分析化学在时空上的延伸
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过灵敏的现代光谱分析方法—遥感傅里叶变换红外光谱和原子发射光谱,分别对它们在温度测量及大气有机污染物监测中的应用开展了较为深入的研究。本文研究了遥感傅里叶变换红外发射光谱在研究火焰燃烧特性中的应用,应用分子转振光谱理论,研究了高红外活性的固体推进剂燃烧火焰的光谱辐射绝对能量分布,测定了火焰的温度,探讨了仪器响应函数受黑体温度的影响,并定量分析了燃烧产物的浓度;建立了一个由四种化学计量学方法组成的大气有机污染物多组分分析平台,并讨论了人工神经网络在十组分大气污染物监测中的应用,比较了等间距取点和特征吸收峰取点方式的预测结果;应用开路FTIR遥感监测大气中的有毒易挥发有机化合物(VOCs),分别对含有二、三、四和五组分的模拟泄漏源体系进行了监测,并得到了各物质沿光路的积分浓度随时间的变化规律;另外,对于大范围内的大气VOCs,在准稳定状态下,描述了污染物的空间浓度分布;此外,应用原子发射光谱多谱线法测定了等离子体的激发温度和电子密度,并讨论了光谱参数的选择对测定结果的影响。该项研究将对复杂的温度测定和大气污染物监测起到关键作用。本文的主要内容如下:
     1.FTIR遥测固体推进剂的燃烧特性
     本文发展了基于分子转振红外发射谱线强度理论的温度计算方程式。将遥感FTIR与分子转振光谱测温法和分子发射光谱最大强度谱线测温法相结合,对固体推进剂Ⅰ和固体推进剂Ⅱ的燃烧温度及其随时间的变化进行了连续实时的测定,两种方法测得的结果相当一致。另外,本文校正了遥感FTIR光谱仪的光路系统,对仪器响应函数的概念及意义作了介绍和分析,实时地测定了固体推进剂燃烧火焰的绝对光谱能量分布,并定量分析了燃烧产物的浓度。
     2.化学计量学方法在大气有毒VOCs测定中的应用
     本文建立了一个由4种能克服多种大气易挥发有机化合物谱带混叠干扰的,多组分同时测定的化学计量学分析平台。所包含的四种多变量校准方法是:经典最小二乘法(CLS),偏最小二乘法(PLS),卡尔曼滤波法(KFM)和人工神经网络法(ANN),在1,3-butadiene,benzene,o-xylene,chlorobenzene和acrolein五组
    
    博士论文
    分析化学在时空上的延伸
    分大气VOCS的定量测定中,对四种方法的预测误差比较,偏最小二乘法显示了
    较为稳健的能力。另外,对于存在未知干扰物的五组分体系,采用改进型的偏最
    小二乘法,成功地鉴别出了干扰物,校正了光谱,得到了已知组分的浓度。本文
    还将人工神经网络应用到十种大气VOCs的多组分定量研究中,结果表明,采用
    特征吸收峰取点的数据处理方法,预测结果优于等间距取点的方法。
    3.FTIR遥测泄漏气体的浓度一时间分布
     本文利用人工神经网络法与遥感FTIR光谱仪联用分别对含有二、三、四和五
    种有毒易挥发有机化合物混合物的模拟泄漏源进行了研究,所研究的有机化合物
    包括ehloroform,methylene chioride,aeetone,methanol,hexane和butanol,采用
    三层反向传播人工神经网络(BP一ANN)对各组分进行了定量,得到了各组分沿光
    路的积分浓度随时间的变化规律,误差小。
    4.遥感FTIR测定泄漏气体的二维空间浓度分布
     本文发展了一种遥感FTIR对泄漏气体的浓度分布进行二维空间描述的方法,
    分别从垂直方向和水平方向上对污染物浓度的分布做了遥感测定。在光路高度分
    别为0.36m,o.6lm和o.86m时,遥测了固定泄漏源挥发的VOCs:Toluene,hexane
    和acetone,结果表明,当对固定的泄漏源挥发气体进行浓度测定时,红外光源光
    路的高度对测定结果的影响很大,当光路的高度为o.6lm时,测量值最大。
     在面积为 100m2,光路高度为1.som的二维平面上,在稳定状态下,测定了
    chloroform和methanol沿不同光路的积分浓度,并重构了它们的二维空间浓度分
    布曲面图和等浓度图,找到了浓度的最大值分别为5.2ppm和12.’7ppm,峰值位置
    在坐标(6m,7m)。遥感FTIR对大范围内的气体污染物进行二维空间浓度分布的实
    时监测,速度快,可靠性强,有很强的应用潜力。
    5.原子发射光谱法测定电热等离子体的激发温度和电子密度
     当用原子发射光谱Boltzmann法测量电热高密度等离子体的温度和电子密度
    时,目前,国际上都应用eu原子在510.554,515.324.521.820,529250,570.020和
    578.213nln处的六条中性原子光谱线测量,产生很大的误差,高达25%,甚至更
    高。国际上著名科学家BOLlxham和Kohel等人都认为“偏离Boltzmanll曲线的原
    
    博士论文
    分析化学在时空上的延伸
    因是由于高光密度等离子体内的自吸,或由于辐射原子态内固有非热粒子流造成
    的”。在我们的研究中发现,产生这样大误差的原因,并不是像他们所说的那样,
    而是由于他们在计算温度时,采用了错误的光谱参数,如:谱线上能级统计权重g、
    跃迁几率A和上能级能量E‘的原因。我们认为,只有在正确选择和应用了这些光
    谱参数后,才能得到正确的和实验可信度极高的温度测量数据。在我们的实验结
    果中,我们将实验的可信度从89一94%提高到了98一99.5%,实验误差从士16一20%降
    低到了士6.5%。我们的这一发现?
This paper presented the advantages of modern spectroscopy applications of remote sensing Fourier Transform Infrared (FTIR) spectroscopy and atomic emission spectroscopy in temperature measurements and air organic pollutants monitoring as a sensitive technology, especially combined with other analytical methods. The applications of remote sensing FTIR coupled with molecular spectra theory in combustion characteristics under high temperature and high pressure were investigated for the determination of combustion temperature of solid propellant. The influence of Blackbody temperature on the instrumental response function was studied to measure the energy distribution of the infrared emission spectra from the combustion flame, thereby quantified the combustion products concentrations. A multi-component analytical platform including Classical Least Squares (CLS), Partial Least Squares (PLS), Kalman Filter Method (KFM) and Artificial Neural Network (ANN) was established to overcome the overlaps between the spectral bands of each component in air Volatile Organic Compounds (VOCs) monitoring. The Open-Path real time air pollutant monitoring of remote sensing FTIR was conducted for the two-, three- four-and five- component system, herein the Path-Integrated Concentrations (PIC) of the desired VOCs leaking from the simulated source vs. the leaking time were obtained. Moreover, the concentrations of chloroform and methanol were spatially mapped in the vertical direction and on the horizontal plane during the quasi-steady state. The atomic emission spectroscopy with multiple spectral lines was used to measure the electro-thermal plasma temperatures and electronic density, and the influence of spectral parameters on the measurement accuracy was evaluated. This study will play significant influence on techniques of temperature measurement and air contaminant monitoring. The major content was described as follows:
    1. The Real Time Measurement of Combustion Characteristics of Solid Propellant by Remote Sensing FTIR
    The superiority of theory of molecular rotation-vibration emission spectra for the temperature measurement was verified. The in-situ combustion temperatures of solid propellant I and II were measured by Remote sensing FTIR combined with molecular
    
