J].武汉工程大学学报, 2008, 30(4): 93-95.
    [119]过梅丽.高聚物与复合材料的动态热力学分析[M].北京:化学工业出版社, 2002.
    [120]陈琳.博士毕业论文:磁流变弹性体的研制及力学行为表征[D]. 2009,合肥:中国科学技术大学.
    [121] Brosseau C, Mdarhri A, Vidal A. Mechanical fatigue and dielectric relaxation of carbon black/polymer composites [J]. Journal of Applied Physics, 2008, 104: 074105.
    [122] Brosseau C, Dong W N. Physical aging of plastoferrites under tensile stress and its effect on microwave properties [J]. Journal of Applied Physics, 2008, 104: 064168.
    [123] Wang M J. The role of filler networking in dynamic properties of filled rubber [J]. Rubber Chemistry and Technology [J], 1999, 72: 430-448.
    [124] Payne AR. The dynamic properties of carbon black loaded natural rubber vulcanizates. PartⅡ[J]. Journal of applied polymer science, 1962, 5: 368-372.
    [125] Tian Z H, Tan H F, Du X W. Fatigue properties of two kinds of rubber composites [J]. Journal of Materials Engineering, 2008, 6:13–20.
    [126] Kima J H, Jeongb H Y. A study on the material properties and fatigue life of natural rubber with different carbon blacks. International Journal of Fatigue [J], 2005, 27:263-272.
    [127] Li J F, Gong X L, Xu Z, Jiang W Q. The effect of pre-structure process on magnetorheological elastomers performance [J], International Journal of Materials Research 2008, 12:1358–1364.
    [128] Zhou L, Wen W, Sheng P. Ground States of Magnetorheological Fluids [J]. Physical Review Letters, 1998, 81(7): 1509-1512.
    [129] Bossis G, Lemaire E, Volkova O. Yield stress in magnetorheological and electrorheological fluids: A comparison between microscopic and macroscopic structural models [J], Journal of Rheology, 1997, 41(3): 687-704.
    [130]朱红.硕士毕业论文:实用磁流变液材料制备及性能研究[D]. 2010,合肥:中国科学技术大学.
    [131] Wei B, Gong X L, Jiang W Q. Influence of Polyurethane Properties on Mechanical Performances of Magnetorheological Elastomers [J], Journal of Applied Polymer Science, 2010, 116(2): 771-778.
    [132] Zhang W, Gong X L, Chen L. A Gaussian distribution model of anisotropic magnetorheological elastomers [J], Journal of Magnetism and Magnetic Materials, 2010, 322: 3797-3801.
    [133] Zhang W, Gong X L, Jiang W Q, et al. Investigation of the durability of anisotropic magnetorheological elastomers based on mixed rubber [J], Smart Materials and Structures, 2010, 19(8): 085008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700