    
    
    rotation-vibration emission spectra method and maximum spectral line intensity method. The results of molecular rotation-vibration emission spectra method and maximum spectral line intensity method were hi great agreement. Moreover, the optics of remote sensing FTIR used was calibrated, and the instrumental response function (IRF) was introduced and analyzed. Thus, the energy distribution of infrared emission spectra of the solid propellant combustion flame was measured.
    2. Studies of Four Chemometrics in the Simultaneous Determination of Air Toxic VOCs
    A chemometrics analytical platform was established to overcome the spectra interference and overlaps between the spectral bands of each component when doing multicomponent analysis of 1, 3-butadiene, benzene, o-xylene, chlorobenzene and acrolein. The methods included CLS, PLS, KFM and ANN. PLS was found to be the most potential method by comparing the prediction errors of each method. As for prediction samples, in which some unknown interferents exist, the modified PLS method successfully identified the interferents and corrected the spectrum, thus the concentrations of each desired component was quantified successfully. Moreover, ANN was applied to a ten-component system, results showed that the characteristic peak selection method was better than the equi-spaced wavenumber selection method when composing the analytical samples.
    3. Temporally Monitoring Air Toxic VOCs by Remote Sensing FTIR and ANN
    The simulated leaking sources composed of two-, three, four- and five VOCs were monitored by remote sensing FTIR with ANN as a quantification tool. The measured VOCs include chloroform, methylene chloride, acetone, methanol, hexane and butanol, etc. The plot of Path-Integrated Concentrations
引文
1. Herget W. R, Conner W. D. Instrumental Sensing of Stationary Source Emissions. Environ. Sci. Technol., 1977, 11: 962-973
    2. Lugwig C. B., Griggs M. Application of Remote Techniques in Stationary Source Air Emission Monitoring. Rep. No. EPA-340/1-76-005. Environ. Prot. Agency, North Carolina: Research Triangke Park, 1976
    3. Elder M. L., Winefordner J. D. Prog. Anal. At. Spectrosc., 1983,6: 293
    4. Aron K., Harris L. E. CARS Probe of RDX Decomposition. Chem. Phys. Lett., 1984,103:413-417
    5. Schenk M., Thuman A., Seeger T., Lugertz A. Appl. Opt., 1988, 27: 5659
    6. Beiting E. J. Multiplex CARS Temperature Measurements In a Coal-Fired MHD Environment. Appl. Opt., 1986, 25: 1684-1692
    7. Heland J., Schaefer K., Haus R. Remote Sensing and Gas Analysis of Aircraft Exhausts Using FTIR-Emission-Spectroscopy. Proc. SPIE-Int. Soc. Opt. Eng., 1995, 2506: 62-71
    8. Heland J., Haus R., Schaefer K. Remote Sensing and Analysis of Trace Gases from Hot Aircraft Engine Plumes Using FTIR-Emission-Spectroscopy. Sci. Total Environ., 1994, 158: 85-91
    9. Schaefer K., Heland J., Haus R., Werner C., Koepp F. Contribution of Remote Sensing for Diagnostics of Aircraft Engine Combustion. Proc. SPIE-Int. Soc. Opt. Eng., 1995,2506:55-61
    10. Zhang J. L., Mao Z. M., Lin Z. Q. Measurements and Analysis of Stack Gas Concentrations Using a Mobile FT-IR System. Appl. Opt., 1989, 28: 2026-2030
    11. Itabe T., Asai K., Ishizu M., Aruga T, Igarashi T. Measurements of the Urban Ozone Vertical Profile with an Airborne CO2 DIAL. Appl. Opt., 1989, 28: 931-934
    12. Arshinov Y. F., Bobrovnikov S. M., Zuev V. E., Mitev V. M. Atmospheric Temperature Measurements Using a Pure Rotational Raman Lidar. Appl. Opt., 1983,22: 2984-2990
    13. Edwards T., Weaver D. P., Campbell D. H. Laser-Induced Fluorescence in High Pressure Solid Propellant Flames. Appl. Opt., 1987, 26: 3496-3509
    
    
    14. Gicquel A., Hassouni K., Breton Y., Chenevier M., Cubertafon J. C. Gas Temperature Measurements by Laser Spectroscopic Techniques and by Optical Emission Spectroscopy. Diamond Relat. Mater., 1996, 5: 366-372
    15. Parr T., Hansson-Parr D. 24th JANNAF Combustion Meeting, 1988, 1: 367
    16. Hilton M., Lettington A. H., Mills I. M. Passive Remote Detection of Atmosphereic Pollutants Using Fourier Transform Infrared (FTIR) Spectroscopy. SPIE, 1993,2089:214-315
    17. Flanigan D. F. Detection of Organic Vapors with Active and Passive Sensors: A Comparison. Appl. Opt, 1986,25: 4253-4261
    18. Hren B., Katona K., Mink J., Kohan J., Isaak Gy. Long-Path FTIR Spectroscopic Studies of Air Pollutants in the Danube Refinery Plant. Analyst, 2000, 125: 1655-1659
    19. Wolfe D. C. On the Application of Optical Computed Tomography to Remote Air Pollution Measurements. Ph. D. Dissertation. Stanford University, Palo Alto. CA. 1980
    20. Worden H., Beer R., Rinsland C. P. Airborne Infrared Spectroscopy of 1994 Western Wildfires. J. Geophys. Res, 1997,102: 1287-1299
    21. Heland J., Schafer K. Analysis of Aircraft Exhaust with Fourier Transform Infrared Emission Spectroscopy. Appl. Opt., 1997, 36: 4922-4931
    22. Solomon P. R, Best P. E., Carangelo R. M., Markham J. R., Chien P. L., Santoro R. J., Semerjian H. G. FT-IR Emission/Transmission Spectroscopy for In Situ Combustion Diagnostic. 21th Symposium on Combustion/The Combustion Institute, 1986, 1763-1771
    23. Shaffer R. E, Combs R. J. Comparison of Spectral and Interferogram Processing Methods Using Simulated Passive Fourier Transform Infrared Remote Sensing Data. Appl. Spectrosc, 2001, 55: 1404-1413
    24. Wang Junde, Wang Xuemei, Li Hongzhi, Yin Hui. Remote Temperature Determination from Maximum Intensity Line in Molecular Emission Fundamental Band. Spectrosc. Lett., 1991, 24: 975-984
    25. Hudson M. K., Busch K. W. Flame Infrared Emission Detector for Gas Chromatography. Anal. Chem., 1988, 60: 2110-2115
    26. Tilotte D. C, Busch K. W., Busch M. A. Fourier Transform Flame Infrared Emission Spectroscopy. Appl. Spectrosc, 1989, 43: 704-709
    
    
    27. Hanst P. L. Spectroscopic Methods for Air Pollution Measurement. In Advances in Environmental Science and Technology. Pitts J. N., Metcalf R. L. Eds., New York: Wiley, 1971
    28. Carlson R. C., Hayden A. R, Telfair W. B. Remote Observations of Effluents from Small Building Smokestacks Using FTIR Spectroscopy. Appl. Opt., 1988, 27: 4952-4963
    29. Herget W. F. Remote and Cross-Stack Measurement of Stack Gas Concentrations Using a Mobile FT-IR System. Appl. Opt, 1982, 21: 635-641
    30. Johnson B., Rebenstorf B., Larsson R., Primet M. Appl. Spectrosc., 1986, 40: 798
    31. Kember D., Sheppard N. Appl. Spectrosc., 1975,29: 496
    32. Li C., Zhang H., Wang K., Miao Y, Xin Q. Appl. Spectrosc., 1993,47: 56
    33. Sullivan D. H., Conner W. C., Harold M. P. Surface Analysis With FT-IR Emission Spectroscopy. Appl. Spectrosc., 1992, 46: 811-818
    34. Nagasawa Y, Ishitani A. Appl. Spectrosc., 1984, 38: 168
    35. Allara D. L., Teicher D., Durana J. F. Fourier Transform Infrared Emission Spectrum of a Molecular Monolayer at 300K. Chem. Phys. Lett., 1981, 84: 20-24
    36. Hopfe V., Mosebach H., Erhard M., Meyer M. In-Situ FTIR Emission Spectroscopy In a Technological Environment: Chemical Vapor Infiltration (CVI) of Sic Composites. J. Mol. Struct., 1995, 347: 331-342
    37. Feng Z. C., Wee A. T. S. Multi-Technique Study Of Porous Silicon Membranes by Raman Scattering, FTIR, XPS, AES And SIMS. Feng Z. C., Tsu R. Eds, Porous Silicon. Singapore: World Sci., 1994, pp. 175-194
    38. Vassallo A. M., Cole-Clarke P. A., Pang L. S. K., Palmisano A. J. Appl. Spectrosc., 1992,46:73
    39. Wangmaneerat B., Mcguire J. A., Niemczyk T. M., Haaland D. M., Linn J. H. Appl. Spectrosc., 1992, 46: 340
    40. Baxter L. L., Richards G. H., Ottesen D. K., Harb J. N. In Situ, Real-Time Characterization of Coal Ash Deposits Using Fourier Transform Infrared Emission Spectroscopy. Energy Fuels, 1993, 7: 755-760
    41. Collins B., Fredericks P. Analytical Potential of Emission FTIR for Mineral and Inorganic Powders. Proc. SPIE-Int. Soc. Opt. Eng., 1993, 2089: 216-217
    42. Jin S., Bourget L., Sevillano E. In Situ Film Thickness Measurement and
    
    Gaseous Species Detection in Diamond CVD Processes Using FTIR Emission Spectroscopy. Surf. Coat. Technol., 1994, 68-69: 394-397
    43. Cole-Clarke P. A., Vassallo A. M. Infrared Emission Spectroscopy of Coal. Fuel, 1992,71:469-470
    44. Lauer J. L., Vogel Seng G. T. Emission FT-IR Analysis of Jet Fuel Deposits. Appl. Spectrosc., 1985, 39: 997
    45 Modiano S. H., McNesby K. L., Marsh P. E., Bolt W., Herud C. Quantitative Measurements by Fourier-Transform Infrared Spectroscopy of Toxic Gas Production During Inhibition of JP-8 Fires by CF3Br and C3F7H. Appl. Opt., 1996,35:4004-4008
    46 Cogan J. L. Passive Remote Sensing of Slant Path Transmittance from Aircraft. Appl. Opt., 1988, 27: 3280-3289
    47. Kember D., Chenery D. H., Sheppard N., Fell J. Fourier-Transform IR Emission Studies of Weakly Emitting Overlayers on Metal Surface: Experimental and Spectral-Ratioing Procedures and the Comparative Use of Room Temperature Triglycine Sulfate and Low-Temperature Mercury Cadmium Telluride Detectors. Spectrochim. Acta,1979, A35: 455-459
    48. Ghase D. B. Appl. Spectrosc., 1981, 35: 77
    49. Griffiths P. R., de Haseth J. A. Fourier Transform Infrared Spectroscopy. New York: John Wiley & Sons, Inc., 1986, pp. 202-203
    50. Herget W. F. Air Pollution: Ground-Based Sensing of Source Emission, in Fourier Transform Infrared Spectroscopy Application to Chemical Systems. Vol. 2. Ferraro J. R., Basile L. J., Eds., New York: Academic Press, 1979, pp. 111-127
    51. Huang I. T., Thynell S. T., Kuo K. K. Measurements and Theory of Signal-to-Noise of FT-IR Emission Spectrometry Applied to High-Pressure Solid Propellant Combustion. Appl. Spectrosc., 1992,46: 1182-1188
    52. Wang Junde (王俊德), Luo Yunhua (罗蕴华), Chen Zuoru (陈作如), Bian Haiyan (卞海燕). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 1988,8:6
    53. Wang Junde (王俊德). Applications of Remote Sensing Technology in Fourier Transform Infrared Spectrometry (遥感技术在傅里叶变换红外光谱学中的应用). Wu W. J. Ed., (吴文谨主编), Modern Fourier Transform Infrared Technology and Its Applications (the First Volume) (近代傅里叶变换红外光谱
    
    技术及应用,上册). Beijing (北京): Science and Technology Press (科学技术文献出版社), 1994, pp. 442-473
    54. Wang Junde, Luo Y.unhua, Chen Zuoru, Wang Tianshu. Spectrosc. Lett., 1991, 24:855
    55. Wang Tianshu, Zhu Changjiang, Wang Junde, Xu Fuming, Chen Zuoru, Luo Yunhua. Study on Spectral Characterization of Infrared Flare Material Combustion with Remote High Resolution Fourier Transform Infrared Spectrometry. Anal. Chim. Acta, 1995, 306: 249-258
    56. Wang Junde, Chen Zuoru, Luo Yunhua, Zhu Changjiang, Jin Xulan, Wang Tianshu. Spectrosc. Lett., 1992,25: 1355-1358
    57. Li Yan, Wang Junde. The Real Time Diagnostics of Combustion Characteristics of Solid Propellant by Remote Sensing FTIR System. Instrumen. Sci. & Tech., 2003,31:33-47
    58. Herget W. F., Brasher J. D. Remote Fourier Transform Infrared Air Pollution Studies. Opt. Eng., 1980,19: 508-514
    59. Wilhelm E., Norbert E. Determination of the Temperature in a Solid Propellant Flame by Analysis of Emission Spectra. Propellants Explos. Pyrotech., 1992, 17: 202-206
    60. Wang Junde, Wang Xuemei, Li Hongzhi, Gu Binghe. Flame Temperature Remote Measurement From Infrared Emission Line Intensities of Rotation-Vibration Band of Molecules. Spectrosc. Lett., 1990, 23: 515-526
    61. Wang Junde, Huang Mei, Wang Tianshu. Simplified Method for the Rotational Temperature Determination of Carbon Monoxide from Absorption Spectra Measured at High Resolution. Spectrosc. Lett., 1995, 28: 55-67
    62. Wang Junde, Li Hongzhi, Chen Zuoru, Xu Houqian, Luo Yunhua, Wang Xuemei. Studies on Temporal Resolution Characteristics of Flame Temperature for Flame Atomic Absorption Spectroscopy. Spectrosc. Lett., 1989, 22: 1111-1122
    63. Wang Junde, Chen Zuoru, Luo Yunhua, Wang Yu, Xu Houqian, Li Hongzhi. Temporal Temperature Measurement of Exploded Gas by Absorption-Emission Spectroscopy. Instrum. Sci. Technol., 1996,24: 169-177
    64. Yang Dong (杨栋). The Studies of the Characteristics of Combustion Flame and Exhaust Plum of Solid Propellants by Modern Spectroscopic Techniques (现代光谱技术对固体推进剂燃烧火焰和排气羽焰特征的研究). Postdoctoral Report
    
    (博士后出站研究报告),Nanjing(南京): Nanjing University of Science and Technology(南京理工大学),1 999
    65. Wang Junde, Wang Xuemei, Li Hongzhi, Ying Hui. IUPAC International Congress on Analytical Science 1991. Japan: Chiba, August, 1991:30
    66.Zhou Xinli(周新利),Li Yan(李燕),Liu Zuliang(刘祖亮),Zhu Changjiang(朱长江),Wang Junde(王俊德),Lü Chunxu(吕春绪).Combustion Temperature Measurement Of Pyrotechnic Composition using Remote Sensing Fourier Transform Infrared Spectrometry(FTIR遥测红外药剂的燃烧温度). Spectroscopy and Special Analysis(光谱学与光谱分析),2002,22:764-768
    67.Li Yan(李燕),Wang Junde(王俊德),Sun Xiuyun(孙秀云),Zhou Xuetie(周学铁).Combustion Temperature Measurement of Solid Propellant by Remote Sensing FTIR(FTIR遥测固体推进剂燃烧温度).Spectroscopy and Spectral Analysis(光谱学与光谱分析),in press
    68.Wang Junde(王俊德).Collected Works of Seminar for Fourier Transform Infrared Spectroscopic Technology and Application (付里叶变换红外光谱技术及应用研讨会文集).Beijing(北京):Chinese Environment Press(中国环境出版社),1987,283-287
    69.Wang Junde,Wang Tianshu,Chen Zuoru,Luo Yunhua,Clench M.R., Mowthrorpe D.J.The Influence Of the Temperature of Blackbody for Calibrating FTIR System 0n the Instrument Response Function.Spectrosc.Lett., 1997.30: 783-791
    70.Wang Junde(王俊德),Chen Zuoru(陈作如),Luo Yunhua(罗蕴华),Huang Mei(黄梅),Kang Jianxia(康建霞),Yu Baiheng(俞柏恒).Advances of Analytical Chemistry(分析化学进展).Wang E.K.Ed.(汪尔康主编).Nanjing(南京) Nanjing University Press(南京大学出版社),1994,449
    71.Wang Junde(王俊德).Applications of remote Sensing FTIR In Gases Determination(遥感傅里叶变换红外光谱在气体测定上的应用).Lin C.(林水水),Wu P.P.(吴平平),Zhou W.M.(周文敏),Wang J.D.(:王俊德)主编.Practical Fourier Transform Infrared Spectrometry(实用傅里叶变换红外光谱学).Beijing(北京):Chinese Environment Press(中国环境科学出版社),1991,466-483
    72. Hudson M. K., Busch K. W. Infrared Emission from a Flame as the Basis for Chromatographic Detection of Organic Compounds. Anal. Chem., 1987, 59:
    
    2603-2609
    73. Malachowski M. S., Levine S. P., Herrin G., Spear R. C., Yost M., Yi Z. Workplace and Environmental Air Contaminant Concentrations Measured by Open Path Fourier Transform Infrared Spectroscopy: A Statistical Process Control Technique to Detect Changes From Normal Operating Conditions. Air Waste, 1994,44: 673-682
    74. Kagann R. H., Simpson O. A. Comparison of Open Path FTIR Data With Point Samplers in The EPA Region VII FTIR Intercomparison Study. Proc., Annu. Meet.-Air Waste Manage. Assoc., 1992, 85th, Paper No. 92/73. 09,16 pp.
    75. Yost M. G., Xiao H. K., Spear R. C., Levine S. P. Comparative Testing of an FTIR Remote Optical Sensor with Area Samplers in a Controlled Ventilation Chamber. Am. Ind. Hyg. Assoc. J., 1992, 53: 611-616
    76. Carter R. E. J., Thomas M. J., Marotz G. A., Lane D. D., Hudson J. L. Compound Detection and Concentration Estimation by Open-Path Fourier Transform Infrared Spectrometry and Canisters Under Controlled Field Conditions. Environ. Sci. Technol., 1992,26: 2175-2181
    77. Hudson J. L., Arello J., Thomas M. J., Kimball H. E., Holloway T. T, Fairless B. J., Spartz M. L., Witkowski M. R., Marshall T. L. Remote Sensing of Toxic Air Pollutants at a Hogh Risk Point Source Using Open-Path FTIR Spectroscopy: a Case Study. Proc. Annu. Meet.-Air Waste Manage. Assoc., 1991, 84th, Paper No. 91/57. 1,15pp.
    78. Hommrich D. N., Kump R. L., Kagann R. H. An Evaluation of Remote Sensing FTIR vs. Point Source Sample Collection and Analysis. Proc., Annu. Meet.-Air Waste Manage. Assoc., 1992, 85th, Paper No. 92/73. 02, 6 pp.
    79. Ckakraborty D. K. Examination of the Long-Path Open-Air FT-IR Technique for Air Monitoring in the State of Kentucky. Proc. SPIE-Int. Soc. Opt. Eng., 1995, 2365: 347-358
    80. Schell G. W., Klamm S. W., Dobson R. D. Portable FTIR Use to Determine Acute, Short-Term Personal Exposures to Air Toxics. Proc., Annu. Meet.-Air Waste Manage. Assoc., 1992, 85th (Vol. 2B), Paper No. 92/75. 08,15 pp
    81 Meng C. (孟超), Meng G. Z. (孟广政). Application of FTIR Spectroscopy for the Detection of Occupation Hygiene(傅里叶变换红外光谱技术在劳动卫生检测中的应用). Spectroscopy and Spectral Analysis (光谱学与光谱分析), 1996,
    
    16:123-127
    82 Fateley W. G., Hammaker R. M., Tucker M. D., Witkowski M. R., Chaffin C. T., Marshall T. L., Davis M., Thomas M. J., Arello J. Observing Industrial Atmospheric Environments by FT-IR. J. Mol. Struct., 1995, 347: 153-168
    83. Chang S. Y., Tso T. L. Measurement of the Taiwan Ambient Trace Gas Concentration by Kilometer-Path Length Fourier-Transform Infrared Spectroscopy. Anal. Sci., 1994,10: 193-201
    84. David P. A., Pauls R. E., Baughman E. H. Measurement of the Concentrations of Volatile Organic Compounds Within Operating Process Units by Open-Path FTIR. Proc. SPIE-Int. Soc. Opt. Eng., 1995, 2365: 25-36
    85. Xiao H. K., Levine S. P., Nowak J., Puskar M., Spear R. C. Analysis of Organic Vapors in the Workplace by Remote Sensing Fourier-Transform Infrared Spectroscopy. Am. Ind. Hyg. Assoc. J., 1993, 54: 545-556
    86. Trocha P. J., Samimi B. S. Analysis Of Volatile Chemicals in The Workplace by Fourier Transform Infrared Spectroscopy. Appl. Occup. Environ. Hyg., 1993, 8: 571-579
    87. Wang Junde, Bian Haiyan, Chen Zuoru, Luo Yunhua. Remote Measurement of Motocycle Exhaust Using Fourier Transform Infrared System. Spectrosc. Lett., 1988,21:935-946
    88. Wang Junde (王俊德), Bian Haiyan (卞海燕), Chen Zuoru (陈作如), Luo Yunhua (罗蕴华), Ma Chong (马冲). Analytical Chemistry (分析化学), 1990, 18,435
    89. Wang Junde, Luo Yunhua, Chen Zuoru, Lu Fengsheng, Pan Shu, Wang Xuemei. Remote Analysis of Motorboat Exhausts Using Fourier Transform Infrared Spectroscopy. Anal. Chim. Acta, 1993, 277: 153-155
    90. Phan H., Auth J. Measurements of Chemical Emissions using FTIR Spectroscopy. Am. Lab., 1993, 25: 24-26
    91. Street D., Uster Z., Trautwein J. FTIR Measurement in a Refinery Operation. Ber.-Dtsch. Wiss. Ges. Erdoel, Erdgas Kohle, Tagungsber., 1993, 9301: 73-95
    92. Wu R. T., Chang S. Y, Chung Y. W., Tzou H. C., Tso T. L. FTIR Remote Sensor Measurements of Air Pollutants in The Petrochemical Industrial Park. Proc. SPIE-Int. Soc. Opt. Eng., 1995, 2552: 719-727
    93. Kagann R. H., Shoop D. S. Fourier Transform Infrared Remote Sensor
    
    Measurements of Chemical Emissions at A RCRA Treatment, Storage and Disposal Facility. Proc., Annu. Meet.-Air Waste Manage. Assoc., 85th(Vol. 2B), Paper No. 92/83. 02,13 pp. 1992
    94. Tso T. L., Liao W. C., Chang S. I. Portable Long Open Path FTIR Applied in In-Situ Measurement of Trace Gases of Ambient Air Pollution. Proc. SPIE-Int. Soc. Opt. Eng., 1992, 1637: 95-106
    95. Li Yan, Wang Junde, Huang Zhonghua, Xu Houqian, Zhou Xuetie. Monitoring Leaking Gases by OP-FTIR Remote Sensing. J. Environ. Sci. & Health, 2002, A37: 1453-1462
    96. Li Yan, Wang Junde. Real Time Air Contaminant Monitoring by Artificial Neural Network and Remote Sensing FTIR. Anal. Lett., 2003, in press
    97. Li Yan (李燕), Wang Junde (王俊德). Real Time Monitoring of Air VOCs by Artificial Neural Network and Remote Sensing FTIR (人工神经网络与遥感FTIR对大气有机污染物的实时监测). Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2003, in press
    98. Chao C. Y, Cha G. Y. Quantification of Indoor VOCs in Twenty Mechanically Ventilated Buildings in Hong Kong. Atmospheric Environment, 2001, 35: 5898-5913
    99. Fortmann R., Rozche N., Chang J. C. S., Guo Z. Characterization of Emissions of Volatile Organic Compounds from Interior Alkyd Paint. Journal of Air and Waste Management Association, 1998, 48: 931-940
    100. Mφlhave L. Volatile Organic Compounds, Indoor Air Quality and Health. Indoor Air, 1991,1:357-376
    101. World Health Organization (WHO). Indoor Air Quality: Organic Pollutants. EURO Report and Studies, 1987
    102. Fernandez-Martinez G, Lopez-Mahia P., Muniategui-Larenzo S., Prada-Rodriguez D., Fernandez-Fernandez E. Distribution of Volatile Organic Compounds During the Combustion Process in Coal-Fired Power Stations. Atmospheric Environment, 2001, 35: 5823-5831
    103. Chagger H. K., Jones J. M., Pourkashanian M., Willians A., Owen A., Fynes G. Emissions of Volatile Organic Compounds from Coal Combustion. Fuel, 1999, 78: 1527-1538
    104. Hammaker R. M., Fateley W. G, Chaffin C. T., Marshall T. L., Tucker M. D.,
    
    Makepeace V. D., Poholarz J. M. FT-IR Remote Sensing of Industrial Atmospheres for Spatial Characterization. Appl. Spectrosc., 1993, 47: 1471-1475
    105. Ghittori S., Marraccini P., Franco G, Imbriani M. Methylene Chloride Exposure in Industrial Workers. Am. Ind. Hyg. Ass. J., 1993, 54: 27-31
    106. Todd L. A. Optical Remote Sensing/Computed Tomography Systems for Workplace Exposure Assessments. Optical Remote Sensing Applications to Environmental and Industrial Safety Problems. Air and Waste Manage. Assoc., 1992, SP81:356-360.
    107. Todd L. A. Optical Remote Sensing/Computed Tomography Beam Geometries for Monitoring Workplace Gases and Vapors. Optical Remote Sensing Applications to Environmental and Industrial Safety Problems. Air and Waste Manage. Assoc., 1992, SP81: 390-393
    108. Yost M. G, Gadgil A. J., Drescher A. C., Zhou Y., Simonds M. A., Levine S. P., Nazaroff W. W, Saisan P. A. Imaging Indoor Tracer-Gas Concentrations With Computed Tomography: Experimental Results With a Remote Sensing FTIR System. Am. Ind. Hyg. Assoc. J., 1994, 55: 395-402
    109. Samanta A., Todd L. A. Mapping Chemical Concentrations Indoors Using Open-Path FTIR Spectroscopy and Computed Tomography: Chamber Studies. Proc. SPIE-Int. Soc. Opt. Eng., 1995,2365: 187-191
    110. Drescher A. C., Park D. Y, Yost M. G, Gadgil A. J., Levine S. P., Nazaroff W. W. Stationary and Time-Dependent Indoor Tracer-Gas Concentration Profiles Measured by OP-FTIR Remote Sensing and SBFM-Computed Tomography. Atmospheric Environment, 1997, 31: 727-740
    111. DrescherA. C., Gadgil A. J., Price P. N., Nazaroff W. W. Novel Approach for Tomographic Reconstruction of Gas Concentration Distributions in Air: Use of Smooth Basis Functions and Simulated Annealing. Atmospheric Environment, 1996,30:929-940
    112. Hashmonay R. A., Yost M. G, Wu C. F. Ambient Gaseous Leak Detection Using Radial Scanning Computed Tomography and Optical Remote Sensing. SPIE, 1999,3534:126-132
    113. Hashmonay R. A., Yost M. G, Harris D. B., Thompson E. L. Simulation Study for Gaseous Fluxes from an Area Source Using Computed Tomography and Optical Remote Sensing. SPIE, 1999, 3534: 405-411
    
    
    114. Huang Zhonghua, Wang Junde, Li Yan. Mapping Spatial Tracer Gases Concentration Profiles on a Two-Dimensional Plane by OP-FTIR Remote Sensing. Instrumen. Sci. & Tech., 2003, 31: 23-34
    115. Li Yan, Wang Junde. Mapping Air Contaminant Concentrations Using Remote Sensing FTIR. J. Environ. Sci. & Health, 2003, A38: 429-438
    116. Li Yan (李燕), Wang Junde (王俊德). Spatially Investigation of Remote Sensing FTIR for the Quantitative Determination of Air Toxic VOCs (在不同空间高度下遥感FTIR定量测定大气中的某些VOCs). Spectroscopy and Spectral Analysis (光谱学与光谱分析), in press
    117. Perez-Arribas L. V., Navarro-Villoslada F., Leon-Gonzalez M. E., Polo-Diez L. M. Use of the Kalman Filter for Multivariate Calibration in a Real System and Its Comparison with CLS and Pure Component Calibration Method. J. Chemom., 1993,7:267-275
    118. Wang C. D., Walter W. T., Kagann R. H. Neural Network and Classical Least Squares Methods for Quantitative Analysis in Remote Sensing FTIR Systems. Proc. SPIE-Int. Soc. Opt. Eng., 1995,2366: 251-262
    119. Xu G. W., Bi W. D., Gan J. P., Wang N. Y., Zhang Y. K., Lu P. Z. The Application of Fourier Transform Infrared (FTIR) Spectrum Subtraction with Artificial Intervention in the Determination of Air Toxic. Fenxi Ceshi Xuebao, 1996, 15: 12-16
    120. Gu Binghe, Wang Junde, Zhou Xuetie, Wu Xuan, Liu Fang, Li Yan. Comparison of Multivariate Calibration Methods for Quantitative Analysis of Multicomponent Mixture of Air Toxic Organic Compounds by FTIR. J. Environ. Sci. & Health, 1998, A33: 1419-1436
    121. Li Yan (李燕), Wang Junde (王俊德), Chen Zuoru (陈作如), Zhou Xuetie (周学铁). Comparison of Four Multivariate Calibration Methods in Simultaneous Determination of Air Toxic Organic Compounds with FTIR Spectroscopy (四种多变量校准方法在FTIR多组分分析中的性能比较). Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2002,22: 758-760
    122. Gu Binghe, Wang Lianjun, Wang Junde, Li Yan, Liu Fang, Chen Zuoru, Luo Yunhua. Elimination of Interferents Influence in Simultaneous Determination of Organic Gases Using PLS with FTIR Spectroscopy. Spectrosc. Lett., 1998, 31: 1451-1467
    
    
    123. Lu X. Q., Mo J. Y. Wavelet Analysis as a New Method in Analytical Chemometrics. Analytical Chemistry, 1996, 24:1100-1106
    124. Wang J., Wang R., Hua T. J., Chen G. F., Fu Y. H., Kuang D. B. Research of Application of Optical Fourier Transform and Wavelet Transform for Real-Time Fingerprint Recognition. Journal of Infrared and Millimeter Wave, 1996, 15: 55-59
    125.Liu Fang(刘芳),Wang Junde(王俊德).Information Subtraction of Remote Sensing FTIR Spectra by Wavelet Method(运用小波变换对遥感FTIR光谱进行信息提取).Spectroscopy and Spectral Analyses(光谱学与光谱分析),in press
    126. Cartwright H. M., Harris S. P. Analysis of the Distribution of Airborne Pollution Using Genetic Algorithms. Atmospheric Environment, 1993, 27A: 1783-1791
    127. Liu Fang, Wang Junde. Application of a Genetic Algorithm to Quantitative Analysisi of Overlapped FTIR Spectra. Spectrosc. Lett., 2001, 24:13-24
    128.Liu Fang(刘芳),Wang Junde(王俊德).Genetic Algorithms and Its Application in Infrared Spectral interpretation(遗传算法及其在谱图解析中的应用). Spectroscopy and Spectral Analyses(光谱学与光谱分析),2001,21:331-335
    129.Liu Fang(刘芳),Wang Junde(王俊德).Quantitative Analyses of FTIR Spectra by Genetic Algorithm(遗传算法用于傅里叶变换红外光谱的定量解析). Spectroscopy and Spectral Analyses(光谱学与光谱分析),2001,21:607-610
    130.Liu Fang(刘芳),Wang Junde(王俊德).Spectrum Search by Genetic Algorithms in FTIR Spectral Library(应用遗传算法在FTIR图谱库中进行谱图检索). Spectroscopy and Spectral Analyses(光谱学与光谱分析),2002,22:239-240
    131. Thompson C. J., Danielson J. D., Callis J. B. Neural Network Models for Infrared Spectrum Interpretation. Anal. Chem., 1997, 69:25-34
    132. Tanabe K., Vesaka H. Artificial Neural Networks for Distinguishing the Unknown Spectra. Appl. Spectrosc., 1992, 46:807-813
    133. Ying L. S., Levine S. P., Tomellini S. A. Expert System of Infrared Spectrum for Environment Mixture. Anal. Chim. Acta, 1988, 210:51-60
    134.Hu X.R.(胡鑫尧).Quantitative Analysis by Infrared Spectra(红外光谱的定量分析).Wu W.J.(吴文谨)主编,Modern Fourier Transform Infrared Technology and Its Application(The First Volume)(近代傅里叶变换红外光谱技术及应用, 上册).Beijing(北京):Science and Technology Press(科学技术文献出版社),
    
    1994,pp.669-699
    135. Carrington R. A.G., Sc B. Computers for Spectroscopt. Adam Hilger, 1974
    136. Jones R. N. Computer Programs of Infrared Spectrometry. Canada, 1977
    137. Sternberg J. C., Stillo H. S., Schwendeman R. H. Spectrophotometric Analysis of Multicomponent Systems Using Least Squares Method in Matrix Form Ergosterol Irradiation System. Anal. Chem., 1960, 32:84-90
    138. Antoon M. K., Koenig J. H., Koenig J. L. Appl. Spectrosc., 1977, 31:518
    139. Li Yan, Yang Shulin, Wang Junde, Gu Binghe, Liu Fang. Simultaneous Determination of Multicomponents in Air Toxic Organic Compounds Using Artificial Neural Networks in FTIR Spectroscopy. Spectrosc. Lett., 1999, 32: 421-429
    140. Li Yan, Wang Junde, Yuan Weiqun. Simultaneous Determination and Spectra Correction of Air Toxic Organic Compounds Using PLS and ANN in FTIR Spectroscopy. J. Environ. Sci. & Health, 2000, A35:1673-1691
    141. Li Yan, Wang Junde, Chen Zuoru, Zhou Xuetie. Artificial Neural Network for the Quantitative Analysis of Air Toxic VOCs. Anal. Lett., 2001, 34:2203-2219
    142.Li Yan(李燕),Wang Junde(王俊德),Meng Guangzheng(孟广政).Artificial Neural Network and Its Application in Spectral Analysis(人工神经网络及其在光谱分析中的应用).Spectroscopy and Spectral Analysis(光谱学与光谱分析),1999,19:844-849
    143.Li Yan(李燕),Wang Junde(王俊德),Wang Lianjun(王连军).Artificial Neural Network for the Identification of Infrared Spectra(人工神经网络法鉴别红外光谱).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2000,20:477-479
    144.Li Yan(李燕),Sun)(iuyun(孙秀云),Wang Junde(王俊德).Determination of Five Component Infrared Spectra System with Artificial Neural Network (人工神经网络法测定五组分红外光谱体系).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2000,20:773-776
    145. Mlakar P., Boznar M. Short-Term air Pollution Prediction on the Basis of Artificial Neural Networks. Air Pollut. Ⅱ, [Int. Conf.], 2nd, Volume 1,545-552. Baldasano J. M.Ed. Comput. Mech. Publ.: Southampton, UK. 1994
    146. Moore S. W., Gardner J. W., Hines E. L., Goepel W., Weimar U. A Modified Multilayer Perceptron Model for Gas Mixture Analysis. Sens. Actuators, 1993,
    
    16 B: 344-348
    147. Batteh J., Powell J., Sink D., Thornhill L. A Methodology for Computing Thermodynamic and Transport Properties of Plasma Mixtures In ETC Injectors. IEEE Trans. Magn., 1995, 31: 388-393
    148. Hewkin D., Figura E. Fundamental Research and Numerical Modeling of the Internal Ballistics of Electrothermal-Chemical Guns. IEEE Trans. Magn., 1993, 29: 561-566
    149. Wren G. P., Oberle W. F., Sinha N., Hosangadi A., Dash S. M. U. S. Army Activities in Multidimensional Modeling of Electro-Thermal-Chemical Guns. IEEE Trans. Magn., 1993, 29: 631-636
    150. Gilligan J., Bourham M., Hankins O., Auciello Q., Talavarjula S., Mohanti R. Studies to Reduce Material Erosion in Electro-Thermal Launchers. IEEE Trans. Magn., 1991,27:476-481
    151. Kim J. U., Suk H. Characterization of A High-Density Plasma Produced by Electrothermal Capillary Discharge. Appl. Phys. Lett., 2002, 80: 368-370
    152. Kim J. U., Kim K. J., Wilson D. E., Peterlson D. R., Clemens N. T. IEEE Trans, on Plasma Science, 2000, 28: 312
    153. Ehrlich Y., Cohen C., Zigler A., Krall J., Sprangle P. E. Guidingof High Intensity Laser Pulses in Straight and Curved Plasma Channel Experiments. Phys. Rev. Lett, 1996, 77:4186-4189
    154. Katulka G. L. Parametric Study of High Energy Plasmas for Electrothermal-Chemical Propulsion Applications. IEEE Trans, on Plasma Science, 1997,25:66-72
    155. Lee R. W., Zigler J. Multiple Pulse Laser Excitation of Capillary Discharge. Appl. Phys. Lett., 1988, 53: 2028-2030
    156. Hankins O. E., Bourham M. A., Earnhart J., Gilligan J. G. Visible Light Emission Measurement from a Dense Electrothermal Laucher Plasma. IEEE Trans, on Magn., 1993, 29: 1158-1161
    157. Kohel J. M., Su L. K., Clemens N. T., Varghese P. L. Emission Spectroscopic Measurements and Analysis of a Pulsed Plasma Jet. IEEE Trans, on Magn., 1999, 35: 201-206
    158. Sueda T., Katsuki S., Kiyama H. A. Early Phenomena of Capillary Discharges in Different Ambient Pressures. IEEE Trans, on Magn., 1997, 33: 334-339
    
    
    159. Kalnacky R. J. Appl. Spectrosc., 1977, 31:137
    160. Rott M. The LRT/TUM Small Caliber Electrothermal Accelerator. IEEE Trans. on Magn., 1993, 29:597-602
    161. Benson A., Kempke S. N. Studies of Confined High-Pressure Discharges in an Electrothermal Capillary. IEEE Trans. on Magn., 1989, 25:415-418
    162. Ort M. Design Optimization of a Small Caliber Electrothermal Accelerator. IEEE Trans. on Magn., 1995, 31: 441-446
    163. CRC Handbook of Chemistry and Physics, 69th Ed., CRC Press, 1989, pp. 1-348
    164. CRC Handbook of Chemistry and Physics, 76th Ed., CRC Press, 1996, pp.10-142
    165. Zhou Xuetie., Li Yan, Wang Junde, Huang Zhonghua. The Temperature Measurement of the Electrothermal Launcher Plasma by Atomic Emission Spectroscopy. IEEE Trans. on Plasma Science, 2001, 29:360-364
    166.Sun Xiuyun(孙秀云),Zhou Xuetie(周学铁),Li Yan(李燕),Wang Lianjun(王连军),Wang Junde(王俊德).Error Analysis of Temperature Measurement by Boltzmann Plot in Atomic Emission Spectroscopy for a High-Density Plasma Produced by Electrothermal Capillary Discharge(发射光谱Boltzmann法测量毛细管放电产生的电热高密度等离子体温度之误差分析).Spectroscopy and Spectral Analysis(光谱学与光谱分析),已被录用
    167. Corliss C. H., Bozman W. R. Experimental Transition Probabilities for Spectral Line of Seventy Elements, Washington: National Bureau of Standard Monograph S3, U.S. Government Printing Office, 1962
    168. Cheslds S. Quantitative Measurements of Absolute Concentrations of Intermediate Species in Flames. Progress in Energy and Combustion Science, 1999, 25:233-252
    169. Wang Junde, Kang Jianxia, Chen Zuoru, Huang Mei, Zhang Jupei, Wang Tianshu. The Study of Freon-12 in Alcohol/Air Flame With Remote Sensing Fourier Transform Infrared Emission Spectroscopy. J. Environ. Sci. Health, 1995, A30:2111-2122
    170.Huang Zhonghua(黄中华),Li Yan(李燕),Wang Junde(王俊德),Chen Zuoru (陈作如).Calibration 0f EQUINOX55 Remote Sensing FTIR Emission System (EQUINOX55型遥感傅里叶变换红外光谱系统的校正).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2002,22(3):399-402
    
    
    171. Wang Junde, Chen Zuoru, Luo Yunhua, Huang Mei, Kang Jianxia, Gu Binghe. Remote Observation of FTIR Emission Spectra From Some Organic Compound Combustions. In Advances in Analytical Chemistry, Wang E. K. Ed., Nanjing: Nanjing University Press, 1994, 449
    172. Robert J. B. Field of View. In Introductory Fourier Transform Infrared. New York: Academic Press, Inc. (London) Ltd., 1972, p. 141-152.
    173. Herzberg G. Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules, New York: Van Nostrand Reinhold, 1950
    174. Nalimov V. V. The Application of Mathematical Statistics to Chemical Analysis. U. K.: Pergamon: Oxford, 1963
    175. Mandel J. The Statistical Analysis of Experimental Data. New York: Wiley, 1964
    176. Lucht P. R. Three-Laser Coherent Anti-Stokes Raman Scattering Measurements of Two Species. Opt. Lett., 1987, 12: 78-80
    177. Beiting E. J. Measurement of Reflectivities for Magneto Optical Media. Appl. Opt, 1986,25:1946-1951
    178. Yueh F. Y, Beiting E. J. Simultaneous N2, CO, and H2 Multiplex CARS Measurements in Combustion Environments Using a Single Dye Laser. Appl. Opt, 1988,27:3233-3243
    179. Sigrit M.W. Air Monitoring by Spectroscopic Techniques. In Chemical Analysis, Winefordner J. D. Ed., New York: John Wiley & Sons, Inc., 1994, Vol. 127
    180. Sigrit M.W. The Role of Atmospheric Trace Gases in the Environment. In Chemical Analysis, Winefordner, J. D. Ed., New York: John Wiley & Sons, Inc., 1994, Vol. 127
    181. Rencher A. C. Methods of Multivariate Analysis. New York: John Wiley & Sons, 1995
    182. Malinowski E. R., Howery D. G. Factor Analysis in Chemistry. New York: Wiley, 1980
    183. Minoux M. Mathematical Programming. New York: John Wiley & Sons, 1986
    184. Chen Xiru (陈希儒), Wang Songgui (王松贵). Modern Practical Regression Analysis (近代实用回归分析). Guangxi(广西): Guangxi People Publisher (广西人民出版社), 1984
    185. Ying L. S., Levine S. P. Fourier Trasform Infrared Least-Squares Methods for the Quantitative Analysis of Multicomponent Mixtures of Airborne Vapors of
    
    Industrial Hygiene Concerntration. Anal. Chem., 1989, 61: 677-683
    186. Geladi P., Kowalski B. R. Partial Least Squares Regression: A Tutorial. Anal. Chim.Acta, 1986,185a: 1-17
    187. Fuller M. P., Ritter G. L., Draper C. S. Partial Least Squares Quantitative Analysis of Infrared Spectroscopic Data. Part I: Algorithm Implementation. Appl. Spectrosc., 1988, 42: 217-227
    188. Brown S. D. The Kalman Filer in Analytical Chemistry. Anal. Chim. Acta, 1986, 181: 1-26
    189. Yang H., Griffiths P. R. Application of Multilayer Feed-Forward Neural Netwroks to Automated Compound Identification in Low-Resolution Open-Path FT-IR Spectroscopy. Anal. Chem., 1999, 71: 751-761
    190. Blank T. B., Brown S. D. Data Processing Using Neural Networks. Anal. Chim. Acta, 1993,277:273-287
    191. Long J. R., Gregoriou V. G., Gemperline P. J. Spectroscopic Calibration and Quantitation Using Artificial Neural Networks. Anal. Chem., 1990, 62: 1791-1797
    192. Bose N. K., Liang P. Neural Network, Fundamentals; McGraw-Hill: New York, 1996
    193. Hagan M. T., Demuth H. B., Beale M. Neural Network Design. Pws: Boston, 1996
    194. Zheng J. L. (郑君里), Yang X. J. (杨行俊). Artificial Neural Networks (人工神经网络). Beijing(北京): Higher Education Publisher(高等教育出版社), 1992
    195. Deng B. (邓勃), Mo H. (莫华). Artiticial Neural Networks and Its Application in Analytical Chemistry (人工神经网络及其在分析化学中的应用). Analytical Laboratory (分析实验室), 1995, 14: 88-94
    196. Kateman G, Smits J. R. M. Colored Information from a Black Box? Validation and Evaluation of Neural Networks. Anal. Chim. Acta, 1990, 62: 1791-1797
    197. Jalali-Heravi M., Fatemi M. H. Simulation of Mass Spectra of Noncyclic Alkanes and Alkanes Using Artificial Neural Network. Anal. Chim. Acta, 2000, 415: 95-103
    198. Mittermayr C. R., Drouen A. C. J. H., Otto M., Grasserbauer M. Neural Networks for Library Search of Ultraviolet Spectra. Anal. Chim. Acta, 1994, 294: 227-242
    
    
    199. Ruyken M. M. A., Visser J. A., Smilde A. K. Online Detection and Identification Interferents in Multivariate Predictions of Organic Gases using FTIR Spectroscopy. Anal. Chem., 1995, 67: 2170-2179
    200. Simonds M., Xiao H., Levine S. P. Optical Remote Sensing for Air Pollutants-Review. Am. Ind. Hyg. Ass. J., 1994, 53: 953-965
    201. Spartz M. L., Fateley M. R., Witkowski M. R., Hammaker R. M., Fateley W. G. Design and Calibration of a Mobile Laboratory for On-Site Measurements of Volatile Organic Compounds (VOCs) Using Fourier Transform Infrared Spectroscopy (FT-IR). In Proceedings of the Conference on Hazardous Waste Research, Erichson L. E. Ed., Kansas State University Extension, Manhatton, Kansas, 1989, pp. 328-346
    202. Clement R. E., Yang P. W., Koester C. J. Environmental Analysis, 2001, 73: 2761-2790
    203. Hashmonay R. A., Yost M. G, Harris D. B., Thompson E. L. Simulation Study for Gaseous Fluxes from an Area Source Using Computed Tomography and Optical Remote Sensing. SPIE, 1998, 3534: 405-410
    204. Todd L. A. Evaluation of an Open-Path Fourier Transform Infrared (OP-FTIR) Spectrophotometer using an Exposure Chamber. Applied Occupational and Environmental Hygiene, 1996, 11: 1327-1334
    205. Drescher A. C., Park D. Y, Yost M. G, Gadgil A.J., Nazaroff W. W. Stationary and Time-Dependent Indoor Tracer-Gas Concentration Profiles Measured by OP-FTIR Remote Sensing and SBFM Computed Tomography. Atmospheric Environment, 1997, 31: 727-740
    206. Volin C. E., Descour M. R. Signal-to-Noise Ration Analysis of the Computer-Tomography Imaging Spectrometer. Proceedings of SPIE, 1998, 3438: 107-113
    207. Emission of Volatile Organic Compounds (VOCs) from Coal-Fired Appliances. In Comm. Eur. Communities (Report). British Coal Corporation, Stoke Orchard, UK, Cheltenham, 1998, pp. 1-72
    208. Ayer J. Q., Williams G. M. FTIR Monitoring for Real Time Organic Emissions Measurements and Process Comtrol at Military or Industrial Coating Facilities and Other Solvent Operations. Proc. Annu. Meet-Air Waste Manage. Assoc. 1996, 89th, wa6501/1-wa6501/13
    
    
    209. Sjodin A., Andreasson K. Multi-Year Remote-Sensing Measurements of Gasoline Light-Duty Vehicle Emissions on a Freeway Ramp. Atmospheric Environment, 2000, 34: 4657-5665
    210. Cantu A., Pophal G., Hall S., Laush C. T. A Unique Application of an Extractive FTIR Ambient Air Monitoring System for the Simultaneous Detection of Multiple-ppb-Level VOCs. App. Phys., 1998, B67:493-496
    211. Collins J. D., Todd L. A. Evaluation of Infrared Optical Remote Sensing Equipment in an Exposure Chamber. Optical Remote Sensing Applications to Environmental and Industrial Safety Problems. AWMA, 1992, SP81: 351-355
    212. Spartz M. L., Hammaker R. M., Fateley W. G. Observation and Measurements of Volatile Organic Compounds (VOCs) in the Atmosphere. In Proceedings of the Conference on Hazardous Waste Research. Erickson L. E. Ed., Kansas State Engineering Extension, Manhattan: Kansas. 1988, pp. 142-159
    213. Hren B., Katona K., Mink J., Kohan J., Isaak Gy. Long-Path FTIR Spectroscopic Studies of Air Pollutants in the Danube Refinery Plant. Analyst, 2000, 125: 1655-1659
    214. McClenny W. A. Program Objectives and Status for the U.S. EPA Program on FTIR-Based Open-Path Monitoring. In Proceedings of Optical Remote Sensing for Environmental and Process Monitoring, Dallas, TX, 1996
    215. Russwurm G. M., Childers J. W. FT-IR Open-Path Monitoring Guidance Document, 2nd ed., ManTech Environmental Technology, Inc., Research Triangle Park, Nc, 1995
    216. Hashmonay R. A., Yost M. G, Harris D. B., Thompson E. L. Simulation Study for Gaseous Fluxes from an Area Source Using Computed Tomography and Optical Remote Sensing. SPIE, 1998, 3534: 405-410
    217. Yang H., Griffiths P. R. Application of Multilayer Feed-Forward Neural Networks to Automated Compound Identification in Low-Resolution Open-Path FT-IR Spectrometry. Anal. Chem., 1999, 71: 751-761
    218. Clean Air Act of 1990, Public Law, Section 301: 101-549
    219. Air Pollution Control Engineering. 2nd Ed. Beijing: Qsinghua press, 2000
    220 Pujadas M., Plaza J., Teres J., Artinano B., Millan M. Passive Remote Sensing of Nitrogen Dioxide as a Tool for Tracking Air Pollution in Urban Areas: the Madrid Urban Plume, a Case of Study. Atmospheric Environment, 2000, 34:
    
    3041-3056
    221. H.ankins O. E., Mann D. Analyses of Molecular and Neutral Atomic Emission Spectra from an Electrothermal Launcher Plasma. IEEE Trans. Magn., 1995, 31: 410-413
    222. Clothiaux E. J. UV Absorption of the In-Boren Plasma Emission from an EML Using Polycarbonate Insulators. IEEE Trans, on Magn., 1991, 27: 199-201
    223. Clothiaux E. J. Spectroscopic Observations of an Arc-Plasma Accelerator. J. Quant. Spectrosc. Radiat. Transfer., 1991, 44: 567-571
    224. Katulka G. L. Parametric Study of High Energy Plasma for Electrothermal-Chemical Propulsion Applications. IEEE Trans, on Plasma Sci., 1997,25: 66-72
    225. Zhu J., Dann-Rankin D. Using Coherent Anti-Stokes Raman Spectroscopy to Probe the Temperature Field of Combusting Droplet Steam. Appl. Opt., 1991, 30: 2672-2674
    226. Reif I., Fassel V. A., Kniseley R. N. Spectroscopic Flame Temperature Measurements and Their Physical Significance-I. Theoretical Concepts-a Critical Review. Spectrochim. Acta, 1973, 28B: 145-156
    227. Reif I., Fassel V. A., Kniseley R. N. Spectroscopic Flame Temperature Measurements and Their Physical Significance-III. Existence of Isothermal Zones in Some Laboratory Flames. Spectrochim. Acta, 1975, 30B: 163-178
    228. 《Emission Spectral Analysis》 Compile Group Ed. (《发射光谱分析》编写组). Emission Spectral Analysis (发射光谱分析). Beijing(北京): Metallurgical Industrial Press (冶金工业出版社), 1977
    229. Boumans P. W. J. M. Excitation Spectral in Analytical Emission Spectroscopy. Grove E. L. Ed., New York: Marcel Dekker, 1972
    230. Thome A. P. Spectrophysics. London: Chapman & Hall, 1974

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700